Archive for category Gait/Drop Foot

[BLOG POST] Stroke, MS patients walk significantly better with neural stimulation

Robert Bush has multiple sclerosis (MS), which sapped his ability to walk five years ago. Joseph McGlynn suffered a stroke that seriously impaired his left side, also five years ago.

Using technology designed by Case Western Reserve University and the Advanced Platform Technology and Functional Electrical Stimulation centers at the Louis Stokes Cleveland Veterans Affairs Medical Center, the two men got their feet back under them.

Two studies, published in the American Journal of Physical Medicine and Rehabilitation, show that functional electrical stimulation (FES) significantly helped McGlynn and Bush to effectively walk at the medical center.

“I went in there and I could barely take two steps,” said Bush, 42, who researchers believe is the world’s first MS patient to “test-drive” an implanted FES system. The proof-of-feasibility test lasted 90 days. “At the end,” said Bush, of Columbus, Ohio, “I was walking down the hallway. To me, it was monumental.” A video of him walking with and without the system can be found at: https://youtu.be/17JYaKkdRYs.

McGlynn, 69, of North Royalton, Ohio, could walk with a cane, but not easily. With the technology switched on, he covered far more ground and his pace was twice as fast during his 30-week study.

“It’s helped with balance and confidence,” said McGlynn, who used to tread a lot of stairs maintaining equipment at a steel plant. “I’m confident now that I can walk without stumbling and falling.” A video of him walking with and without aid of the system can be found here: https://youtu.be/3CYq-FSFQLM.

Nathan Makowski, an investigator at the Cleveland FES Center, created by Case Western Reserve and the Cleveland VA, said that FES technology has been used primarily for therapy in stroke patients in the past. “This, though, is a more long-term assistive system,” he said.

Addressing needs

The researchers hope these studies will lay the foundation for implanted systems that restore some independence to people with MS or who have suffered a stroke.

Their numbers are substantial. The National Multiple Sclerosis Society estimates that more than 2.3 million people have the disease worldwide. Surveys have found that 93 percent suffer gait impairment within 10 years of diagnosis and 13 percent report they are unable to walk twice a week. Other research has found that 6 million to 7 million people live with stroke nationally and nearly 30 percent require assistance to walk.

“In both cases, there is a disconnect between the brain and muscles,” said Stephen Selkirk, MD, a neurologist at the VA’s Spinal Cord Injury Division and assistant professor of neurology at Case Western Reserve School of Medicine. “This system replaces the lost connection.”

The system includes implanted electrodes that tie into nerves that control muscles collectively, called hip and knee flexors and ankle dorsoflexors. In healthy people, the muscles work in seamless coordination each step they take.

When Bush or McGlynn walks, he pushes a button on an external controller, which sends signals to a pulse generator, which then sends electrical pulses to the electrodes. The pulses stimulate the nerves, which in turn stimulate the muscles in both of Bush’s legs and McGlynn’s left leg.

“Both guys were taking steps the first time we turned the systems on,” said Ron Triolo, a professor of orthopaedics and biomedical engineering at Case Western Reserve and executive director of the Advanced Platform Technology (APT) Center. “When Robert Bush took a step, it wasn’t’ pretty, but we saw the potential.”

In each patient, “the pulses are sent in a pattern that is close to how normal muscles work,” said Rudi Kobetic, a principal investigator at the Stokes Cleveland VA and APT Center. “We try to time the pattern to stimulation so that it’s integrated with their ability. Similar to regular physical therapy, we can see results.”

Significant improvement

Both men gained strength and endurance through repeated use of the systems and fine-tuning by the researchers.

Bush went from the two steps to consistently walking more than 30 yards during the trial. In that time, he used a walker to help maintain his balance.

“When they turned it on the first time, I was surprised how well it worked,” said Bush, who had to give up his construction career due to the disease. “I lifted my knee like I was high-stepping. Once we got it fine-tuned and I got walking, I thought it was amazing. I still think it’s amazing.”

McGlynn’s gait became noticeably more symmetrical and energetic, the researchers said. His gait without the system was about 19 yards per minute; with the system, 47 yards per minute. Training with the system improved McGlynn’s speed when it was turned off to 23 yards per minute, indicating therapeutic benefit.

“Distance is a challenge,” he said. Initially, he could walk 83 yards but improved to 1,550 yards–nearly a mile–at the faster gait. “I work up a good sweat and that makes me feel good,” he said.

Due to his improvements, the research team is developing a system that McGlynn can use at home and outside.

“I’ll be able to walk for exercise and hopefully be able to walk into church and into a restaurant,” McGlynn said.

When Bush’s trial ended, surgeons removed his implanted electrodes. The researchers are seeking funding to fit him with a permanent FES system in a clinical trial.

In the meantime, Bush is now back to using a wheelchair but working to maintain his strength and flexibility, repeatedly standing and sitting while holding onto a rail or standing for long periods of time. “I’m keeping things ready for when they get the green light,” he said.

###

Other researchers who contributed to the two studies are the APT Center’s Lisa Lombardo, physical therapist; Kevin Foglyano, biomedical engineer; and Gilles Pinault, MD, a surgeon and co-director of the center.

Source: Stroke, MS patients walk significantly better with neural stimulation | EurekAlert! Science News

, , , , ,

Leave a comment

[ARTICLE] Assessment and treatment of spastic equinovarus foot after stroke: Guidance from the Mont-Godinne interdisciplinary group – Full Text

Objective: To present interdisciplinary practical guidance for the assessment and treatment of spastic equinovarus foot after stroke.

Results: Clinical examination and diagnostic nerve block with anaesthetics determine the relative role of the factors leading to spastic equinovarus foot after stroke: calf spasticity, triceps surae – Achilles tendon complex shortening and dorsiflexor muscles weakness and/or imbalance. Diagnostic nerve block is a mandatory step in determining the cause(s) of, and the most appropriate treatment(s) for, spastic equinovarus foot. Based on interdisciplinary discussion, and according to a patient-oriented goal approach, a medical and/or surgical treatment plan is proposed in association with a rehabilitation programme. Spasticity is treated with botulinum toxin or phenol–alcohol chemodenervation and neurotomy, shortening is treated by stretching and muscle-tendon lengthening, and weakness is treated by ankle-foot orthosis, functional electrical stimulation and tendon transfer. These treatments are frequently combined.

Conclusion: Based on 20 years of interdisciplinary expertise of management of the spastic foot, guidance was established to clarify a complex problem in order to help clinicians treat spastic equinovarus foot. This work should be the first step in a more global international consensus.

Introduction

Stroke is the third most common cause of death and the primary cause of severe disability in industrialized countries. Following stroke, approximately 80% of patients regain walking function with decreased gait velocity and asymmetrical gait pattern (1). Spastic equinovarus foot (SEVF) is one of the most common disabling deformities observed among hemiplegic patients. SEVF is frequently associated with other kinematic gait abnormalities, such as stiff knee gait, genu recurvatum, and painful claw toes. SEVF deformity forces the patient to increase their hip and knee flexion in the swing phase. If they are unable to do this (e.g. if they have associated stiff knee gait), the patient will present a hip circumbduction in the swing phase. Correction of such equinus may therefore improve distal as well as proximal gait disturbances.

SEVF deformity has 4 main causes (2, 3). The first is spasticity of the calf muscles (soleus, gastrocnemius, tibialis posterior, flexor digitorum and flexor hallucis longus muscles), responsible for SEVF in the stance phase of gait and for painful toe curling with callosities on the pulp and dorsum of the toes. The peroneus longus and brevis muscles may also be spastic (often with clonus), but such spasticity is useful to limit the varus and stabilize the ankle. Secondly, the spastic muscles have a tendency to remain in a shortened position for prolonged periods, which, in turn, results in soft-tissue changes and contractures, leading to a fixed deformity (4). Thirdly, weakness of the ankle dorsiflexor muscles (tibialis anterior, extensor digitorum and hallucis muscles) as well as the peroneus longus and brevis muscles is responsible for drop-foot in the swing phase of gait. Such weakness is often emphasized by triceps spastic co-contraction and/or contracture. The weakness also affects the triceps surae muscles, leading to a lack of propulsion at the end of the stance phase of gait. Lastly, an imbalance between the tibialis anterior and the peroneus muscles leads to varus of the hind-foot in the swing phase, as peroneus activation must compensate for physiological varus positioning related to contraction of the tibialis anterior. In such a case, the foot will be placed in an unstable varus position during the swing phase and at the beginning of the stance phase.

The respective role of the main causes of SEVF (spasticity, shortening, weakness, and imbalance) varies from patient to patient, and therapeutic decisions are therefore challenging. Indeed, as emphasized by Fuller, the causes of SEVF are varied and complex, due to a variety of deforming forces, and thus a single procedure does not exist to correct all deformities (3). Hence there is a need for guidance and guidelines.

Treatments for SEVF described in the literature are multimodal and include rehabilitation, orthosis, botulinum toxin (BoNT-A) injections, alcohol and phenol nerve blocks, functional neurosurgery (selective neurotomy and intrathecal baclofen therapy) and orthopaedic surgery (tendon transfer, tendon lengthening and bone surgery) (5). SEVF rehabilitation programmes include strengthening of the tibialis anterior and peroneus muscles, electrical stimulation, stretching of the triceps surae to reduce spasticity and prevent contracture, and gait and balance training. Modern therapeutic approaches, such as task-oriented strategy and treadmill with bodyweight support, are promoted. Several publications support the effectiveness of these treatments in SEVF (6–8). However, only 3 studies have compared different treatment options (9–11). A systematic review of surgical correction in adult patients with stroke emphasized the need to compare treatments in order to generate evidence on which to base algorithms (8). In fact, no practical guidelines are available for use in daily practice. Evidence regarding choice of treatment is poor, thus therapeutic decision-making is based on professional personal preferences and beliefs rather than on scientific evidence. An interdisciplinary approach with a physical medicine and rehabilitation (PMR) specialist and rehabilitation team, neurosurgeon, and orthopaedic surgeon is therefore mandatory in order to optimize treatments.

The aim of this paper is to present and discuss the Mont-Godinne interdisciplinary guidance (Fig. 1), based on the existing literature and on 20 years of experience of an interdisciplinary medical and surgical approach to SEVF.

Continue —> Journal of Rehabilitation Medicine – Assessment and treatment of spastic equinovarus foot after stroke: Guidance from the Mont-Godinne interdisciplinary group – HTML

, , ,

Leave a comment

[BLOG POST] Mayo Clinic Study Helps Paralyzed Man Move Legs Again – Assistive Technology Blog

After a snowmobile accident four years ago, Jered Chinnock was left paralyzed from his torso down, unable to walk. He was prepared to be in a wheelchair for the rest of his life but a new study between Mayo Clinic and UCLA is helping him get back to his feet again.

After intense physical therapy, and a surgery last year, doctors implanted an electrode near his spinal cord. This electrode receives electronic stimulation, which converts his thoughts of moving his legs into actual movement. Currently, although he can move his legs, he cannot feel his legs moving.  The team working with Jered is excited though. They noticed dramatic change in Jered’s leg movement within two weeks, and think that this technology can be used with other parts of the body too.

The team is expected to work with Jered for the next eight months to help him progress even more.

VIDEO

http://interactive.tegna-media.com/video/embed/embed.html?id=2559274&type=video&title=Paralyzed%20man%20moving%20his%20legs%20after%20surgery&site=89&playerid=6918249996581&dfpid=32805352&dfpposition=Video_prestream_external%C2%A7ion=home

Source: Mayo Clinic Study Helps Paralyzed Man Move Legs Again – Assistive Technology Blog

, , ,

Leave a comment

[ARTILE] Changes in gait kinematics and muscle activity in stroke patients wearing various arm slings – Full Text

Abstract

Stroke patients often use various arm slings, but the effects of different slings on the joint kinematics and muscle activity of the arm in the gait have not been investigated. The effects of joint kinematics and muscle activity in the gait were investigated to provide suggestions for gait training for stroke patients. In all, 10 chronic stroke patients were voluntarily recruited. An eight-camera three-dimensional motion analysis system was used to measure joint kinematics while walking; simultaneously, electromyography data were collected for the anterior and posterior deltoids and latissimus dorsi. The amplitude of pelvic rotation on the less-affected side differed significantly among the different arm slings (P<0.05). Changes in the knee kinematics of the less-affected side also differed significantly (P<0.05), while there were no significant differences in the muscle activity of the affected arm. In stroke patients, an extended arm sling is more useful than no sling or a flexed arm sling in terms of the amplitude of the rotation of the less-affected pelvic side in the stance phase while walking. The less-affected knee joint is flexed more without a sling than with any sling. All arm slings support the extension of the contralateral knee.

INTRODUCTION

Stroke is a major cause of morbidity worldwide. Approximately 800,000 patients have strokes annually (Lloyd-Jones et al., 2010). Patients with stroke have disabilities that result from paralysis, and most complain of difficulty walking (Jørgensen et al., 1995). Bovonsunthonchai et al. (2012) showed that the affected upper extremity is important for improving the performance and coordination of gait in stroke patients. In addition, the movement of the upper extremity improves the range of motion at the ankle as well as trunk stability (Stephenson et al., 2010).
Stroke patients often develop a subluxation of the shoulder on the affected side, because they can no longer support the weight of their own arm due to paralysis (Griffin et al., 1986). Consequently, arm slings are often necessary. Stroke patients often use a hemisling. Faghri et al. (1994) stated that use of a hemisling induced flexion synergy patterns of the upper trunk and delayed functional activity. However, few studies have examined how different arm slings, including a hemisling, affect the gait patterns of stroke patients. Reported studies have examined the hemisling in terms of the gait patterns (Yavuzer and Ergin, 2002), balance (Acar and Karatas, 2010), and energy consumption (Han et al., 2011) of stroke patients.
There are various types of arm sling, such as the flexed sling (a single-strap hemisling), extended sling (Bobath sling, Rolyan sling), GivMohr sling (Dieruf et al., 2005), and elastic arm sling (Hwang and An, 2015). The sling supports some of the weight of the arm and simultaneously limits the motion of the upper extremities. Pontzer et al. (2009)suggested that the arms serve as passive mass dampers to decrease the rotation of the torso and head. Lieberman et al. (20072008) also held that the arms serve as passive dampers to minimise vertical motion. The trunk and shoulders act as elastic linkages between the pelvis, shoulder girdle, and arms (Pontzer et al., 2009).
Some studies have examined the activities of the arm muscle during walking (Lieberman et al., 2007Prentice et al., 2001), while other studies have found that most of the arm swing is passive, while a small torque may actively occur in shoulder rotation (Jackson et al., 1978Kubo et al., 2004). The muscle activity of the upper extremities is still the subject of debate (Collins et al., 2009Kubo et al., 2004Kuhtz-Buschbeck and Jing, 2012). However, the restrictive effects and support provided by various arm slings could have different effects on the muscle activities of the affected arm in stroke patients.
Therefore, we investigated how the muscle activities of the affected arm and kinematic data taken during walking are influenced by flexion-type (hemisling), extension-type (Rolyan sling), and elastic arm slings under elastic tension. We discuss which arm should be used for clinical gait training.

Continue —> Changes in gait kinematics and muscle activity in stroke patients wearing various arm slings – ScienceCentral

Fig. 1 The conditions of the various arm slings: (A) none, (B) a flexed type, (C) an extended type, and (D) an elastic type.

, , , , ,

Leave a comment

[BLOG POST] L300 Go System from Bioness Receives CE Mark – Rehab Managment

Published on May 1, 2017

http://www.dreamstime.com/stock-images-european-union-flag-ce-marking-eu-community-concept-sign-symbol-computer-key-image61512984

The L300 Go System, which received FDA clearance in January, has now received the CE Mark in the European Union.

The next step for Valencia, Calif-based Bioness Inc will be to make the L300 Go System available to healthcare professionals and home users in Europe.

The functional electrical stimulation (FES) system is built to help increase mobility in individuals with lower limb paralysis or weakness.

Features include 3D motion detection of gait events from a 3-axis gyroscope and accelerometer, which detects movement in all three kinematic planes; as well as the myBioness mobile iOS application that allows users to track their progress, set goals, and evaluate their movements.

“We are pleased to have achieved this important regulatory milestone,” says Todd Cushman, president and CEO of Bioness, in the release. “The market response to the technology after its debut in February has far exceeded our expectations as clinicians realize how the L300 Go can improve clinical efficiency and facilitate superior patient care.”

The L300 Go System will be available to European users sometime in late summer 2017, per the release.

[Source(s): Bioness Inc, PR Newswire]

Source: L300 Go System from Bioness Receives CE Mark – Rehab Managment

, , ,

Leave a comment

[ARTICLE] Movement visualisation in virtual reality rehabilitation of the lower limb: a systematic review – Full Text

Abstract

Background

Virtual reality (VR) based applications play an increasing role in motor rehabilitation. They provide an interactive and individualized environment in addition to increased motivation during motor tasks as well as facilitating motor learning through multimodal sensory information. Several previous studies have shown positive effect of VR-based treatments for lower extremity motor rehabilitation in neurological conditions, but the characteristics of these VR applications have not been systematically investigated. The visual information on the user’s movement in the virtual environment, also called movement visualisation (MV), is a key element of VR-based rehabilitation interventions. The present review proposes categorization of Movement Visualisations of VR-based rehabilitation therapy for neurological conditions and also summarises current research in lower limb application.

Methods

A systematic search of literature on VR-based intervention for gait and balance rehabilitation in neurological conditions was performed in the databases namely; MEDLINE (Ovid), AMED, EMBASE, CINAHL, and PsycInfo. Studies using non-virtual environments or applications to improve cognitive function, activities of daily living, or psychotherapy were excluded. The VR interventions of the included studies were analysed on their MV.

Results

In total 43 publications were selected based on the inclusion criteria. Seven distinct MV groups could be differentiated: indirect MV (N = 13), abstract MV (N = 11), augmented reality MV (N = 9), avatar MV (N = 5), tracking MV (N = 4), combined MV (N = 1), and no MV (N = 2). In two included articles the visualisation conditions included different MV groups within the same study. Additionally, differences in motor performance could not be analysed because of the differences in the study design. Three studies investigated different visualisations within the same MV group and hence limited information can be extracted from one study.

Conclusions

The review demonstrates that individuals’ movements during VR-based motor training can be displayed in different ways. Future studies are necessary to fundamentally explore the nature of this VR information and its effect on motor outcome.

Background

Virtual reality (VR) in neurorehabilitation has emerged as a fairly recent approach that shows great promise to enhance the integration of virtual limbs in one`s body scheme [1] and motor learning in general [2]. Virtual Rehabilitation is a “group [of] all forms of clinical intervention (physical, occupational, cognitive, or psychological) that are based on, or augmented by, the use of Virtual Reality, augmented reality and computing technology. The term applies equally to interventions done locally, or at a distance (tele-rehabilitation)” [3]. The main objectives of intervention for facilitating motor learning within this definition are to (1) provide repetitive and customized high intensity training, (2) relay back information on patients’ performance via multimodal feedback, and (3) improve motivation [24]. VR therapies or interventions are based on real-time motion tracking and computer graphic technologies displaying the patients’ behaviour during a task in a virtual environment.

The interaction of the user and Virtual environment can be described as a perception and action loop [5]. This motor performance is displayed in the virtual environment and subsequently, the system provides multimodal feedback related to movement execution. Through external (e.g. vision) and internal (proprioception) senses the on-line sensory feedback is integrated into the patient’s mental representation. If necessary, the motor plan is corrected in order to achieve the given goal [5].

A previous Cochrane Review from Laver, George, Thomas, Deutsch, and Crotty [2] on Virtual Reality for stroke rehabilitation showed positive effects of VR intervention for motor rehabilitation in people post-stroke. However, grouped analysis from this review on recommendation for VR intervention provides inconclusive evidence. The author further comments that “[…] virtual reality interventions may vary greatly […], it is unclear what characteristics of the intervention are most important” ([2], p. 14).

Virtual rehabilitation system provides three different types of information to the patient: movement visualisation, performance feedback and context information [6]. During a motor task the patient’s movements are captured and represented in the virtual environment (movement visualisation). According to the task success, information about the accomplished goal or a required movement alteration is transmitted through one or several sensory modalities (performance feedback). Finally, these two VR features are embedded in a virtual world (context information) that can vary from a very realistic to an abstract, unrealistic or reduced, technical environment.

Performance feedback often relies on theories of motor learning and is probably the most studied information type within VR-based motor rehabilitation. Moreover, context information is primarily not designed with a therapeutic purpose. Movement observation, however, plays an important role for central sensory stimulation therapies, such as mirror therapy or mental training. The observation or imagination of body movements facilitates motor recovery [789] and provides new possibilities for cortical reorganization and enhancement of functional mobility. Thus, it appears that movement visualisation may also play an important role in motor rehabilitation [101112], although this aspect is yet to be systematically investigated [13].

The main goal of the present review is to identify various movement visualisation groups in VR-based motor interventions for lower extremities, by means of a systematic literature search. Secondarily, the included studies are further analysed for their effect on motor learning. This will help guide future research in rehabilitation using VR.

An interim analysis of the review published in 2013 showed six MV groups for upper and lower extremity training and additional two MV groups directed only towards lower extremity training. In this paper, we analysed only studies involving lower limb training, leading to a revision and expansion of the previously published MV groups findings [131415].

Continue —> Movement visualisation in virtual reality rehabilitation of the lower limb: a systematic review | BioMedical Engineering OnLine | Full Text

, , , , , , , ,

Leave a comment

[Abstract] “A CLINICAL FRAMEWORK FOR FUNCTIONAL RECOVERY IN A PERSON WITH CHRONIC TRAUMATIC BRAIN INJURY: A CASE REPORT” |

Provisional Abstract:
Background and Purpose: This case report describes a task-specific program for gait and functional recovery in a young man with severe chronic traumatic brain injury (TBI).

Case Description: The individual was a 26-year-old man 4 years post TBI with severe motor impairments who had not walked outside of therapy since his injury. He had received extensive gait training prior to initiation of services. His goal was to recover the ability to walk.

Intervention: The primary focus of the interventions was the restoration of gait. A variety of interventions were used, including locomotor treadmill training, electrical stimulation, orthoses and specialized assistive devices. A total of 79 treatments were delivered over a period of 62 weeks.

Outcomes: At the conclusion of therapy, the client was able to walk independently with a gait trainer for over 3000 feet and walked in the community with the assistance of his mother using a rocker bottom crutch for distances of up to 350 feet.

Discussion: Given the chronicity of this individual’s injury, the magnitude of his functional improvements were unexpected. However, very intentional interventions were selected in the development of his treatment plan. His potential was realized by structuring practice of the salient task, i.e. walking, with adequate intensity and frequency.

Want to read the published article?
To be alerted when this article is published, please sign up for the Journal of Neurologic Physical Therapy eTOC.

Source: JUST ACCEPTED: “A CLINICAL FRAMEWORK FOR FUNCTIONAL RECOVERY IN A PERSON WITH CHRONIC TRAUMATIC BRAIN INJURY: A CASE REPORT” |

, , , ,

Leave a comment

[ARTICLE] Transcranial Direct Current Stimulation Does Not Affect Lower Extremity Muscle Strength Training in Healthy Individuals: A Triple-Blind, Sham-Controlled Study – Full Text

The present study investigated the effects of anodal transcranial direct current stimulation (tDCS) on lower extremity muscle strength training in 24 healthy participants. In this triple-blind, sham-controlled study, participants were randomly allocated to the anodal tDCS plus muscle strength training (anodal tDCS) group or sham tDCS plus muscle strength training (sham tDCS) group. Anodal tDCS (2 mA) was applied to the primary motor cortex of the lower extremity during muscle strength training of the knee extensors and flexors. Training was conducted once every 3 days for 3 weeks (7 sessions). Knee extensor and flexor peak torques were evaluated before and after the 3 weeks of training. After the 3-week intervention, peak torques of knee extension and flexion changed from 155.9 to 191.1 Nm and from 81.5 to 93.1 Nm in the anodal tDCS group. Peak torques changed from 164.1 to 194.8 Nm on extension and from 78.0 to 85.6 Nm on flexion in the sham tDCS group. In both groups, peak torques of knee extension and flexion significantly increased after the intervention, with no significant difference between the anodal tDCS and sham tDCS groups. In conclusion, although the administration of eccentric training increased knee extensor and flexor peak torques, anodal tDCS did not enhance the effects of lower extremity muscle strength training in healthy individuals. The present null results have crucial implications for selecting optimal stimulation parameters for clinical trials.

Introduction

Transcranial direct current stimulation (tDCS) is a non-invasive cortical stimulation procedure in which weak direct currents polarize target brain regions (Nitsche and Paulus, 2000). The application of anodal tDCS to the primary motor cortex of the lower extremity transiently increases corticospinal excitability in healthy individuals (Jeffery et al., 2007Tatemoto et al., 2013) and improves motor function in healthy individuals and patients with stroke (Tanaka et al., 20092011Madhavan et al., 2011Sriraman et al., 2014Chang et al., 2015Montenegro et al., 20152016Angius et al., 2016Washabaugh et al., 2016). Thus, anodal tDCS has a potential to become a new adjunct therapeutic strategy for the rehabilitation of leg motor function and locomotion following a stroke.

Lower leg muscle strength is an important motor function required for patients who have had a stroke to regain activities of daily living (ADL). Lower leg muscle strength correlates with performance in activities, including sit-to-stand, gait, and stair ascent (Bohannon, 2007). Furthermore, lower leg muscle strength training increases muscle strength and improves ADL in patients with stroke (Ada et al., 2006). Therefore, lower leg muscle strength training is one of the important activities rehabilitating patients with stroke to regain their independence in ADL.

Several studies have examined the effect of a single session of tDCS on lower leg muscle strength, although the evidence is inconsistent (Tanaka et al., 20092011Montenegro et al., 20152016Angius et al., 2016Washabaugh et al., 2016). Its effects seem dependent on tDCS protocols, training tasks, muscle groups, and subject populations. Although, most tDCS studies on lower leg muscle strength have focused on the acute effects of a single tDCS application, to the best of our knowledge, no study has examined how lower extremity strength training combined with repeated sessions of tDCS affects lower leg muscle strength. This type of investigation has strong clinical implications for the application of tDCS in rehabilitation for patients with lower leg muscle weakness.

Thus, to examine whether anodal tDCS can enhance the effects of lower extremity muscle strength training, the present study simultaneously applied anodal tDCS and lower extremity muscle strength training to healthy individuals and evaluated their effects on lower extremity muscle strength.

Continue —> Frontiers | Transcranial Direct Current Stimulation Does Not Affect Lower Extremity Muscle Strength Training in Healthy Individuals: A Triple-Blind, Sham-Controlled Study | Perception Science

Figure 1. Experimental setup of the muscle strength training and torque assessment.

, , ,

Leave a comment

[ARTICLE] Bobath and traditional approaches in post-stroke gait rehabilitation in adults – Full Text PDF

Summary

Study aim: The aim of this study was to compare the outcomes of a study of post-stroke gait reeducation using the Bobath neuro-developmental treatment (NDT-Bobath) method and the traditional approach.

Material and methods: The study included 30 adult patients after ischemic stroke, aged 32–82. Patients were randomly assigned to one of the treatment groups: the study group (treated with the NDT-Bobath method combined with the traditional approach, ten sessions), and a reference group (treated with the traditional method only, ten sessions). The measurements (spatio-temporal gait parameters based on 10 m walking test: gait velocity, normalized gait velocity, cadence, normalized cadence, stride length, and normalized stride length) were administered twice: on admission (before the therapy) and after the last therapy session.

Results: Statistically significant and favorable changes in the gait velocity, cadence and stride length regarding their normalized values were observed. Moderate and high correlations among changes of assessed spatio-temporal gait parameters were observed in both groups.

Conclusions: The NDT-Bobath method may be regarded as a more effective form of gait post-stroke rehabilitation in young adults compared to traditional rehabilitation.

Introduction

Despite stroke incidence and mortality rates slowly decreasing in selected countries (especially developed Western Europe countries) [6, 7], stroke is still regarded as one of the leading causes of death and long-term disability. Ischemic stroke cases constitute approximately 70–80% of all stroke cases [6, 7]. Post-stroke gait disorder reduces mobility of patients, their independence, participation in activities of daily living and community life. Gait disorders may be reflected in spatio-temporal gait parameters. Their assessment may be a useful basic or supplementary way to assess general efficiency of gait function restoration during a neurorehabilitation program.

The Bobath neuro-developmental treatment (NDTBobath) method for adults is still one of the most popular therapeutic methods in neurorehabilitation, including gait relearning [8, 21]. Current studies concerning its use in post-stroke gait relearning have methodological concerns related to study/treatment fidelity and measurement [16]. For this moment there is insufficient evidence (especially from randomized controlled trials – RCTs) to conclude that a particular physiotherapy method (including NDT-Bobath) is more effective in promoting recovery of gait than any other approach. Moreover, combined use of NDT-Bobath and components of any other approaches may diminish the aforementioned picture. The assumption that rehabilitation using a proper mix of components derived from different approaches may be more effective than no treatment control in attaining gait function following stroke may be true [18]. Research on various mixed/eclectic approaches constitute an important step toward patient-tailored therapy and the need for further support. Current evidence concerning combined use of the NDT-Bobath method and components of another therapeutic approach is weak. Evidence of favorable combined use of the NDT-Bobath method is as follows:

− successful use of mixed rehabilitative procedures, including NDT-Bobath, in an individual training package [17],

− therapy based on the NDT-Bobath concept supported by task practice is more effective than task practice alone [9],

− injection of botulinum toxin type A combined with NDT-Bobath therapy showed improvements in lower limb spasticity, gait and balance in post-stroke patients greater than use of botulinum toxin type A alone [11].

The aim of this study was compare the outcomes of a study of post-stroke gait rehabilitation using the NDTBobath method for adults combined with the traditional approach and the sole traditional approach.

Full Text PDF

, , , , , , , ,

Leave a comment

[VIDEO] Fourier X1 Exoskeleton – Fourier Intelligence – YouTube

Δημοσιεύτηκε στις 23 Μαρ 2017

At Fourier Intelligence, we do not believe these people are fated to sit on the wheelchair in their rest life. To let them stand up, and to allow them to walk again, we started to develop a genuinely new exoskeleton products- The Fourier X1

, , , ,

Leave a comment

%d bloggers like this: