Archive for category Functional Electrical Stimulation (FES)

[Abstract] Gait rehabilitation using functional electrical stimulation induces changes in ankle muscle coordination in stroke survivors: a preliminary study

Background: Previous studies have demonstrated that post-stroke gait rehabilitation combining functional electrical stimulation applied to the ankle muscles during fast treadmill walking (FastFES) improves gait biomechanics and clinical walking function. However, there is considerable inter-individual variability in response to FastFES. Although FastFES aims to sculpt ankle muscle coordination, whether changes in ankle muscle activity underlie observed gait improvements is unknown. The aim of this study was to investigate three cases illustrating how FastFES modulates ankle muscle recruitment during walking.

Methods: We conducted a preliminary case series study on three individuals (53-70y; 2M; 35-60 months post-stroke; 19-22 lower extremity Fugl-Meyer) who participated in 18 sessions of FastFES (3 sessions/week; ClinicalTrials.gov: NCT01668602). Clinical walking function (speed, six-minute walk test, and Timed-Up-and-Go test), gait biomechanics (paretic propulsion and ankle angle at initial-contact), and plantarflexor (soleus) / dorsiflexor (tibialis anterior) muscle recruitment were assessed pre- and post-FastFES while walking without stimulation.
Results: Two participants (R1, R2) were categorized as responders based on improvements in clinical walking function. Consistent with heterogeneity of clinical and biomechanical changes commonly observed following gait rehabilitation, how muscle activity was altered with FastFES differed between responders.R1 exhibited improved plantarflexor recruitment during stance accompanied by increased paretic propulsion. R2 exhibited improved dorsiflexor recruitment during swing accompanied by improved paretic ankle angle at initial-contact. In contrast, the third participant (NR1), classified as a non-responder, demonstrated increased ankle muscle activity during inappropriate phases of the gait cycle. Across all participants, there was a positive relationship between increased walking speeds after FastFES and reduced SOL/TA muscle coactivation.
Conclusion: Our preliminary case series study is the first to demonstrate that improvements in ankle plantarflexor and dorsiflexor muscle recruitment (muscles targeted by FastFES) accompanied improvements in gait biomechanics and walking function following FastFES in individuals post-stroke. Our results also suggest that inducing more appropriate (i.e., reduced) ankle plantar/dorsi-flexor muscle coactivation may be an important neuromuscular mechanism underlying improvements in gait function after FastFES training, suggesting that pre-treatment ankle muscle status could be used for inclusion into FastFES. The findings of this case-series study, albeit preliminary, provide the rationale and foundations for larger-sample studies using similar methodology.

 

via Frontiers | Gait rehabilitation using functional electrical stimulation induces changes in ankle muscle coordination in stroke survivors: a preliminary study | Neurology

, , , , , , , , ,

Leave a comment

[VIDEO] Split-Crank Functional Electrical Stimulation Cycling: An Adapting Admitting Rehabilitation Robot – YouTube

Δημοσιεύτηκε στις 14 Νοε 2018
A split-crank functional electrical stimulation (FES) cycle utilizes an adapting admittance controller on each motor to apply torque about the crank. Simultaneously, the rider receives neuromuscular electrical stimulation to cause artificial muscle contractions to pedal the cycle. The cycle and rider cooperate to keep the cycle up to speed for the purpose of promoting rehabilitation in people with movement disorders.

 

via (15) Split-Crank Functional Electrical Stimulation Cycling: An Adapting Admitting Rehabilitation Robot – YouTube

, , , ,

Leave a comment

[WEB SITE] Technology helps stroke patients get moving again

Electronic devices are helping stroke patients walk and move their hands again.
Provided

Electronic devices are helping stroke patients walk and move their hands again.

This may bode well for the 20 percent of survivors that have foot drop, and 87 percent of stroke survivors that have lost the use of their hands.

When a person has a stroke, multiple sclerosis or brain injury, most of the neurons that help signal muscles to move are broken. This keeps the brain from being able to send signals to certain muscle groups telling them to move.

A stroke, for example, can destroy millions of brain cells that you need to tie your shoes, pick up a grandchild or reach into your closet. To gain lost function, rehabilitation used to focus on teaching patients how to compensate for their physical deficits.

Today, research shows that neural plasticity (the ability of the brain to repair itself) can be applied effectively for improved outcomes and enhanced functional abilities.

To do this successfully, the central nervous system must seek other neural pathways and find new connections that bypass the damaged areas. With a little help from functional electrical stimulation (FES), which is low energy electrical pulses, the process to find the new connections is a bit easier.

New electrical orthotics target muscles with FES and can help accelerate muscle-nerve recovery. The electronic orthosis and its control unit transmit synchronized electric pulses to the peripheral nerves through electrodes built into the orthosis — these pulses are driven in precise sequence and accurately activate five muscles in the forearm.

“Muscles relearn when electrical stimulation provides feedback to the brain that can facilitate neuro re-education and promote neuroplasticity, which is the ability of the central nervous system to remodel itself,” says physical therapist Imelda Ungos, director of rehabilitation for Melbourne Terrace, a facility that specializes in the active and aging population. “And patients can learn a better way to function just by having new input, regardless of age.”

Ungos reports that the ultimate goal with this method of therapy is to restore voluntary movement. Patients with a history of brain lesions, such as stroke conditions and movement disorders, may have the most to gain with the neuro-orthotics and the rehab to learn how to use them.

“The latest therapy equipment from Bioness can drive the brain to new connections, and newer technology and techniques encourage the neuronal changes necessary for improved function,” says Ungos. “This kind of therapy is very specialized, and we’re the only sub-acute facility in the Space Coast area with the Bioness FES technologies,” says Ungos.

For improved hand function, the orthosis fits to the forearm and wrist, and communicates wirelessly with the control unit. Inside the orthosis, electrodes deliver mild pulses to stimulate muscle contraction.

The level of stimulation can be adjusted toward each function. With an intuitive interface, clinicians are better able to help their patients obtain simple control of desired hand activation.

The wireless device is portable and allows for quick detection of the best electrode position for each individual. A control unit enables easy programming of functional modes and training regimens.

For patients with poor safety and balance due to foot drop, which is the inability to lift the foot during walking, there’s an electronic orthosis that fits below the knee. The unit has stimulating electrodes placed over the correct nerve and fits below the knee. A heel sensor sends a muscle-contracting signal during the correct step phase to enable the foot to lift.

After the initial custom fitting of the orthosis, patients can enhance their abilities to perform daily activities, and the carry-over results from continued use will improve voluntary movement.

Ungos adds that the other benefits of interacting with the device include a reduction in muscle spasm, an increase in range of motion, and improved blood circulation. “That all goes towards retarding disuse atrophy,” she says.

“Efforts must be directed towards preventing complications and learning how to use affected limb along with active rehabilitation… especially when the use is started early in post stroke rehabilitation,” says online Bioness reports from Harold Weingarden, MD, Director of Rehabilitation Day Hospital Sheba Medical Center in Israel.

“An early start to rehab gives patients hope of what is possible in terms of present and future improvement,” says Ungos. She adds that the devices allow patients to move in more natural ways.

Feeling “normal” again can improve mood, function, and quality of life.

For more information, call Melbourne Terrace Rehabilitation Center at 321-725-3990. They offer comprehensive rehabilitative outpatient and inpatient services for short or long term care located at 251 East Florida Ave., Melbourne, FL 32901

via Technology helps stroke patients get moving again

, , , , , ,

Leave a comment

[BOOK] 22 ANNUAL CONFERENCE OF THE INTERNATIONAL FUCTIONAL ELECTRICAL STIMULATION SOCIETY – Abstracts

Enhancing quality of life
through electrical stimulation technology

22. ANNUAL CONFERENCE OF THE
INTERNATIONAL FUNCTIONAL
ELECTRICAL STIMULATION SOCIETY

All of the abstracts presented are available on line at http://ifess2018.com/down/IFESS2018_program.pdf

 

 

 

, , , , ,

Leave a comment

[ARTICLE] Speed-adaptive control of functional electrical stimulation for dropfoot correction – Full Text

Abstract

Background

Functional electrical stimulation is an important therapy technique for dropfoot correction. In order to achieve natural control, the parameter setting of FES should be associated with the activation of the tibialis anterior.

Methods

This study recruited nine healthy subjects and investigated the relations of walking speed with the onset timing and duration of tibialis anterior activation. Linear models were built for the walking speed with respect to these two parameters. Based on these models, the speed-adaptive onset timing and duration were applied in FES-assisted walking for nine healthy subjects and ten subjects with dropfoot. The kinematic performance of FES-assisted walking triggered by speed-adaptive stimulation were compared with those triggered by the heel-off event, and no-stimulation walking at different walking speeds.

Results

Higher ankle dorsiflexion angle was observed in heel-off stimulation and speed-adaptive stimulation conditions than that in no-stimulation walking condition at all the speeds. For subjects with stroke, the ankle plantarflexion angle in speed-adaptive stimulation condition was similar to that in no-stimulation walking condition, and it was significant larger than that in heel-off stimulation condition at all speeds.

Conclusions

The improvement in ankle dorsiflexion without worsening ankle plantarflexion in speed-adaptive stimulation condition could be attributed to the appropriate stimulation timing and duration. These results provide evidence that the proposed stimulation system with speed-related parameters is more physiologically appropriate in dropfoot correction, and it may have great potential value in future clinical applications.

 

Background

About three quarters of stroke survivors experience different levels of brain dysfunction and movement disorder [1], which result in lower living quality and limited ability in social activities [2]. Of these subjects, 20% suffer from impaired motor function in the lower extremities. One of such impairments is dropfoot, which is characterized by poor ankle dorsiflexion during the swing phase and an inability to achieve heel strike at the initial contact [34]. Abnormal gaits such as circumduction gait and abnormal foot clearance on the affected side are often found as a method of compensating for excessive hip abduction and pelvis elevation on the unaffected side [5]. This results in gait asymmetry and slow walking speed [6].

Functional electrical stimulation was a representative intervention to correct dropfoot and Liberson et al. first introduced functional electrical stimulation (FES) to correct dropfoot for chronic hemiplegic subjects in the 1960s [7]. An electrical charge is delivered via a pair of electrodes to activate the tibialis anterior (TA), which results in ankle dorsiflexion. Yan et al. applied two dual-channel stimulators to the quadriceps, hamstring, gastrocnemius, and TA to recover motor function of the lower extremities in an early stage after stroke [8]. The stimulation was followed by a predetermined sequence of muscle activations that mimic a healthy gait cycle [9]. The duration of stimulation was five seconds in Yan et al.’s study. However, subjects with different severities of impairment might have different walking speeds [10], which means that a fixed stimulation duration might not be able to account for different walking patterns.

Liberson et al. used the heel-off event detected by a footswitch to trigger the stimulation [7]. However, the reliability of the footswitch controller was significantly reduced when subjects who dragged their feet during walking encountered a slope or an obstacle [11]. Bhadra et al. proposed a manual switch to trigger stimulation as a walking aid for subjects with spinal cord injury (SCI) [12]. However, manual control may distract subjects from maintaining balance and lead to an increased risk of falls [1314]. Furthermore, the cable between the control sensor and stimulator was inconvenient for walking [15].

Instead of a footswitch, Mansfield et al. [16] and Monaghan et al. [17] detected the heel event of the gait cycle in FES-assisted walking using an accelerometer and a uniaxial gyroscope, respectively. The commercially available product WalkAide also uses an accelerometer for this purpose [18]. Electromyography (EMG) signal is also applied as a control source in FES-assisted walking for the detection of volitional intent of muscle [19]. Yeom et al. amplified the EMG signal of the TA and modulated the stimulation intensity in proportion to the integrated EMG envelope. The electrical pulses are then sent to the common peroneal nerve for dropfoot correction [20].

In these studies, FES applied to the TA was mainly triggered by the heel-off event. However, this event occurs during the push-off phase and before TA activation [17]. An earlier start of TA stimulation results in reduced ankle plantarflexion [21]. Spaich et al. suggested implementing a constant time interval before the onset timing of TA stimulation to extend the push-off phase before the ankle dorsiflexion [21]. Some studies have found that walking speed can affect the activation of TA [2223]. Shiavi et al. found that the duration of EMG activity decreased as speed increased [22]. In Winter et al.’s study, the shape of the EMG patterns generally remained similar at the different walking speeds and the duration of EMG activity was closely related to the normalized stride time [23]. Although the duration of TA activation changes with the walking speeds has been reported [24], the selection of speed-adaptive FES parameters for TA has not been investigated.

The objective of this study is to find a more physiologically appropriate FES design for dropfoot correction. Firstly, speed-related changes in onset timing and the duration of TA activation were examined. Next, linear models were built for the walking speed and time interval from the heel-off event to the onset timing of TA activation, as well as for the walking speed and the duration of the TA activation. The speed-adaptive stimulation (SAS) timing and duration were then calculated based on the two models and applied for FES-assisted walking. Finally, the performance of stimulation triggered by SAS, heel-off event (HOS) and no stimulation (NS) were compared during FES-assisted walking on both subjects with stroke and healthy subjects at different walking speeds.[…]

 

Continue —->  Speed-adaptive control of functional electrical stimulation for dropfoot correction | Journal of NeuroEngineering and Rehabilitation | Full Text

 

Fig. 1a The experiment setup of SAS condition; b one healthy subject on the treadmill for system evaluation; c the position of five markers on the right leg

, , , , , ,

Leave a comment

[ARTICLE] Improving Hand Function of Severely Impaired Chronic Hemiparetic Stroke Individuals Using Task-Specific Training With the ReIn-Hand System: A Case Series – Full Text

Abstract

Purpose: In this study, we explored whether improved hand function is possible in poststroke chronic hemiparetic individuals with severe upper limb motor impairments when they participate in device-aided task-specific practice.

Subjects: Eight participants suffering from chronic stroke (>1-year poststroke, mean: 11.2 years) with severely impaired upper extremity movement (Upper Extremity Subscale of the Fugl-Meyer Motor Assessment (UEFMA) score between 10 and 24) participated in this study.

Methods: Subjects were recruited to participate in a 20-session intervention (3 sessions/7 weeks). During each session, participants performed 20–30 trials of reaching, grasping, retrieving, and releasing a jar with the assistance of a novel electromyography-driven functional electrical stimulation (EMG-FES) system.

This EMG-FES system allows for Reliable and Intuitive use of the Hand (called ReIn-Hand device) during multi-joint arm movements. Pre-, post-, and 3-month follow-up outcome assessments included the UEFMA, Cherokee McMaster Stroke Assessment, grip dynamometry, Box and Blocks Test (BBT), goniometric assessment of active and passive ranges of motion (ROMs) of the wrist and the metacarpophalangeal flexion and extension (II, V fingers), Nottingham Sensory Assessment–Stereognosis portion (NSA), and Cutaneous Sensory Touch Threshold Assessment.

Results: A nonparametric Friedman test of differences found significant changes in the BBT scores (χ2 = 10.38, p < 0.05), the passive and active ROMs (χ2 = 11.31, p < 0.05 and χ2 = 12.45, p < 0.01, respectively), and the NSA scores (χ2 = 6.42, p < 0.05) following a multi-session intervention using the ReIn-Hand device.

Conclusions: These results suggest that using the ReIn-Hand device during reaching and grasping activities may contribute to improvements in gross motor function and sensation (stereognosis) in individuals with chronic severe UE motor impairment following stroke.

Introduction

Stroke is the second most common cause of mortality and the third most common cause of disability worldwide (12). More than two-thirds of people who have had a stroke have difficulties with arm function, which contributes considerably in limiting the ability to perform activities of daily living (ADLs) (34). Though various studies have reported positive outcomes following multiple types of interventions in more mildly impaired individuals (56), regaining hand function in individuals with moderate-to-severe impairments still remains a challenge. This is largely due to impairments, such as the loss of volitional finger extension (78), muscle coactivation (7), involuntary coupling of wrist and finger flexion with certain shoulder and elbow movements (9), and somatosensory deficits (10).

Several studies have suggested that repetitive task-specific training can improve upper extremity (UE) function (1114) in mildly impaired stroke survivors when the practice is functionally relevant and of sufficient intensity. Intervention-induced gains have been reported for up to 6 months after intervention (15). In particular, interventions focusing on reach and grasp movements have been shown to be relevant because these movements are essential for ADLs and are viewed by subjects as high priority rehabilitative goals (1617). This approach has often been used in individuals in both the acute and subacute stage (1820) and with mild-to-moderate impairments after stroke (61821).

There is limited research targeting chronic stroke individuals with severely impaired UE. These individuals are less able to participate in task-specific training because of minimal volitional activation of the impaired arm (16). Furthermore, during ADLs, concurrent use of hand and arm are required. However, the presence of the flexion synergy after stroke (2224), coupled with shoulder abduction with elbow/wrist and fingers flexion (9), decreases the ability to generate volitional or functional electrical stimulation (FES)-assisted finger extension while lifting against gravity (2526). This creates a major challenge to rehabilitation clinicians and limits opportunities for this population to participate in programs focused on hand recovery (16).

The purpose of this study is to determine the effect of device-assisted task-specific training on hand motor function and sensation (stereognosis and cutaneous sensory touch threshold) in individuals with chronic stroke and severe UE impairment. An electromyography-driven functional electrical stimulation (EMG-FES) with an intelligent detection software that detects the hand opening intention even with the presence of flexion synergies was used to assist the hand opening while subjects were performing required reaching and grasping tasks. We expected that by training a functional activity that involves arm-lifting, reaching and grasping, retrieving and releasing, poststroke participants with severely impaired UE would improve their arm/hand motor function and sensation.

Some parts of the results from various assessments [i.e., pre- to post-changes in an active range of motion (AROM) and Box and Blocks Test (BBT)] have been briefly reported in a previous publication (27) that focused on brain plasticity introduced by this ReIn-Hand assisted reaching and grasping intervention. Compared to the previous publication, this paper provides a complete overall report on various intervention-induced clinical changes.[…]

 

Continue —> Frontiers | Improving Hand Function of Severely Impaired Chronic Hemiparetic Stroke Individuals Using Task-Specific Training With the ReIn-Hand System: A Case Series | Neurology

Figure 1. Rein-Hand device and the experimental set up. FES parameters: Amplitude sufficient for maximal hand opening without discomfort, biphasic waveform, frequency 50 Hz ± 20%, and 300 μs pulse width, and duration time 3 s. Adapted from Wilkins et al. (27).

, , , , , , , , ,

Leave a comment

[BOOK Chapter] Overview of FES-Assisted Cycling Approaches and Their Benefits on Functional Rehabilitation and Muscle Atrophy – Abstract + References

Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1088)

Abstract

Central nervous system diseases include brain or spinal cord impairments and may result in movement disorders almost always manifested by paralyzed muscles with preserved innervations and therefore susceptible to be activated by electrical stimulation. Functional electrical stimulation (FES)-assisted cycling is an approach mainly used for rehabilitation purposes contributing, among other effects, to restore muscle trophism. FES-assisted cycling has also been adapted for mobile devices adding a leisure and recreational benefit to the physical training. In October 2016, our teams (Freewheels and EMA-trike) took part in FES-bike discipline at the Cybathlon competition, presenting technologies that allow pilots with spinal cord injury to use their paralyzed lower limb muscles to propel a tricycle. Among the many benefits observed and reported in our study cases for the pilots during preparation period, we achieved a muscle remodeling in response to FES-assisted cycling that is discussed in this chapter. Then, we have organized some sections to explore how FES-assisted cycling could contribute to functional rehabilitation by means of changes in the skeletal muscle disuse atrophy.

References

  1. 1.
    Beiter T, Hoene M, Prenzler F, Mooren FC, Steinacker JM, Weigert C et al (2015) Exercise, skeletal muscle and inflammation: ARE-binding proteins as key regulators in inflammatory and adaptive networks. Exerc Immunol Rev 21:42–57PubMedGoogle Scholar
  2. 2.
    Sanchez AMJ, Candau RB, Bernardi H (2014) FoxO transcription factors: their roles in the maintenance of skeletal muscle homeostasis. Cell Mol Life Sci 71(9):1657–1671CrossRefGoogle Scholar
  3. 3.
    Aihara M, Hirose N, Katsuta W (2017) A new model of skeletal muscle atrophy induced by immobilization using a hook-and-loop fastener in mice. J Phys Ther Sci:1779–1783CrossRefGoogle Scholar
  4. 4.
    Pigna E, Greco E, Morozzi G, Grottelli S, Rotini A, Minelli A et al (2017) Denervation does not induce muscle atrophy through oxidative stress. Eur J Transl Myol [Internet] 27(1):43–50. Available from: http://www.pagepressjournals.org/index.php/bam/article/view/6406Google Scholar
  5. 5.
    Kern H, Hofer C, Loefler S, Zampieri S, Gargiulo P, Baba A et al (2017) Atrophy, ultra-structural disorders, severe atrophy and degeneration of denervated human muscle in SCI and aging. Implications for their recovery by functional electrical stimulation, updated 2017. Neurol Res 6412(April):1–7Google Scholar
  6. 6.
    Oki R, Uchino A, Izumi Y, Ogawa H, Murayama S, Kaji R (2016) An autopsy case of progressive generalized muscle atrophy over 14 years due to post-polio syndrome. Rinsho Shinkeigaku [Internet] 56(1):12–16. Available from: https://www.jstage.jst.go.jp/article/clinicalneurol/56/1/56_cn-000761/_article/-char/ja/CrossRefGoogle Scholar
  7. 7.
    Panisset MG, Galea MP, El-Ansary D (2016) Does early exercise attenuate muscle atrophy or bone loss after spinal cord injury? Spinal Cord [Internet] 54(2):84–92. Available from:  https://doi.org/10.1038/sc.2015.150CrossRefGoogle Scholar
  8. 8.
    Fang J, Liu MS, Guan YZ, Du H, Li BH, Cui B et al (2016) Pattern differences of small hand muscle atrophy in amyotrophic lateral sclerosis and mimic disorders. Chin Med J 129(7):792–798CrossRefGoogle Scholar
  9. 9.
    Bargiela A, Cerro-Herreros E, Fernandez-Costa JM, Vilchez JJ, Llamusi B, Artero R (2015) Increased autophagy and apoptosis contribute to muscle atrophy in a myotonic dystrophy type 1 Drosophila model. Dis Model Mech [Internet] 8(7):679–690. Available from: http://dmm.biologists.org/cgi/doi/10.1242/dmm.018127CrossRefGoogle Scholar
  10. 10.
    Stouth DW, vanLieshout TL, Shen NY, Ljubicic V (2017) Regulation of skeletal muscle plasticity by protein arginine methyltransferases and their potential roles in neuromuscular disorders. Front Physiol 8(November):870CrossRefGoogle Scholar
  11. 11.
    Serum L, Silva-couto MDA, Prado-medeiros CL, Oliveira AB, Alca CC. People With Chronic Stroke 94(7)Google Scholar
  12. 12.
    Carraro U, Kern H, Gava P, Hofer C, Loefler S, Gargiulo P et al (2015) Biology of muscle atrophy and of its recovery by FES in aging and mobility impairments: roots and by-products. Eur J Transl Myol [Internet] 25(4):221–230. Available from: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=4748978&tool=pmcentrez&rendertype=abstract
  13. 13.
    Snijders T, Nederveen JP, McKay BR, Joanisse S, Verdijk LB, van Loon LJC et al (2015) Satellite cells in human skeletal muscle plasticity. Front Physiol 6(OCT):1–21Google Scholar
  14. 14.
    Kupr B, Handschin C (2015) Complex coordination of cell plasticity by a PGC-1α-controlled transcriptional network in skeletal muscle. Front Physiol 6(NOV):1–7Google Scholar
  15. 15.
    Handschin C (2010) Regulation of skeletal muscle cell plasticity by the peroxisome proliferator-activated receptor γ coactivator 1α. J Recept Signal Transduct 30(6):376–384CrossRefGoogle Scholar
  16. 16.
    Schnyder S, Kupr B, Handschin C (2017) Coregulator-mediated control of skeletal muscle plasticity – a mini-review. Biochimie 136:49–54CrossRefGoogle Scholar
  17. 17.
    Salvini TF, Durigan JLQ, Peviani SM, Russo TL (2012) Effects of electrical stimulation and stretching on the adaptation of denervated skeletal muscle: implications for physical therapy. Rev Bras Fisioter 16(June):175–183CrossRefGoogle Scholar
  18. 18.
    Mohr T, Andersen JL, Biering-Sørensen F, Galbo H, Bangsbo J, Wagner A et al (1997) Long-term adaptation to electrically induced cycle training in severe spinal cord injured individuals. Spinal cord Off J Int Med Soc Paraplegia 35(1):1–16CrossRefGoogle Scholar
  19. 19.
    McGlory C, Phillips SM (2014) Assessing the regulation of skeletal muscle plasticity in response to protein ingestion and resistance exercise: Recent developments. Curr Opin Clin Nutr Metab Care 17(5):412–417CrossRefGoogle Scholar
  20. 20.
    Margolis LM, Rivas DA (2015) Implications of exercise training and distribution of protein intake on molecular processes regulating skeletal muscle plasticity. Behav Genet 45(2):211–221Google Scholar
  21. 21.
    Hoppeler H (2016) Molecular networks in skeletal muscle plasticity. J Exp Biol [Internet] 219(2):205–213. Available from: http://jeb.biologists.org/cgi/doi/10.1242/jeb.128207CrossRefGoogle Scholar
  22. 22.
    Sanchez AMJ, Bernardi H, Py G, Candau RB (2014) Autophagy is essential to support skeletal muscle plasticity in response to endurance exercise. AJP Regul Integr Comp Physiol [Internet] 307(8):R956–R969. Available from: http://ajpregu.physiology.org/cgi/doi/10.1152/ajpregu.00187.2014CrossRefGoogle Scholar
  23. 23.
    Price M (2010) Energy expenditure and metabolism during exercise in persons with a spinal cord injury. Sports Med 40(8):681–696CrossRefGoogle Scholar
  24. 24.
    Doucet BM, Lam A, Griffin L (2012) Neuromuscular electrical stimulation for skeletal muscle function. Yale J Biol Med [Internet] 85(2012):201–215. Available from: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3375668&tool=pmcentrez&rendertype=abstract
  25. 25.
    Guimaraes JA, da Fonseca LO, de Sousa AC, Paredes MEG, Brindeiro GA, Bo APL et al (2017) FES Bike Race preparation to Cybathlon 2016 by EMA team: a short case report. Eur J Transl Myol 27(4):7169PubMedPubMedCentralGoogle Scholar
  26. 26.
    Frotzler A, Coupaud S, Perret C, Kakebeeke TH, Hunt KJ, Eser P (2009) Effect of detraining on bone and muscle tissue in subjects with chronic spinal cord injury after a period of electrically-stimulated cycling: a small cohort study. J Rehabil Med 41(4):282–285CrossRefGoogle Scholar
  27. 27.
    Tanhoffer RA, Tanhoffer AIP, Raymond J, Hills AP, Davis GM (2012) Comparison of methods to assess energy expenditure and physical activity in people with spinal cord injury. J Spinal Cord Med [Internet] 35(1):35–45. Available from: http://www.tandfonline.com/doi/full/10.1179/2045772311Y.0000000046CrossRefGoogle Scholar
  28. 28.
    Bodine SC (2013) Disuse-induced muscle wasting. Int J Biochem Cell Biol 45(10):1–17CrossRefGoogle Scholar
  29. 29.
    Hong Z, Sui M, Zhuang Z, Liu H, Zheng X, Cai C et al (2018) Effectiveness of neuromuscular electrical stimulation on lower limb hemiplegic patients following chronic stroke: a systematic review. Arch Phys Med Rehabil [Internet]. Available from: http://www.ncbi.nlm.nih.gov/pubmed/29357280
  30. 30.
    Teixeira-Salmela LF, Olney SJ, Nadeau S, Brouwer B (1999 Oct) Muscle strengthening and physical conditioning to reduce impairment and disability in chronic stroke survivors. Arch Phys Med Rehabil 80(10):1211–1218CrossRefGoogle Scholar
  31. 31.
    Patten C, Lexell J, Brown HE (2004) Weakness and strength training in persons with poststroke hemiplegia: rationale, method, and efficacy. J Rehabil Res Dev 41(3A):293–312CrossRefGoogle Scholar
  32. 32.
    Finnerup NB (2017) Neuropathic pain and spasticity: intricate consequences of spinal cord injury. Spinal Cord [Internet] (February):1–5. Available from: http://www.nature.com/doifinder/10.1038/sc.2017.70
  33. 33.
    Rezende-Cunha F, de Oliveira-Souza R (2011) The pyramidal syndrome and the pyramidal tract: a brief historical note. Arq Neuropsiquiatr [Internet] 69(5):836–837. Available from: http://www.ncbi.nlm.nih.gov/pubmed/22042191CrossRefGoogle Scholar
  34. 34.
    Urso ML (2009) Disuse atrophy of human skeletal muscle: cell signaling and potential interventions. Med Sci Sports Exerc 41(10):1860–1868CrossRefGoogle Scholar
  35. 35.
    Naritomi H, Moriwaki H (2013) Prevention of post-stroke disuse muscle atrophy with a free radical scavenger. Clin Recover from CNS Damage 32:139–147CrossRefGoogle Scholar
  36. 36.
    Carda S, Cisari C, Invernizzi M (2013) Sarcopenia or muscle modifications in neurologic diseases: a lexical or patophysiological difference? Eur J Phys Rehabil Med 49(1):119–130PubMedGoogle Scholar
  37. 37.
    Psatha M, Wu Z, Gammie FM, Ratkevicius A, Wackerhage H, Lee JH et al (2012) A longitudinal MRI study of muscle atrophy during lower leg immobilization following ankle fracture. J Magn Reson Imaging 35(3):686–695CrossRefGoogle Scholar
  38. 38.
    Silva-couto MDA, Prado-Medeiros CL, Oliveira AB, Alcântara CC, Guimarães AT, Salvini TF et al (2014) Muscle atrophy, voluntary activation disturbances, and low serum concentrations of IGF-1 and IGFBR-3 are associated with weakness in people with chronic stroke. Phys Ther 94(7):957–967CrossRefGoogle Scholar
  39. 39.
    Gefen A (2014) Tissue changes in patients following spinal cord injury and implications for wheelchair cushions and tissue loading: a literature review. Ostomy Wound Manage 60(2):34–45PubMedGoogle Scholar
  40. 40.
    Bauman WA, Spungen AM, Adkins RH, Kemp BJ (1999) Metabolic and endocrine changes in persons aging with spinal cord injury. Assist Technol [Internet] 11(2):88–96. Available from: http://www.tandfonline.com/doi/abs/10.1080/10400435.1999.10131993CrossRefGoogle Scholar
  41. 41.
    Potempa K, Braun LT, Tinkne T, Popovich J (1996) Benefits of aerobic exercise after stroke. Sport Med. 21(5):337–346CrossRefGoogle Scholar
  42. 42.
    Power PW, Orto AED (2004) Families living with chronic illness and disability: interventions, challenges, and opportunities. Springer Publishing Company, New York, 289 pGoogle Scholar
  43. 43.
    Chen HY, Chen SC, Chen JJJ, Fu LL, Wang YL (2005) Kinesiological and kinematical analysis for stroke subjects with asymmetrical cycling movement patterns. J Electromyogr Kinesiol 15(6):587–595CrossRefGoogle Scholar
  44. 44.
    Akkurt H, Karapolat HU, Kirazli Y, Kose T (2017) The effects of upper extremity aerobic exercise in patients with spinal cord injury: a randomized controlled study. Eur J Phys Rehabil Med 53(2):219–227PubMedGoogle Scholar
  45. 45.
    Do Espírito Santo CC, Swarowsky A, Recchia TL, Lopes APF, Ilha J (2015) Is body weight-support treadmill training effective in increasing muscle trophism after traumatic spinal cord injury? A systematic review. Spinal Cord 53(3):176–181CrossRefGoogle Scholar
  46. 46.
    Giangregorio L, Mccartney N (2006) Bone loss and muscle atrophy in spinal cord injury: epidemiology, fracture prediction, and rehabilitation strategies. J Spinal Cord Med 29(5):489–500CrossRefGoogle Scholar
  47. 47.
    Giangregorio L, Craven C, Richards K, Kapadia N, Hitzig SL, Masani K et al (2012) A randomized trial of functional electrical stimulation for walking in incomplete spinal cord injury: effects on body composition. J Spinal Cord Med 35(5):351–360CrossRefGoogle Scholar
  48. 48.
    Johnston TE, Smith BT, Oladeji O, Betz RR, Lauer RT (2008) Outcomes of a home cycling program using functional electrical stimulation or passive motion for children with spinal cord injury: a case series. J Spinal Cord Med 31(2):215–221CrossRefGoogle Scholar
  49. 49.
    Frotzler A, Coupaud S, Perret C, Kakebeeke TH, Hunt KJ, Donaldson N d N et al (2008) High-volume FES-cycling partially reverses bone loss in people with chronic spinal cord injury. Bone 43(1):169–176CrossRefGoogle Scholar
  50. 50.
    Lopes ACG, Ochoa-Diaz C, Baptista RS, Fonseca LO, Coste CA, Bó APL et al (2016) Electrical stimulation to reduce the overload in upper limbs during sitting pivot transfer in paraplegic: a preliminary study. Eur J Transl Myol 26(4):4–7CrossRefGoogle Scholar
  51. 51.
    Araujo Guimarães J, Oliveira da Fonseca L, Cardoso dos Santos-Couto-Paz C, Padilha Lanari Bó A, Fattal C, Azevedo-Coste C et al (2016) Towards parameters and protocols to recommend FES-Cycling in cases of paraplegia: a preliminary report. Eur J Transl Myol [Internet] 26(3):209–214. Available from: http://www.pagepressjournals.org/index.php/bam/article/view/6085Google Scholar
  52. 52.
    Dolbow D, Gorgey A, Cifu D, Moore J, Gater D (2011) Feasibility of home-based functional electrical stimulation cycling: case report. Spinal Cord 50(2):170–171CrossRefGoogle Scholar
  53. 53.
    Bo APL, Fonseca L, Guimaraes J, Fachin-Martins E, Gutierrez Paredes ME, Brindeiro GA et al (2017) Cycling with Spinal Cord Injury: A Novel System for Cycling Using Electrical Stimulation for Individuals with Paraplegia, and Preparation for Cybathlon 2016. IEEE Robot Autom Mag 24:58CrossRefGoogle Scholar
  54. 54.
    Fonseca LOD, Bó APL, Guimarães JA, Gutierrez ME, Fachin-Martins E (2017) Cadence tracking and disturbance rejection in functional electrical stimulation cycling for paraplegic subjects: a case study. Artif Organs 41(11):E185CrossRefGoogle Scholar
  55. 55.
    Bae J, Tomizuka M (2011) A gait rehabilitation strategy inspired by an iterative learning algorithm. In: IFAC Proceedings Volumes (IFAC-PapersOnline), pp 2857–2864CrossRefGoogle Scholar
  56. 56.
    Nilsson A, Vreede KS, Häglund V, Kawamoto H, Sankai Y, Borg J (2014) Gait training early after stroke with a new exoskeleton – the hybrid assistive limb: a study of safety and feasibility. J Neuroeng Rehabil [Internet] 92:11. Available from:  https://doi.org/10.1186/1743-0003-11-92%5Cnhttps://jneuroengrehab.biomedcentral.com/track/pdf/10.1186/1743-0003-11-92?site=jneuroengrehab.biomedcentral.com
  57. 57.
    Igo Krebs H, Hogan N, Aisen M, Volpe B (1998) Robot-aided neurorehabilitation. IEEE Trans Rehabil Eng 6(1):75–87CrossRefGoogle Scholar
  58. 58.
    Giangregorio LM, Gibbs JC, Craven BC (2016) Measuring muscle and bone in individuals with neurologic impairment; lessons learned about participant selection and pQCT scan acquisition and analysis. Osteoporos Int 27(8):2433–2446CrossRefGoogle Scholar
  59. 59.
    Galea MP (2012) Spinal cord injury and physical activity: preservation of the body. Spinal Cord 50(5):344–351CrossRefGoogle Scholar
  60. 60.
    Fu J, Wang H, Deng L, Li J (2016) Exercise training promotes functional recovery after spinal cord injury. Neural Plast 2016Google Scholar
  61. 61.
    Martins EF, de Sousa PHC, Barbosa PHFDA, de Menezes LT, Costa AS (2011) A Brazilian experience to describe functioning and disability profiles provided by combined use of ICD and ICF in chronic stroke patients at home-care. Disabil Rehabil [Internet] 33(21–22):2064–2074. Available from: http://www.ncbi.nlm.nih.gov/pubmed/21401335CrossRefGoogle Scholar
  62. 62.
    Sheffler LR, Chae J (2007) Neuromuscular electrical stimulation in neurorehabilitation. Muscle Nerve [Internet] 35(5):562–590. Available from: http://doi.wiley.com/10.1002/mus.20758CrossRefGoogle Scholar
  63. 63.
    Moe JH, Post HW (1962) Functional electrical stimulation for ambulation in hemiplegia. J Lancet 82:285–288PubMedGoogle Scholar
  64. 64.
    Pons JL, Raya R, González J (2016) Emerging therapies in neurorehabilitation II, 1st edn. Springer International Publishing, ChamCrossRefGoogle Scholar
  65. 65.
    Hachmann JT, Grahn PJ, Calvert JS, Drubach DI, Lee KH, Lavrov IA (2017) Electrical neuromodulation of the respiratory system after spinal cord injury. Mayo Clin Proc [Internet] 92(9):1401–1414. Available from:  https://doi.org/10.1016/j.mayocp.2017.04.011CrossRefGoogle Scholar
  66. 66.
    Creasey GH, Craggs MD (2012) Functional electrical stimulation for bladder, bowel, and sexual function. In: Handbook of clinical neurology, vol 109, 1st edn. Elsevier B.V, Oxford, 247–257 pGoogle Scholar
  67. 67.
    Popović DB (2014) Advances in functional electrical stimulation (FES). J Electromyogr Kinesiol 24(6):795–802CrossRefGoogle Scholar
  68. 68.
    Bustamante C, Brevis F, Canales S, Millón S, Pascual R (2016) Effect of functional electrical stimulation on the proprioception, motor function of the paretic upper limb, and patient quality of life: a case report. J Hand Ther [Internet] 29(4):507–514. Available from:  https://doi.org/10.1016/j.jht.2016.06.012CrossRefGoogle Scholar
  69. 69.
    Bó APL, Azevedo-Coste C, Geny C, Poignet P, Fattal C (2014) On the use of fixed-intensity functional electrical stimulation for attenuating essential tremor. Artif Organs 38(11):984–991CrossRefGoogle Scholar
  70. 70.
    Pedrocchi A, Ferrante S, Ambrosini E, Gandolla M, Casellato C, Schauer T et al (2013) MUNDUS project: multimodal neuroprosthesis for daily upper limb support. J Neuroeng Rehabil 10(1):1–20CrossRefGoogle Scholar
  71. 71.
    Szecsi J, Schiller M (2009 Jan) FES-propelled cycling of SCI subjects with highly spastic leg musculature. NeuroRehabilitation 24(3):243–253PubMedGoogle Scholar
  72. 72.
    Mazzoleni S, Stampacchia G, Gerini A, Tombini T, Carrozza MC (2013) FES-cycling training in spinal cord injured patients. In: Conference proceedings: annual international conference of the IEEE engineering in medicine and biology society. pp 5339–5341Google Scholar
  73. 73.
    Jovic J (2012) Towards a functional assistance in transfer and posture of paraplegics using FES: from simulations to experiments. Université Montpellier 2Google Scholar
  74. 74.
    LIBERSON WT, HOLMQUEST HJ, SCOT D, DOW M (1961 Feb) Functional electrotherapy: stimulation of the peroneal nerve synchronized with the swing phase of the gait of hemiplegic patients. Arch Phys Med Rehabil 42:101–105PubMedGoogle Scholar
  75. 75.
    Petrofsky JS, Heaton H, Phillips CA (1983) Outdoor bicycle for exercise in paraplegics and quadriplegics. J Biomed Eng 5(4):292–296CrossRefGoogle Scholar
  76. 76.
    Horch KW, Dhillon GS (2004) Neuroprosthetics: theory and practice. World Scientific, London, 1263 pCrossRefGoogle Scholar
  77. 77.
    Hunt KJ, Fang J, Saengsuwan J, Grob M, Laubacher M (2012) On the efficiency of FES cycling: a framework and systematic review. Technol Health Care 20(5):395–422PubMedGoogle Scholar
  78. 78.
    Peng CW, Chen SC, Lai CH, Chen CJ, Chen CC, Mizrahi J et al (2011) Review: clinical benefits of functional electrical stimulation cycling exercise for subjects with central neurological impairments. J Med Biol Eng 31(1):1–11CrossRefGoogle Scholar
  79. 79.
    Davis GM, Servedio FJ, Glaser RM, Gupta SC, Suryaprasad AG (1990) Cardiovascular responses to arm cranking and FNS-induced leg exercise in paraplegics. J Appl Physiol 69(2):671–677CrossRefGoogle Scholar
  80. 80.
    Fachin-Martins E, Guimarães JA, Lopes ACG, Ramalho SHR, Fonseca LO, Bó APL, et al. (2018) Soluções tecnológicas que incorporaram estimulação elétrica funcional de músculos paralisadors como mecanismo propulsor de produtos assistivos para pessoas com paraplegia. In: Garcia CSNB, Facchinetti LD, editors. PROFISIO Programa de Atualização em Fisioterapia Neurofuncional: Ciclo 5. Artmed Pan. Porto Alegre: ABRAFIN & Secad, pp 33–90Google Scholar
  81. 81.
    Fonseca LO, Lopes ACG, Ochoa-diaz C, Azevedo-Coste C, Fachin-Martins E, Bó APL (2017) Towards transfers in paraplegia assisted by electrical stimulation and inertial system. IEEE Life Sci Conf:1–4Google Scholar
  82. 82.
    Coste CA, Mayr W (2017) Functional electrical stimulation. Artif Organs 41(11):997–978CrossRefGoogle Scholar
  83. 83.
    Coste Azevedo C, Wolf P (2018) FES-Cycling at Cybathlon 2016: overview on teams and results. Artif Organs 42(3):336–341CrossRefGoogle Scholar
  84. 84.
    Sijobert B, Fattal C, Daubigney A, Azevedo-Coste C (2017) Participation to the first cybathlon: an overview of the FREEWHEELS team FES-cycling solution. Eur J Transl Myol [Internet] 27(4):7120. Available from: http://www.ncbi.nlm.nih.gov/pubmed/29299223http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC5745382Google Scholar
  85. 85.
    Coste CA, Bergeron V, Berkelmans R, Martins F, Fornusek C, Jetsada A et al (2016) Comparison of strategies and performance of functional electrical stimulation cycling in spinal cord injury pilots for competition in the first ever CYBATHLON. Eur J Transl Myol 27(4):251–254Google Scholar
  86. 86.
    Ferrante S, Pedrocchi A, Ferrigno G, Molteni F (2008) Cycling induced by functional electrical stimulation improves the muscular strength and the motor control of individuals with post-acute stroke. Europa Medicophysica-SIMFER 2007 Award Winner. Eur J Phys Rehabil Med [Internet] 44(2):159–167. Available from: http://www.ncbi.nlm.nih.gov/pubmed/18418336Google Scholar
  87. 87.
    Bauer P, Krewer C, Golaszewski S, Koenig E, Müller F (2015) Functional electrical stimulation-assisted active cycling – therapeutic effects in patients with hemiparesis from 7 days to 6 months after stroke: a randomized controlled pilot study [Internet]. Vol. 96, Archives of Physical Medicine and Rehabilitation. Elsevier Ltd, 188–196 p. Available from:  https://doi.org/10.1016/j.apmr.2014.09.033CrossRefGoogle Scholar
  88. 88.
    Gorgey AS, Khalil RE, Lester RM, Dudley GA, Gater DR (2018) Paradigms of lower extremity electrical stimulation training after spinal cord injury. J Vis Exp [Internet] (132):1–11. Available from: https://www.jove.com/video/57000/paradigms-lower-extremity-electrical-stimulation-training-after
  89. 89.
    Sadowsky CL, Hammond ER, Strohl AB, Commean PK, Eby SA, Damiano DL et al (2013) Lower extremity functional electrical stimulation cycling promotes physical and functional recovery in chronic spinal cord injury. J Spinal Cord Med [Internet] 36(6):623–631. Available from: http://www.tandfonline.com/doi/full/10.1179/2045772313Y.0000000101CrossRefGoogle Scholar
  90. 90.
    Skold C, Lonn L, Harms-Ringdahl K, Hultling C, Levi R, Nash M et al (2002) Effects of functional electrical stimulation training for six months on body composition and spasticity in motor complete tetraplegic spinal cord-injured individuals. J Rehabil Med 34(1):25–32CrossRefGoogle Scholar
  91. 91.
    Scremin AM, Kurta L, Gentili A, Wiseman B, Perell K, Kunkel C et al (1999) Increasing muscle mass in spinal cord injured persons with a functional electrical stimulation exercise program. Arch Phys Med Rehabil 80(12):1531–1536CrossRefGoogle Scholar
  92. 92.
    McDaniel J, Lombardo LM, Foglyano KM, Marasco PD, Triolo RJ (2017) Setting the pace: insights and advancements gained while preparing for an FES bike race Olivier Lambercy; Roger Gassert. J Neuroeng Rehabil 14(1):1–8CrossRefGoogle Scholar
  93. 93.
    Martin JH (1996) Neuroanatomy: text and atlas, 2nd edn. Lange, Stamford/Appleton, 578 pGoogle Scholar
  94. 94.
    Bó APL, Fonseca LO, Guimarães JA, Fachin-Martins E, Paredes MEG, Brindeiro GA et al (2017) Cycling with Spinal Cord Injury: A Novel System for Cycling Using Electrical Stimulation for Individuals with Paraplegia, and Preparation for Cybathlon 2016. IEEE Robot Autom Mag 99(December):1Google Scholar

via Overview of FES-Assisted Cycling Approaches and Their Benefits on Functional Rehabilitation and Muscle Atrophy | SpringerLink

, , , , , ,

Leave a comment

[VIDEO] MedWatch Today: Functional Electrical Stimulation. – YouTube

Community Regional Medical Center is currently part of the first study on the west coast working with a device that helps stimulate muscles when a patient is not able to do it themselves.

 

, , ,

Leave a comment

[VIDEO] What is Functional Electrical Stimulation Billy Woods from Active Linx – YouTube

Functional Electrical Stimulation (FES) is an innovation in the field of muscle stimulation, which allows people with a complete spinal cord injury and paralyzed muscles to move again. It can be combined with a BerkelBike or EasyLegs. The technology allows patients with a spinal cord injury to bike using their own leg muscles.

 

, , ,

Leave a comment

[VIDEO] Kid getting treatment with foot drop system – YouTube

Slow motion shot of a child receiving treatment with functional electrical stimulation. He wearing foot drop system

 

, , , ,

Leave a comment

%d bloggers like this: