Archive for category Functional Electrical Stimulation (FES)

[ARTICLE] Contralaterally controlled functional electrical stimulation improves wrist dorsiflexion and upper limb function in patients with early-phase stroke: A randomized controlled trial – Full Text HTML

Abstract

Objectives: To investigate the effectiveness of contra-laterally controlled functional

electrical stimulation (CCFES) on the recovery of active wrist dorsiflexion and upper limb function in patients with early-phase stroke (<15 days post-stroke).

Methods: Patients in the CCFES group were treated with routine rehabilitation combined with CCFES, while those in the conventional neuromuscular electrical stimulation (NMES) group were treated with routine rehabilitation combined with NMES. Time intervals from stroke onset to appearance of wrist dorsiflexion, and from onset of treatment to appearance of wrist dorsiflexion were recorded (in days). Functional assessments were also performed at baseline and endpoint.

Results: Nineteen out of 21 patients in the CCFES group and 12 out of 20 patients in the NMES group regained active wrist dorsiflexion during the treatment and follow-up period (90.5% vs 60%, p = 0.025). The mean time interval from onset of treatment to appearance of active wrist dorsiflexion was signifcantly shorter in the CCFES group than in the NMES

group (p < 0.001). The CCFES group had signifcantly higher scores for upper extremity

function (p = 0.001), strength of extensor carpi (p = 0.002), active ROM for wrist dorsiflexion (p = 0.003), activities of daily living score (p = 0.023) and ICF score (p < 0.001) than the NMES group at the endpoint.

Conclusion: CCFES signifcantly shortened the time for regaining wrist dorsiflexion, and improved the upper extremity function and general health of patients with early-phase stroke. CCFES therefore has potential as a clinical intervention.

 

Lay Abstract

After a stroke, it is essential that recovery of function of the upper limb is maximized in order to enable activities of daily living. The hand plays an important role in the function of the upper limb. This study examined the effectiveness of contralaterally controlled functional electrical stimulation (CCFES) on recovery of active dorsiflexion of the wrist and upper limb functioning in patients in the early-phase after stroke (<15 days post-stroke). CCFES significantly shortened the time for regaining wrist dorsiflexion, and improved the upper extremity function and general health of patients with early-phase stroke, compared with conventional neuro-muscular electrical stimulation. CCFES therefore has potential as a clinical intervention.

Introduction

Stroke is a leading cause of disability with high morbidity and mortality. Approximately 75% of patients with stroke have upper extremity dysfunction (1). Impaired motor function of the upper extremity is a major factor in preventing patients returning to their usual activities. In addition to routine medical treatment, early-phase rehabilitation helps improve motor function and activities of daily living (ADL) (2). Moreover, well-prescribed rehabilitation may shorten the course of recovery from stroke, help patients return to the community earlier, improve their quality of life, and reduce the cost of medication (3).

Recovery of upper extremity functioning is essential for improving ADL ability in patients with stroke (4). The hands play an important role in functioning of the upper extremities. Hand function and, in particular, extensor function, is difficult to recover once impaired, Therefore, specific rehabilitation interventions, which are considered the first step in re-gaining full extension of the hand, are essential in the recovery of wrist dorsiflexion (WD). Early recovery of active WD contributes not only to a better outcome for upper extremity functioning, but also to improved outcome for ADL.

Over the past decades, neuromuscular electrical stimulation (NMES), an electrical stimulation that provides passive training for the wrist dorsi-extensor, has been integrated into certain specific rehabilitation prescriptions (5–7). NMES triggers the movement using electrical stimulation. The frequency and amplitude of biphasic rectangular current pulses are pre-set and fixed during the whole training course.

In contrast, controlled functional electrical stimulation (CCFES) is an intervention technique developed recently to improve the function of the paretic upper extremity after stroke. One of the characteristics of CCFES is that it requires active participation from patients, and not merely electrical stimulation of the paretic muscle or extremity. As described by Knutson et al., “CCFES uses a control signal from the non-paretic side of the body to regulate the intensity of electrical stimulation delivered to the paretic muscles of the homologous limb on the opposite side of the body” (8). In separate studies, Knutson et al. (9) and Shen et al. (10) compared the effectiveness of CCFES and NMES in patients with sub-acute stoke, and found greater improvements with CCFES. Nonetheless, its effectiveness in the early-phase (i.e. within 15 days) after stroke is unclear. The aim of this study was therefore to investigate the effectiveness of CCFES compared with NMES on upper extremity function, particularly WD, in patients with early-phase stroke.

MATERIAL AND METHODS

Subjects

Patients admitted to the Department of Neurology, Jiangsu Province People’s Hospital, Nanjing, China, between March and September 2015 were recruited to this study. All subjects provided written informed consent prior to the study, and the ethics committee of the First Affiliated Hospital of Nanjing Medical University approved the study protocol.

Inclusion criteria were: (i) diagnosed with stroke using computed tomography (CT) or magnetic resonance imaging (MRI); (ii) stable vital signs 48 h post-stroke; (iii) single-side injury; (iv) age 20–80 years; (v) within 15 days post-stroke; (vi) Brunnstrom recovery stage of III or less; (vii) score of Fugl-Meyer assessment (FMA) for upper extremity ≤ 22; and (viii) no active WD detected.

Exclusion criteria were: (i) progressive stroke with non-stable condition; (ii) stroke-like symptoms due to subdural haematoma, tumour, encephalitis or trauma; (iii) unable to follow treatment instructions due to severe cognitive and communication deficiency; (iv) implanted with a pacemaker; and (v) no informed consent (11).

Randomization

Patients were assigned to either the NMES or the CCFES group based on a computer-generated randomization list and allocation (1:1) concealed by consecutively numbered, sealed opaque envelopes. An envelope was opened once a patient had consented to participate in the trial, the administrator then informed the doctor about the allocated intervention regimen via phone calls.

Electrical stimulation system

In the NMES group, 2 stimulating electrodes (4 × 4 cm) were placed at the motor points of the forearm extensor muscles (specifically the ulnar margin of the extensor aspect of the forearm) to produce WD (Fig. 1a). The stimulators (Weisi Corporation, Nanjing, China) used in this study delivered biphasic rectangular current pulses; the pulse frequency was set at 35 Hz, and the pulse amplitude was set at 40 mA. The electrical stimulation intensity was set at a sustainable level with full balanced WD with tetanic contraction.

In the CCFES group, 3 recording electrodes (4 × 4 cm) were placed on the motor points of the forearm extensor muscles (the ulnar margin of the extensor aspect of the forearm) on the non-paretic side, while 2 stimulating electrodes (4 × 4 cm) were attached on the paretic side (Fig 1b). For each patient, the intensity of the electrical stimulation to WD of the paretic side was determined by the strength of contralateral forearm extensor muscles contraction. Subjects were asked to voluntarily extend their unaffected wrist to 10% of ROM or less and maintain that position without moving. The electromyography value of the movement was then recorded. Meanwhile, the therapist adjusted the electric intensity until the same degree of movement appeared on the paretic side. The intensity value was then recorded. The same practice and recording process was also applied, with the patients extending their unaffected wrist to 50% and 100% of ROM. The electrical stimulation intensity that produced balanced WD was determined empirically for each patient and programmed into the stimulator.

Fig. 1. Patients treated with different strategies. (a) The patient underwent neuromuscular electrical stimulation (NMES) with the stimulator in Model I; (b) the patient underwent contralaterally controlled functional electrical stimulation (CCFES) with the stimulator in Model II.

[…]

Continue —> Journal of Rehabilitation Medicine – Contralaterally controlled functional electrical stimulation improves wrist dorsiflexion and upper limb function in patients with early-phase stroke: A randomized controlled trial – HTML

, , , , , , , ,

Leave a comment

[VIDEO] FES (Functional Electrical Stimulation) System by FES Center India – YouTube

Functional Electrical Stimulation (FES): Best and latest treatment for Neurological rehabilitation/ Physiotherapy

FES is a technique that utilizes patterned electrical stimulation of neural tissue with the purpose of restoring or enhancing a lost or diminished function. It produces contractions in paralysed muscles by the application of small pulses of electrical stimulation to nerves that supply the paralysed muscle. The stimulation is controlled in such a way that the movement produced provides useful function.

FES is used as a tool to assist walking and also as a means of practicing various functional movements for therapeutic benefit. FES may be used to replace the natural electrical signals from the brain, helping the weak or paralyzed limbs move again. With continued stimulation over time, the brain may even be able to recapture and relearn this movement without the stimulation.

Use of “FES (Functional Electrical Stimulation) System India” for treatment of Foot Drop due to Hemiplegia. FES is a novel device for treatment/ rehabilitation of Neurological diseases. FES System India has many applications like

  1. Sit to stand training
  2. Pre Gait Training
  3. Correction of Foot Drop,
  4. Correction of Circumductory Gait

  5. for Paraplegia (Incomplete SCI) using FES unit on both sides

  6. Shoulder subluxation and shoulder rehabilitation

  7. Hand Function (Grasp and release)

This novel treatment is useful for all type of UMN disorders like hemiplegia (Cerebro Vascular Accident, Head Injury, Traumatic Brain injury, Brain tumor ), multiple scerosis, cerebral palsy, incomplete paraplegia etc.

contact “FES Center India” to buy FES System.

mail: fescenterindia@gmail.com

For more details visit: http://www.fescenterindia.com

via FES (Functional Electrical Stimulation) System by FES Center India – YouTube

, , , , ,

Leave a comment

[VIDEO] Functional Electrical Stimulation for Stroke Rehab – YouTube

Combo video including patients participating in contralaterally controlled FES therapy followed by a patient performing a grasp-release test before CCFES therapy and the same patient performing the same test after 12 weeks of CCFES therapy. All patients were participating in research studies at MetroHealth Medical Center in Cleveland.

via  Functional Electrical Stimulation for Stroke Rehab – YouTube

, , , , , ,

Leave a comment

[VIDEO] Foot Drop and Functional Electrical Stimulation (FES) – YouTube

PhysioFunction are recognised as international experts in the use of Functional Electrical Stimulation (FES). We ensure our clients receive the most clinically correct rehabilitation technology suited to their needs. Jon Graham, Clinical Director at PhysioFunction talks about Foot Drop and Functional Electrical Stimulation.

via Foot Drop and Functional Electrical Stimulation (FES) – YouTube

, , , ,

Leave a comment

[VIDEO] Using Functional Electrical Stimulation For Patients With Neurological Deficits – YouTube

Functional electrical stimulation is a biophysical technology that have seen increased use in the management of neurological disorders. This talk will discuss principles of use with specific therapeutic cases and would be of primary interest to occupational and physical therapists. The participant will develop skills necessary to choose appropriately and apply electrotherapy in the rehabilitation setting. Various new technologies using electrotherapy will also be demonstrated.

via Using Functional Electrical Stimulation For Patients With Neurological Deficits – YouTube

, , , ,

Leave a comment

[VIDEO] Functional Electrostimulation – YouTube

Functional Electrostimulation Using a sliding mode controller, contralateral movements

via Functional Electrostimulation – YouTube

, , , , , , ,

Leave a comment

[VIDEO] Testing Functional Electrical Stimulation (FES) – YouTube

via (2) Testing Functional Electrical Stimulation (FES) – YouTube

, , , , , , ,

Leave a comment

[Abstract] A three-site clinical investigation and feasibility study of a flexible functional electrical stimulation system to support functional task practice for upper limb recovery in people with stroke.

Introduction: Of those people who survive a stroke, only between 40% and 70% regain upper limb dexterity. A number of reviews have suggested that functional electrical stimulation (FES) may have a beneficial effect on upper limb motor recovery. In light of the promise offered by FES and the limitations with current systems a new system was developed (FES-UPP) to support people with stroke (PwS) to practice a range of voluntary controlled, FES-assisted functional activities.

Objective: This paper reports on a three centre clinical investigation with the primary aim of demonstrating compliance of the new FES system with relevant essential requirements of the EU Medical Device Directive, namely to evaluate whether use of the FES-UPP enables PwS to perform a wider range of functional activities, and/or perform the same activities in an improved way.

Design: Clinical investigation and feasibility study

Settings: An in-patient stroke unit, a combined Early Supported Discharge (ESD) and community service, and an outpatient clinic and in-patient stroke unit.
Participants: Nine therapists and 22 PwS with an impaired upper limb.
Intervention: Every PwS was offered up to 8 sessions of FES-UPP therapy, each lasting approximately one hour, over a period of up to six weeks.
Primary and secondary outcome measures: The operation, acceptability and feasibility of the interventions were assessed using video rating and the Wolf Motor Function Test Functional Ability Scale (WMF-FAS), direct observations of sessions and questionnaires for therapists and PwS.

Results: The system enabled 24% (Rater A) and 28% (Rater B) of PwS to carry out a wider range of functional tasks and improved the way in which the tasks were performed (mean scores of 2.6 and 2.2 (with FES) versus mean scores 1.5 and 1.3 (without FES) (p<.05).

Conclusion: The FES-UP proved feasible to use in three different clinical environments, with PwS who varied widely in their impairment levels and time since stroke. Therapists and therapy assistants from a wide range of backgrounds, with varying degrees of computer and/or FES knowledge, were able to use the system without on-site technical support.

via Frontiers | A three-site clinical investigation and feasibility study of a flexible functional electrical stimulation system to support functional task practice for upper limb recovery in people with stroke. | Neurology

, , , , , , ,

Leave a comment

[Abstract + References] Synergy-Based FES for Post-Stroke Rehabilitation of Upper-Limb Motor Functions

Abstract

Functional electrical stimulation (FES) is capable of activating muscles that are under-recruited in neurological diseases, such as stroke. Therefore, FES provides a promising technology for assisting upper-limb motor functions in rehabilitation following stroke. However, the full benefits of FES may be limited due to lack of a systematic approach to formulate the pattern of stimulation. Our preliminary work demonstrated that it is feasible to use muscle synergy to guide the generation of FES patterns.In this paper, we present a methodology of formulating FES patterns based on muscle synergies of a normal subject using a programmable multi-channel FES device. The effectiveness of the synergy-based FES was tested in two sets of experiments. In experiment one, the instantaneous effects of FES to improve movement kinematics were tested in three patients post ischemic stroke. Patients performed frontal reaching and lateral reaching tasks, which involved coordinated movements in the elbow and shoulder joints. The FES pattern was adjusted in amplitude and time profile for each subject in each task. In experiment two, a 5-day session of intervention using synergy-based FES was delivered to another three patients, in which patients performed task-oriented training in the same reaching movements in one-hour-per-day dose. The outcome of the short-term intervention was measured by changes in Fugl–Meyer scores and movement kinematics. Results on instantaneous effects showed that FES assistance was effective to increase the peak hand velocity in both or one of the tasks. In short-term intervention, evaluations prior to and post intervention showed improvements in both Fugl–Meyer scores and movement kinematics. The muscle synergy of patients also tended to evolve towards that of the normal subject. These results provide promising evidence of benefits using synergy-based FES for upper-limb rehabilitation following stroke. This is the first step towards a clinical protocol of applying FES as therapeutic intervention in stroke rehabilitation.

I. Introduction

Muscle activation during movement is commonly disrupted due to neural injuries from stroke. A major challenge for stroke rehabilitation is to re-establish the normal ways of muscle activation through a general restoration of motor control, otherwise impairments may be compensated by the motor system through a substitution strategy of task control [1]. In post-stroke intervention, new technologies such as neuromuscular electrical stimulation (NMES) or functional electrical stimulation (FES) offer advantages for non-invasively targeting specific groups of muscles [2]–[4] to restore the pattern of muscle activation. Nevertheless, their effectiveness is limited by lack of a systematic methodology to optimize the stimulation pattern, to implement the optimal strategy in clinical settings, and to design a protocol of training towards the goal of restoring motor functions. This pioneer study addresses these issues in clinical application with a non-invasive FES technology.

Sign in to Continue Reading

1. M. F. Levin, J. A. Kleim, and S. L. Wolf, “What do motor ‘recovery’ and ‘compensation’ mean in patients following stroke?” Neurorehabilitation Neural Repair, vol. 23, no. 4, pp. 313–319, 2008.

2. G. Alon, A. F. Levitt, and P. A. McCarthy, “Functional electrical stimulation (FES) may modify the poor prognosis of stroke survivors with severe motor loss of the upper extremity: A preliminary study,” Amer. J. Phys. Med. Rehabil., vol. 87, no. 8, pp. 627–636, 2008.

3. W. Rong, “A neuromuscular electrical stimulation (NMES) and robot hybrid system for multi-joint coordinated upper limb rehabilitation after stroke,” J. Neuroeng. Rehabil., vol. 14, no. 1, p. 34, Dec. 2017.

4. J. J. Daly, “Recovery of coordinated gait: Randomized controlled stroke trial of functional electrical stimulation (FES) versus no FES, with weight-supported treadmill and over-ground training,” Neurorehabilitation Neural Repair, vol. 25, no. 7, pp. 588–596, Sep. 2011.

5. R. Nataraj, M. L. Audu, R. F. Kirsch, and R. J. Triolo, “Comprehensive joint feedback control for standing by functional neuromuscular stimulation—A simulation study,” IEEE Trans. Neural Syst. Rehabil. Eng., vol. 18, no. 6, pp. 646–657, Dec. 2010.

6. R. Nataraj, M. L. Audu, and R. J. Triolo, “Restoring standing capabilities with feedback control of functional neuromuscular stimulation following spinal cord injury,” Med. Eng. Phys., vol. 42, pp. 13–25, Apr. 2017.

7. H. Rouhani, M. Same, K. Masani, Y. Q. Li, and M. R. Popovic, “PID controller design for FES applied to ankle muscles in neuroprosthesis for standing balance,” Frontiers Neurosci., vol. 11, p. 347, Jun. 2017.

8. V. K. Mushahwar, P. L. Jacobs, R. A. Normann, R. J. Triolo, and N. Kleitman, “New functional electrical stimulation approaches to standing and walking,” J. Neural Eng., vol. 4, no. 3, pp. S181–S197, Sep. 2007.

9. B. J. Holinski, “Intraspinal microstimulation produces over-ground walking in anesthetized cats,” J. Neural Eng., vol. 13, no. 5, p. 056016, Oct. 2016.

10. M. B. Popovic, D. B. Popovic, T. Sinkjær, A. Stefanovic, and L. Schwirtlich, “Restitution of reaching and grasping promoted by functional electrical therapy,” Artif. Organs, vol. 26, no. 3, pp. 271–275, Mar. 2002.

11. A. B. Ajiboye, “Restoration of reaching and grasping movements through brain-controlled muscle stimulation in a person with tetraplegia: A proof-of-concept demonstration,” Lancet Lond. Engl., vol. 389, no. 10081, pp. 1821–1830, May 2017.

12. J. H. Grill and P. H. Peckham, “Functional neuromuscular stimulation for combined control of elbow extension and hand grasp in C5 and C6 quadriplegics,” IEEE Trans. Rehabil. Eng., vol. 6, no. 2, pp. 190–199, Jun. 1998.

13. M. R. Popovic, T. A. Thrasher, M. E. Adams, V. Takes, V. Zivanovic, and M. I. Tonack, “Functional electrical therapy: Retraining grasping in spinal cord injury,” Spinal Cord, vol. 44, no. 3, pp. 143–151, Mar. 2006.

14. C. Ethier, E. R. Oby, M. J. Bauman, and L. E. Miller, “Restoration of grasp following paralysis through brain-controlled stimulation of muscles,” Nature, vol. 485, no. 7398, pp. 368–371, May 2012.

15. G. Alon, “Use of neuromuscular electrical stimulation in neureorehabilitation: A challenge to all,” J. Rehabil. Res. Develop., vol. 40, no. 6, pp. 9–12, Dec. 2003.

16. G. Alon, A. F. Levitt, and P. A. McCarthy, “Functional electrical stimulation enhancement of upper extremity functional recovery during stroke rehabilitation: A pilot study,” Neurorehabilitation Neural Repair, vol. 21, no. 3, pp. 207–215, Jun. 2007.

17. C. Church, C. Price, A. D. Pandyan, S. Huntley, R. Curless, and H. Rodgers, “Randomized controlled trial to evaluate the effect of surface neuromuscular electrical stimulation to the shoulder after acute stroke,” Stroke, vol. 37, no. 12, pp. 2995–3001, Dec. 2006.

18. J. H. Cauraugh and S. B. Kim, “Chronic stroke motor recovery: Duration of active neuromuscular stimulation,” J. Neurolog. Sci., vol. 215, nos. 1–2, pp. 13–19, Nov. 2003.

19. S. Ferrante, T. Schauer, G. Ferrigno, J. Raisch, and F. Molteni, “The effect of using variable frequency trains during functional electrical stimulation cycling,” Neuromodulation, Technol. Neural Interface, vol. 11, no. 3, pp. 216–226, Jul. 2008.

20. R. W. Fields, “Electromyographically triggered electric muscle stimulation for chronic hemiplegia,” Arch. Phys. Med. Rehabil., vol. 68, no. 7, pp. 407–414, Jul. 1987.

21. G. H. Kraft, S. S. Fitts, and M. C. Hammond, “Techniques to improve function of the arm and hand in chronic hemiplegia,” Arch. Phys. Med. Rehabil., vol. 73, no. 3, pp. 220–227, Mar. 1992.

22. G. van Overeem Hansen, “EMG-controlled functional electrical stimulation of the paretic hand,” Scand. J. Rehabil. Med., vol. 11, no. 4, pp. 189–193, 1979.

23. J. H. Cauraugh, S. B. Kim, and A. Duley, “Coupled bilateral movements and active neuromuscular stimulation: Intralimb transfer evidence during bimanual aiming,” Neurosci. Lett., vol. 382, nos. 1–2, pp. 39–44, Jul. 2005.

24. J. S. Knutson, D. D. Gunzler, R. D. Wilson, and J. Chae, “Contralaterally controlled functional electrical stimulation improves hand dexterity in chronic hemiparesis: A randomized trial,” Stroke, vol. 47, no. 10, pp. 2596–2602, Oct. 2016.

25. D. A. E. Bolton, J. H. Cauraugh, and H. A. Hausenblas, “Electromyogram-triggered neuromuscular stimulation and stroke motor recovery of arm/hand functions: A meta-analysis,” J. Neurol. Sci., vol. 223, no. 2, pp. 121–127, Aug. 2004.

26. M. K.-L. Chan, R. K.-Y. Tong, and K. Y.-W. Chung, “Bilateral upper limb training with functional electric stimulation in patients with chronic stroke,” Neurorehabilitation Neural Repair, vol. 23, no. 4, pp. 357–365, May 2009.

27. J. B. Manigandan, G. S. Ganesh, M. Pattnaik, and P. Mohanty, “Effect of electrical stimulation to long head of biceps in reducing gleno humeral subluxation after stroke,” Neuro Rehabil., vol. 34, no. 2, pp. 245–252, 2014.

28. S. Li, C. Zhuang, C. M. Niu, Y. Bao, Q. Xie, and N. Lan, “Evaluation of functional correlation of task-specific muscle synergies with motor performance in patients poststroke,” Frontiers Neurol., vol. 8, p. 337, Jul. 2017.

29. A. d’Avella, P. Saltiel, and E. Bizzi, “Combinations of muscle synergies in the construction of a natural motor behavior,” Nature Neurosci., vol. 6, no. 3, pp. 300–308, Mar. 2003.

30. V. C. K. Cheung, “Muscle synergy patterns as physiological markers of motor cortical damage,” Proc. Nat. Acad. Sci. USA, vol. 109, no. 36, pp. 14652–14656, Sep. 2012.

31. D. J. Clark, L. H. Ting, F. E. Zajac, R. R. Neptune, and S. A. Kautz, “Merging of healthy motor modules predicts reduced locomotor performance and muscle coordination complexity post-stroke,” J. Neurophysiol., vol. 103, no. 2, pp. 844–857, Feb. 2010.

32. E. Ambrosini, “Neuro-mechanics of recumbent leg cycling in post-acute stroke patients,” Ann. Biomed. Eng., vol. 44, pp. 3238–3251, Jun. 2016.

33. C. Zhuang, J. C. Marquez, H. E. Qu, X. He, and N. Lan, “A neuromuscular electrical stimulation strategy based on muscle synergy for stroke rehabilitation,” in Proc. IEEE 7th Int./EMBS Conf. Neural Eng. (NER), vol. 15, Apr. 2015, pp. 816–819.

34. R. S. Razavian, B. Ghannadi, N. Mehrabi, M. Charlet, and J. McPhee, “Feedback control of functional electrical stimulation for 2-D arm reaching movements,” IEEE Trans. Neural Syst. Rehabil. Eng., vol. 26, no. 10, pp. 2033–2043, Oct. 2018.

35. C. M. Niu, C. Zhuang, Y. Bao, S. Li, N. Lan, and Q. Xie, “Synergy-based NMES intervention accelerated rehabilitation of post-stroke hemiparesis,” in Proc. Assoc. Acad. Physiatrists Annu. Conf., Las Vegas, NV, USA, 2017.

36. H. Qu, “Development of network-based multichannel neuromuscular electrical stimulation system for stroke rehabilitation,” J. Rehabil. Res. Develop., vol. 52, no. 3, pp. 263–278, 2016.

37. C. M. Niu, “Effectiveness of short-term training with a synergy-based FES paradigm on motor function recovery post stroke,” in Proc. 12th Int. Soc. Phys. Rehabil. Med. World Congr., Paris, France, 2018.

38. T. Wang, “Customization of synergy-based FES for post-stroke rehabilitation of upper-limb motor functions,” in Proc. IEEE 40th Annu. Int. Conf. Eng. Med. Biol. Soc. (EMBS), Jul. 2018, 3541–3544.

39. L. L. Baker, D. R. McNeal, L. A. Benton, B. R. Bowman, and R. L. Waters, Ed., Neuromuscular Electrical Stimulation a Practical Guide, 4th ed. Downey, CA, USA: Los Amigos Research & Education Institute, 2000.

40. A. d’Avella, A. Portone, L. Fernandez, and F. Lacquaniti, “Control of fast-reaching movements by muscle synergy combinations.,” J. Neurosci., vol. 26, no. 30, pp. 7791–7810, Jul. 2006.

41. R. D. Wilson, “Upper-limb recovery after stroke: A randomized controlled trial comparing EMG-triggered, cyclic, and sensory electrical stimulation,” Neurorehabilitation Neural Repair, vol. 30, no. 10, pp. 978–987, Nov. 2016.

42. A. J. Levine, “Identification of a cellular node for motor control pathways,” Nature Neurosci., vol. 17, no. 4, pp. 586–593, Apr. 2014.

43. S. B. Frost, S. Barbay, K. M. Friel, E. J. Plautz, and R. J. Nudo, “Reorganization of remote cortical regions after ischemic brain injury: A potential substrate for stroke recovery,” J. Neurophysiol., vol. 89, no. 6, pp. 3205–3214, Jun. 2003.

44. P. Langhorne, J. Bernhardt, and G. Kwakkel, “Stroke rehabilitation,” Lancet, vol. 377, no. 9778, pp. 1693–1702, May 2011.

45. M. D. Ellis, B. G. Holubar, A. M. Acosta, R. F. Beer, and J. P. A. Dewald, “Modifiability of abnormal isometric elbow and shoulder joint torque coupling after stroke,” Muscle Nerve, vol. 32, pp. 170–178, Aug. 2005.

46. J. P. A. Dewald, P. S. Pope, J. D. Given, T. S. Buchanan, and W. Z. Rymer, “Abnormal muscle coactivation patterns during isometric torque generation at the elbow and shoulder in hemiparetic subjects,” Brain, vol. 118, no. 2, pp. 495–510, 1995.

47. D. G. Kamper, A. N. McKenna-Cole, L. E. Kahn, and D. J. Reinkensmeyer, “Alterations in reaching after stroke and their relation to movement direction and impairment severity,” Arch. Phys. Med. Rehabil., vol. 83, no. 5, pp. 702–707, May 2002.

48. C. L. Massie, S. Fritz, and M. P. Malcolm, “Elbow extension predicts motor impairment and performance after stroke,” Rehabil. Res. Pract., vol. 2011, pp. 1–7, 2011.

49. V. C. K. Cheung, L. Piron, M. Agostini, S. Silvoni, A. Turolla, and E. Bizzi, “Stability of muscle synergies for voluntary actions after cortical stroke in humans,” Proc. Nat. Acad. Sci. USA, vol. 106, no. 46, pp. 19563–19568, Nov. 2009.

50. J. Roh, W. Z. Rymer, and R. F. Beer, “Robustness of muscle synergies underlying three-dimensional force generation at the hand in healthy humans,” J. Neurophysiol., vol. 107, no. 8, pp. 2123–2142, Apr. 2012.

51. J. Roh, W. Z. Rymer, and R. F. Beer, “Evidence for altered upper extremity muscle synergies in chronic stroke survivors with mild and moderate impairment,” Frontiers Hum. Neurosci., vol. 9, p. 6, Feb. 2015.

52. J. Roh, W. Z. Rymer, E. J. Perreault, S. B. Yoo, and R. F. Beer, “Alterations in upper limb muscle synergy structure in chronic stroke survivors,” J. Neurophysiol., vol. 109, no. 3, pp. 768–781, Feb. 2013.

53. W. H. Backes, W. H. Mess, V. van Kranen-Mastenbroek, and J. P. H. Reulen, “Somatosensory cortex responses to median nerve stimulation: fMRI effects of current amplitude and selective attention,” Clin. Neurophysiol., vol. 111, no. 10, pp. 1738–1744, Oct. 2000.

54. G. Francisco, “Electromyogram-triggered neuromuscular stimulation for improving the arm function of acute stroke survivors: A randomized pilot study,” Arch. Phys. Med. Rehabil., vol. 79, no. 5, pp. 570–575, May 1998.

55. S. K. Sabut, C. Sikdar, R. Kumar, and M. Mahadevappa, “Functional electrical stimulation of dorsiflexor muscle: Effects on dorsiflexor strength, plantarflexor spasticity, and motor recovery in stroke patients,” Neurorehabilitation, vol. 29, no. 4, pp. 393–400, 2011.

56. Y.-H. Wang, F. Meng, Y. Zhang, M.-Y. Xu, and S.-W. Yue, “Full-movement neuromuscular electrical stimulation improves plantar flexor spasticity and ankle active dorsiflexion in stroke patients: A randomized controlled study,” Clin. Rehabil., vol. 30, no. 6, pp. 577–586, Jun. 2016.

57. W. H. Chang and Y.-H. Kim, “Robot-assisted therapy in stroke rehabilitation,” J. Stroke, vol. 15, no. 3, p. 174, 2013.

58. H. G. Wu, Y. R. Miyamoto, L. N. G. Castro, B. P. Ölveczky, and M. A. Smith, “Temporal structure of motor variability is dynamically regulated and predicts motor learning ability,” Nature Neurosci., vol. 17, no. 2, pp. 312–321, Jan. 2014.

59. J. Frère and F. Hug, “Between-subject variability of muscle synergies during a complex motor skill,” Frontiers Comput. Neurosci., vol. 6, p. 99, Dec. 2012.

60. S. Muceli, A. T. Boye, A. d’Avella, and D. Farina, “Identifying representative synergy matrices for describing muscular activation patterns during multidirectional reaching in the horizontal plane,” J. Neurophysiol., vol. 103, no. 3, pp. 1532–1542, Mar. 2010.

61. J. F. Soechting and F. Lacquaniti, “Invariant characteristics of a pointing movement in man,” J. Neurosci., vol. 1, no. 7, pp. 710–720, Jul. 1981.

62. B. Cesqui, A. d’Avella, A. Portone, and F. Lacquaniti, “Catching a ball at the right time and place: Individual factors matter,” PLoS ONE, vol. 7, no. 2, p. e31770, Feb. 2012.

 

via Synergy-Based FES for Post-Stroke Rehabilitation of Upper-Limb Motor Functions – IEEE Journals & Magazine

, , , , , , , , , , , ,

Leave a comment

[VIDEO] Post Stroke Foot Dorsiflexion: Using Electrical Stimulation to Reduce Tone & Promote Plasticity – YouTube

Further reading on electrophysiology and muscle contractions: http://strokemed.com/motor-behaviour-…

via  Post Stroke Foot Dorsiflexion: Using Electrical Stimulation to Reduce Tone & Promote Plasticity – YouTube

, , , , , , , , ,

Leave a comment

%d bloggers like this: