Archive for category Mirror therapy

[NEWS] New Virtual Reality Therapy game could offer relief for patients with chronic pain, mobility issues

News-MedicalA Virtual Reality Therapy game (iVRT) which could introduce relief for patients suffering from chronic pain and mobility issues has been developed by a team of UK researchers.

Dr Andrew Wilson and colleagues from Birmingham City University built the CRPS app in collaboration with clinical staff at Sandwell and West Birmingham Hospitals NHS Trust for a new way to tackle complex regional pain syndrome and to aid people living with musculoskeletal conditions.

Using a head mounted display and controllers, the team created an immersive and interactive game which mimics the processes used in traditional ‘mirror therapy’ treatment. Within the game, players are consciously and subconsciously encouraged to stretch, move and position the limbs that are affected by their conditions.

Mirror therapy is a medical exercise intervention where a mirror is used to create areflective illusion that encourages patient’s brain to move their limb more freely. This intervention is often used by occupational therapists and physiotherapists to treat CRPS patients who have experienced a stroke. This treatment has proven to be successful exercises are often deemed routine and mundane by patients, which contributes to decline in the completion of therapy.

Work around the CRPS project, which could have major implications for other patient rehabilitation programmes worldwide when fully realised, was presented at the 12th European Conference on Game Based Learning (ECGBL) in France late last year.

Dr Wilson, who leads Birmingham City University’s contribution to a European research study into how virtual reality games can encourage more physical activity, and how movement science in virtual worlds can be used for both rehabilitation and treatment adherence, explained, “The first part of the CRPS project was to examine the feasibility of being able to create a game which reflects the rehabilitation exercises that the clinical teams use on the ground to reduce pain and improve mobility in specific patients.”

“By making the game enjoyable and playable we hope family members will play too and in doing so encourage the patient to continue with their rehabilitation. Our early research has shown that in healthy volunteers both regular and casual gamers enjoyed the game which is promising in terms of our theory surrounding how we may support treatment adherence by exploiting involvement of family and friends in the therapy processes.”

The CRPS project was realized through collaborative working between City Hospital, Birmingham, and staff at the School of Computing and Digital Technology, and was developed following research around the provision of a 3D virtual reality ophthalmoscopy trainer.

Andrea Quadling, Senior Occupational Therapist at Sandwell Hospital, said “The concept of using virtual reality to treat complex pain conditions is exciting, appealing and shows a lot of potential. This software has the potential to be very helpful in offering additional treatment options for people who suffer with CRPS.”

via New Virtual Reality Therapy game could offer relief for patients with chronic pain, mobility issues

, , , , , , , , , , , ,

Leave a comment

[Abstract] Immersive virtual reality mirror therapy for upper limb recovery following stroke – A pilot study

Abstract

Objective This study was designed to examine the feasibility of immersive virtual reality(VR) mirror therapy for upper limb paresis after stroke using a head-mounted display, and provide preliminary evidence of efficacy.

Design Ten outpatients with chronic stroke, upper limb hemiparesis, and a low predisposition for motion sickness completed a 12-session program of 30 minutes each of immersive VR mirror therapy. The VR system provided the illusion of movement in the hemiparetic upper limb while suppressing the visual representation of the non-paretic side. Feasibility was assessed via patient compliance, adverse event tracking, the System Usability Scale, and the Simulator Sickness Questionnaire. Preliminary efficacy was evaluated using the Fugl-Meyer Upper Extremity (FM-UE) and Action Research Arm Test.

Results Immersive VR mirror therapy for patients with chronic stroke was safe, well-tolerated, and without adverse events, such as simulator sickness. Motor outcomes revealed a small improvement for the FM-UE from 21.7 (SD= 8.68) to 22.8 (SD= 9.19) that did not achieve statistical significance (p=0.084).

Conclusion Four weeks of immersive virtual reality mirror therapy was well-tolerated by chronic stroke patients. Our findings support further clinical trials of immersive VR technologies and visually-enhanced mirror therapies for stroke survivors.

via Immersive virtual reality mirror therapy for upper limb reco… : American Journal of Physical Medicine & Rehabilitation

, , , , , , ,

Leave a comment

[ARTICLE] Comparison Between Movement-Based and Task-Based Mirror Therapies on Improving Upper Limb Functions in Patients With Stroke: A Pilot Randomized Controlled Trial – Full Text

Abstract

Objective: The aim of this trial was to compare the effect of movement-based mirror therapy (MMT) and task-based mirror therapy (TMT) on improving upper limb functions in patients with stroke.

Methods: A total of 34 patients with sub-acute stroke with mildly to moderately impaired upper limb motor functions. The participants were randomly allocated to one of three groups: MMT, TMT, and conventional treatment (CT). The MMT group underwent movement-based mirror therapy for around 30 min/day, 5 days/week, for 4 weeks, whereas the TMT group underwent dose-matched TMT. The CT group underwent only conventional rehabilitation. The MMT and TMT groups underwent CT in addition to their mirror therapy. Blinded assessments were administered at baseline and immediately after the intervention. Upper limb motor functions, measured using Fugl-Meyer Assessment-upper extremity (FMA-UE), Wolf Motor Function Test (WMFT), and hand grip strength; upper limb spasticity, measured using the modified Ashworth scale (MAS); and activities of daily living, measured using the modified Barthel index (MBI).

Results: A significant time-by-group interaction effect was noted in FMA-UE. Post-hoc analysis of change scores showed that MMT yielded a better effect on improving FMA-UE than the other two therapies, at a marginally significant level (P = 0.050 and 0.022, respectively). No significant interaction effect was noted in WMFT, hand grip strength, MAS, and MBI.

Conclusion: Both MMT and TMT are effective in improving the upper limb function of patients with mild to moderate hemiplegia due to stroke. Nevertheless, MMT seems to be superior to TMT in improving hemiplegic upper extremity impairment. Further studies with larger stroke cohorts are expected to be inspired by this pilot trial.

Introduction

Mirror therapy (MT) has been shown to be a useful intervention for rehabilitation of upper limb functions following stroke, since the first attempt by Altschuler et al. (1). The neural correlate of MT remains under investigation. Three main theories explaining the neural mechanism underlying the clinical efficacy of MT have been proposed (2).

The first theory hypothesizes that the neural correlate of MT is the mirror neuron system (MNS), which is defined as a class of neurons that fire during action observation and action execution (3). It is assumed that the MNS can be triggered when people are observing mirror visual feedback (MVF) generated in MT (45). The affected cortical motor system can be accessed via the MNS owing to their functional connections (6). The second theory, supported by several studies with transcranial magnetic stimulation (TMS), suggests that a potential neural mechanism underlying the effect of MT can be the recruitment of the ipsilesional corticospinal pathway. Indeed, many TMS studies have demonstrated the increment of motor-evoked potentials of the ipsilesional primary motor cortex in participants with stroke when viewing MVF (7), which indicates a facilitatory effect of MVF on the ipsilesional corticospinal pathway. The last theory attributes the effect of MT to the compensation of restricted proprioception input from the affected limb and the enhancement of attention toward the paretic upper limb (8), which may contribute to the reduction of the learned non-use in patients with stroke (1).

A substantial number of randomized controlled trials (RCTs) have demonstrated that MT is useful in improving upper limb functions after stroke (912). A recently published meta-analytic review identified a moderate level of evidence supporting the effects of MT on improving upper limb motor functions (Hedges’ g = 0.47) and activities of daily living (ADLs) (Hedges’ g = 0.48) in patients with stroke (13). In the meta-analysis (13), the heterogeneity of conducting MT was obvious across studies. One major category of MT is movement-based MT (MMT), in which participants practice simple movements such as wrist flexion and extension, or finger flexion and extension, with their unaffected hands when viewing the MVF generated by a physical mirror placed at their mid-sagittal plane (1416). Another category of MT is task-based MT (TMT), in which participants perform specific motor tasks with their unaffected hands, such as squeezing sponges, placing pegs in holes, and flipping a card, while they are viewing the MVF (1217). In some studies, researchers applied MMT in the first few sessions and subsequently applied TMT in the following sessions, constituting a hybrid MT protocol (91018). MMT and TMT were also described as intransitive and transitive movements in some studies (910). However, a sub-group meta-analysis comparing MMT and TMT was not carried out in the meta-analysis study (13).

Initially, MMT was used for alleviating phantom pain after amputation and for treating upper limb hemiplegia after stroke (119). Subsequently, the effect of MMT in stroke upper limb rehabilitation has been systematically investigated by many clinical trials (141620). Arya et al. were the first to compare the effects of TMT with those of conventional rehabilitation on upper limb motor recovery after stroke, and they found a superior effect of TMT (12). The main rationale that Arya et al. mentioned was that the response of the MNS was better for object-directed actions than for non-object actions (1221). In a recent study comparing the effects of action observation training and MT on gait and balance in patients with stroke, the results showed that action observation training had significantly better effects on the improvement of balance functions than MT (22), indicating that action observation may be different from MT in terms of their neural mechanisms. In other studies in which TMT was introduced or combined with MMT, the authors did not explain why they employed TMT (911).

Thus far, no RCT has systematically investigated the difference between the effects of MMT and TMT. Therefore, we aimed to conduct an RCT to directly compare the effect of MMT and TMT, on improving hemiplegic upper limb motor functions, spasticity, and ADLs, in a group of patients with stroke.[…]

 

Continue —> Frontiers | Comparison Between Movement-Based and Task-Based Mirror Therapies on Improving Upper Limb Functions in Patients With Stroke: A Pilot Randomized Controlled Trial | Neurology

Figure 3. An example of the process of “fault and correction.” The given task is that participants are required to transfer an object placed in the No. 3 hole (in orange color) to the No. 2 hole (Step 1). However, participants usually move the object to the No. 4 hole when they are viewing the mirror reflection (Step 2). Then, participants realize the fault and transfer the object it to the No. 2 hole (Steps 3, 4).

, , , , , , , , , , ,

Leave a comment

[Abstract] No evidence of effectiveness of mirror therapy early after stroke: an assessor-blinded randomized controlled trial.

Abstract

OBJECTIVE::

The aim of this study was to investigate the efficacy of mirror therapy on upper-limb recovery in early post-stroke patients.

DESIGN::

Assessor-blinded randomized controlled trial.

SETTING::

Inpatient rehabilitation clinic.

SUBJECTS::

A total of 40 patients with upper-limb impairment due to a first-ever ischaemic or haemorrhagic stroke, within four weeks from the cerebrovascular accident.

INTERVENTION::

The intervention group received mirror therapy, while the control group received sham therapy. During mirror therapy, patients’ sound hand was reflected by a mirror. During sham therapy, an opaque surface replaced the mirror-reflecting surface. Both the mirror therapy and sham therapy groups practised their sound hand with exercises, ranging from the simple elbow flexion-extension to complex tasks (e.g. reaching and grasping). Mirror therapy and sham therapy were added to conventional rehabilitation.

MAIN MEASURES::

Primary outcome includes Fugl-Meyer upper extremity scale. Secondary outcomes include action research arm test (ARAT) and functional independence measure (FIM) scale. Outcomes were measured at the beginning (T0) and end (T1) of the treatment.

RESULTS::

At baseline, both groups (sham therapy vs. mirror therapy; mean (SD)) were comparable for Fugl-Meyer (30.9 (23.9) vs. 28.5 (21.8)), ARAT (25.1 (25.5) vs. 23.5 (24)) and FIM (71.0 (20.6) vs. 72.9 (17.8)) scores. At the end of the treatment, both groups significantly improved in the Fugl-Meyer (40.6 (21.3) vs. 38.3 (23.4)), ARAT (31.9 (23.0) vs. 30 (24.1)) and FIM (100.3 (21.9) vs. 99.4 (22.6)) scores. However, at T1, no significant difference was observed between the sham therapy and mirror therapy groups, neither for the Fugl-Meyer, nor for ARAT and FIM scores.

CONCLUSION::

Compared with sham therapy, mirror therapy did not add additional benefit to upper-limb recovery early after stroke.

 

via No evidence of effectiveness of mirror therapy early after stroke: an assessor-blinded randomized controlled trial. – PubMed – NCBI

, , , , , ,

Leave a comment

[Abstract] Effect of afferent electrical stimulation with mirror therapy on motor function, balance, and gait in chronic stroke survivors: a randomized controlled trial

PDF

 

BACKGROUND: When solely mirror therapy is applied for a long period of time, spatial perception and attention to the damaged side may decrease, and the effect of mirror therapy may be limited. To overcome this limitation, it has recently been suggested that the combination of mirror therapy with mirror treatment is effective.
AIM: The aim of this study was to investigate the effects of afferent electrical stimulation with mirror therapy on motor function, balance, and gait in chronic stroke survivors.
DESIGN: A randomized controlled trial.
SETTING: Rehabilitation center.
POPULATION: Thirty stroke survivors were randomly assigned to two groups: the experimental group (n = 15) and the control group (n = 15).
METHODS: Participants of the experimental group received afferent electrical stimulation with mirror therapy, and participants of the control group received sham afferent electrical stimulation with sham mirror therapy for 60 minutes per day, 5 days per week, for 4 weeks. Motor function was measured using a handheld dynamometer and the Modified Ashworth Scale, balance was measured using the Berg Balance Scale, and gait was assessed using the GAITRite at baseline and after 4 weeks.
RESULTS: The experimental group showed significant differences in muscle strength, Modified Ashworth Scale, and Berg Balance Scale results, and velocity, cadence, step length, stride length, and double support time of their gait (p <0.05) in the pre-post intervention comparison. Significant differences between the two groups in muscle strength, Berg Balance Scale, gait velocity, step length, and stride length (p <0.05) were found.
CONCLUSIONS: Mirror therapy with afferent electrical stimulation may effectively improve muscle strength and gait and balance abilities in hemiplegic stroke survivors.
CLINICAL REHABILITATION IMPACT: Afferent electrical stimulation combined with mirror therapy can be used as an effective intervention to improve lower limb motor function, balance, and gait in chronic stroke survivors in clinical settings.

via Effect of afferent electrical stimulation with mirror therapy on motor function, balance, and gait in chronic stroke survivors: a randomized controlled trial – European Journal of Physical and Rehabilitation Medicine 2019 Mar 22 – Minerva Medica – Journals

, , , , ,

Leave a comment

[Abstract] Effects of Home-Based Versus Clinic-Based Rehabilitation Combining Mirror Therapy and Task-Specific Training for Patients With Stroke: A Randomized Crossover Trial

Abstract

OBJECTIVE:

We investigated the treatment effects of a home-based rehabilitation program compared with clinic-based rehabilitation in patients with stroke.

DESIGN:

A single-blinded, 2-sequence, 2-period, crossover-designed study.

SETTING:

Rehabilitation clinics and participant’s home environment.

PARTICIPANTS:

Individuals with disabilities poststroke.

INTERVENTIONS:

During each intervention period, each participant received 12 training sessions, with a 4-week washout phase between the 2 periods. Participants were randomly allocated to home-based rehabilitation first or clinic-based rehabilitation first. Intervention protocols included mirror therapy and task-specific training.

MAIN OUTCOME MEASURES:

Outcome measures were selected based on the International Classification of Functioning, Disability and Health. Outcomes of impairment level were the Fugl-Meyer Assessment, Box and Block Test, and Revised Nottingham Sensory Assessment. Outcomes of activity and participation levels included the Motor Activity Log, 10-meter walk test, sit-to-stand test, Canadian Occupational Performance Measure, and EuroQoL-5D Questionnaire.

RESULTS:

Pretest analyses showed no significant evidence of carryover effect. Home-based rehabilitation resulted in significantly greater improvements on the Motor Activity Log amount of use subscale (P=.01) and the sit-to-stand test (P=.03) than clinic-based rehabilitation. The clinic-based rehabilitation group had better benefits on the health index measured by the EuroQoL-5D Questionnaire (P=.02) than the home-based rehabilitation group. Differences between the 2 groups on the other outcomes were not statistically significant.

CONCLUSIONS:

The home-based and clinic-based rehabilitation groups had comparable benefits in the outcomes of impairment level but showed differential effects in the outcomes of activity and participation levels.

 

via Effects of Home-Based Versus Clinic-Based Rehabilitation Combining Mirror Therapy and Task-Specific Training for Patients With Stroke: A Randomized… – PubMed – NCBI

, , , , , , , ,

Leave a comment

[Abstract] No evidence of effectiveness of mirror therapy early after stroke: an assessor-blinded randomized controlled trial

The aim of this study was to investigate the efficacy of mirror therapy on upper-limb recovery in early post-stroke patients.

Assessor-blinded randomized controlled trial.

Inpatient rehabilitation clinic.

A total of 40 patients with upper-limb impairment due to a first-ever ischaemic or haemorrhagic stroke, within four weeks from the cerebrovascular accident.

The intervention group received mirror therapy, while the control group received sham therapy. During mirror therapy, patients’ sound hand was reflected by a mirror. During sham therapy, an opaque surface replaced the mirror-reflecting surface. Both the mirror therapy and sham therapy groups practised their sound hand with exercises, ranging from the simple elbow flexion–extension to complex tasks (e.g. reaching and grasping). Mirror therapy and sham therapy were added to conventional rehabilitation.

Primary outcome includes Fugl–Meyer upper extremity scale. Secondary outcomes include action research arm test (ARAT) and functional independence measure (FIM) scale. Outcomes were measured at the beginning (T0) and end (T1) of the treatment.

At baseline, both groups (sham therapy vs. mirror therapy; mean (SD)) were comparable for Fugl–Meyer (30.9 (23.9) vs. 28.5 (21.8)), ARAT (25.1 (25.5) vs. 23.5 (24)) and FIM (71.0 (20.6) vs. 72.9 (17.8)) scores. At the end of the treatment, both groups significantly improved in the Fugl–Meyer (40.6 (21.3) vs. 38.3 (23.4)), ARAT (31.9 (23.0) vs. 30 (24.1)) and FIM (100.3 (21.9) vs. 99.4 (22.6)) scores. However, at T1, no significant difference was observed between the sham therapy and mirror therapy groups, neither for the Fugl–Meyer, nor for ARAT and FIM scores.

Compared with sham therapy, mirror therapy did not add additional benefit to upper-limb recovery early after stroke.

via No evidence of effectiveness of mirror therapy early after stroke: an assessor-blinded randomized controlled trial – Paola Antoniotti, Laura Veronelli, Antonio Caronni, Alessia Monti, Evdoxia Aristidou, Maria Montesano, Massimo Corbo, 2019

, , , , , ,

Leave a comment

[Abstract] Mirror therapy for improving lower limb motor function and mobility after stroke: A systematic review and meta-analysis.

Abstract

BACKGROUND:

Mirror therapy has been proposed as an effective intervention for lower limb rehabilitation post stroke.

RESEARCH QUESTION:

This systematic review with meta-analysis examined if lower limb mirror therapy improved the primary outcome measures of muscle tone and motor function and the secondary outcome measures balance characteristics, functional ambulation, walking velocity, passive range of motion (PROM) for ankle dorsiflexion and gait characteristics in patients with stroke compared to other interventions.

METHODS:

Standardised mean differences (SMD) and mean differences (MD) were used to assess the effect of mirror therapy on lower limb functioning.

RESULTS:

Nine studies were included in the review. Among the primary outcome measures there was evidence of a significant effect of mirror therapy on motor function compared with sham and non-sham interventions (SMD 0.54; 95% CI 0.24-0.93). Furthermore, among the secondary outcome measures there was evidence of a significant effect of mirror therapy for balance capacity (SMD -0.55; 95% CI -1.01 to -0.10), walking velocity (SMD 0.71; 95% CI 0.35-1.07), PROM for ankle dorsiflexion (SMD 1.20; 95% CI 0.71-1.69) and step length (SMD 0.56; 95% CI -0.00 to 1.12).

SIGNIFICANCE:

The results indicate that using mirror therapy for the treatment of certain lower limb deficits in patients with stroke may have a positive effect. Although results are somewhat positive, overly favourable interpretation is cautioned due to methodological issues concerning included studies.

via Mirror therapy for improving lower limb motor function and mobility after stroke: A systematic review and meta-analysis. – PubMed – NCBI

, , , , , ,

Leave a comment

[Abstract] EXOPINCH – A Robotic Mirror Therapy System for Hand Rehabilitation

Abstract

Introduction ExoPinch is a robotic mirror therapy system for hand rehabilitation, focusing to increase the corticospinal excitability for the patients with hemiparesis. We propose that specific type of visual stimuli may be implemented in the action observation treatment to have a positive additional impact by activating the mirror neuron system (MNS) in premotor cortex. Recently, mirror therapy (MT) has been used as an alternative treatment for stroke of upper and lower limbs. In MT, the patient places the intact limb on the reflective side of a mirror and the non-intact limb on the non-reflective side of the mirror. Observation of the healthy limb’s reflection gives the illusion that the affected limb is functioning as instructed [1]. The underlying mechanism of the MT of stroke patients has mainly been related to the activation of the neurons with mirror-like properties. They were first discovered in the macaque monkey ventral premotor area F5 [2]. These mirror neurons discharge both when a particular action is done by an individual and when that same action done by another individual is observed. MT together with robotic assistive devices in the field of rehabilitation has led researchers to the robotics neuro-rehabilitation [3] and robots are particularly suitable for the application of motor learning principles to neurorehabilitation [4]. In the robotic mirror therapy systems, the motion of the functional hand is tracked by the intact hand using the robotic system. Based on the properties of the MNS and its role in motor learning, this system has been activated as a novel approach for training in the rehabilitation of patients with motor impairment of the upper limb following stroke. In this study, unlike the conventional mirror therapy where the functional hand motion is observed through a mirror, selected motions which provide higher activation for the mirror neuron system are observed through the prepared video streams aiming to improve the efficacy of the therapy. ExoPinch assists the patient’s index and thumb fingers to track the observed and imagined pinching actions. The selected motions are determined by the experiments on healthy subjects. In general, MNS is supposed to decode the kinematics of the observed motion. During the experiments, it is seen that the observed actions that include kinetic features (imposing force or torque) also increase the MNS activity. Therefore, the selected motions for the robotic mirror therapy system include features enforcing the kinetics, as well. This approach is supported by the motor learning principles where the kinematic and kinetic aspects are both concerned [6]. Methods ExoPinch is an exoskeletal type of rehabilitation robot. The index and thumb fingers are the parts of fully-actuated mechanisms with 2 degrees of actuation and 1 degree of actuation respectively. The exoskeleton mechanism of ExoPinch is synthesized using genetic algorithm over a multiobjective objective function. The mechanism design is based on the kinematic synthesis and the optimization of the transmission angles during the pinching motion. Dynamical models are built in MATLAB and Simechanics. Passive joint torques of the index and thumb fingers with spasticity are modeled as well to introduce the resistances to the motion. 10 healthy volunteers participated in this study. In the experiments, the suppression (desynchronization) in mu band (8-12 Hz) power as an index of the human mirror neuron system (MNS) [7] was studied while subjects observed object-directed hand actions with varying kinetics and kinematics contexts: squeezing a hard and a soft spring; grasping a long and a short stick, Fig.1. Our main purpose was to explore whether observation of any of these actions may have a relatively strong effect on MNS activity. The activation of mirror neurons in premotor cortex during action observation plays a crucial role in observational learning [5],[8] and rehabilitation is a motor relearning process [6]. Therefore, the recruitment of MNS in this respect with action observation might provide an effective neurorehabilitative program for patients with strok that may lead to a personal optimal therapy in the future. Figure 1. Video library elements imposing kinetic and kinematic features Electroencephalography (EEG) method was used to investigate the activity of the MNS. EEG data were recorded continuously (bandpass, 0.1-100 Hz; sampling rate, 250 Hz) with the 16 channel 32-bit A/D converter using OpenBCI. UltraCortex Mark 2 dry electrode headset was used conforming international 10-20 electrode placement. EEG data were processed offline using EEGLAB. The mean mu (8-12 Hz) band power values (in dB) were extracted at a number of frontal (F7, F8), central (C3, C4) and parietal (P3, P4) channels since these regions almost exclusively included regions that have been associated with the MNS in the literature. Event Related Spectral Perturbation (ERSP) method was used for analyzing the mirror neuron activity in time-frequency domain. A two-way repeated measures of ANOVA revealed the main effect of video stimuli of squeezing soft/hard springs, at the frontal channels close to ventral premotor cortex area of the brain. These results showed that the observed actions imposing kinetic features can increase the MNS activity. Therefore, the selected motions to be observed by the patients will include the features that impose the kinetics, as well, aiming to improve the efficacy of the therapy.

via (PDF) EXOPINCH-A Robotic Mirror Therapy System for Hand Rehabilitation

 

, , , , , , , , , , ,

Leave a comment

[Abstract] Effects of Home-Based Versus Clinic-Based Rehabilitation Combining Mirror Therapy and Task-Specific Training for Patients With Stroke: A Randomized Crossover Trial

Abstract

Objective

We investigated the treatment effects of a home-based rehabilitation program compared with clinic-based rehabilitation in patients with stroke.

Design

A single-blinded, 2-sequence, 2-period, crossover-designed study.

Setting

Rehabilitation clinics and participant’s home environment.

Participants

Individuals with disabilities poststroke.

Interventions

During each intervention period, each participant received 12 training sessions, with a 4-week washout phase between the 2 periods. Participants were randomly allocated to home-based rehabilitation first or clinic-based rehabilitation first. Intervention protocols included mirror therapy and task-specific training.

Main Outcome Measures

Outcome measures were selected based on the International Classification of Functioning, Disability and Health. Outcomes of impairment level were the Fugl-Meyer Assessment, Box and Block Test, and Revised Nottingham Sensory Assessment. Outcomes of activity and participation levels included the Motor Activity Log, 10-meter walk test, sit-to-stand test, Canadian Occupational Performance Measure, and EuroQoL-5D Questionnaire.

Results

Pretest analyses showed no significant evidence of carryover effect. Home-based rehabilitation resulted in significantly greater improvements on the Motor Activity Log amount of use subscale (P=.01) and the sit-to-stand test (P=.03) than clinic-based rehabilitation. The clinic-based rehabilitation group had better benefits on the health index measured by the EuroQoL-5D Questionnaire (P=.02) than the home-based rehabilitation group. Differences between the 2 groups on the other outcomes were not statistically significant.

Conclusions

The home-based and clinic-based rehabilitation groups had comparable benefits in the outcomes of impairment level but showed differential effects in the outcomes of activity and participation levels.

via Effects of Home-Based Versus Clinic-Based Rehabilitation Combining Mirror Therapy and Task-Specific Training for Patients With Stroke: A Randomized Crossover Trial – Archives of Physical Medicine and Rehabilitation

, , , , , , , , ,

Leave a comment

%d bloggers like this: