Archive for category Mirror therapy

[Abstract + References] A Mechatronic Mirror-Image Motion Device for Symmetric Upper-Limb Rehabilitation

Abstract

This paper presents an upper-limb rehabilitation device that provides symmetric bilateral movements with motion measurements using inertial sensors. Mirror therapy is one of widely used methods for rehabilitation of impaired side movements because voluntary movement of the unimpaired side facilitates reorganizational changes in the motor cortex. The developed upper-limb exoskeleton was equipped with two brushless DC motors that helped generate three axes of upper-limb movements corresponding to other arm movements that were measured using inertial sensors. In this study, inertial sensors were used to estimate the joint angles for three target upper-limb movements: elbow flexion and extension (flex/ext), wrist flex/ext, and forearm pronation and supination (pro/sup). Elbow flex/ext was performed by the actuator that was directly attached to the elbow joint. The actuation of the forearm pro/sup and wrist flex/ext shared one motor using a developed cable-driven mechanism, and two types of motion were selectively performed. We assessed the feasibility of the proposed mirror-image device with the accuracy and precision of the motion estimation and the actuation of joint movements. An individual could perform most upper-limb movements for activities of daily living using the proposed device.

References

1.
Moseley, L. G., Gallace, A., & Spence, C. (2008). Is mirror therapy all it is cracked up to be? Current evidence and future directions. Pain,138(1), 7–10.Google Scholar
2.
Hamzei, F., Läppchen, C. H., et al. (2012). Functional plasticity induced by mirror training: The mirror as the element connecting both hands to one hemisphere. Neurorehabilitation and neural repair,26(5), 484–496.CrossRefGoogle Scholar
3.
Michielsen, M. E., et al. (2011). Motor recovery and cortical reorganization after mirror therapy in chronic stroke patients: A phase II randomized controlled trial. Neurorehabilitation and neural repair,25(3), 223–233.CrossRefGoogle Scholar
4.
Kim, W., Beom, J., et al. (2018). Reliability and validity of attitude and heading reference system motion estimation in a novel mirror therapy system. Journal of Medical and Biological Engineering,38(3), 370–377.CrossRefGoogle Scholar
5.
Nam, H. S., Koh, S., et al. (2017). Recovery of proprioception in the upper extremity by robotic mirror therapy: A clinical pilot study for proof of concept. Journal of Korean Medical Science,32(10), 1568–1575.CrossRefGoogle Scholar
6.
Samuelkamaleshkumar, S., Reethajanetsureka, S., et al. (2014). Mirror therapy enhances motor performance in the paretic upper limb after stroke: A pilot randomized controlled trial. Archives of Physical Medicine and Rehabilitation,95(11), 2000–2005.CrossRefGoogle Scholar
7.
Yue, G., & Cole, K. J. (1992). Strength increases from the motor program: Comparison of training with maximal voluntary and imagined muscle contractions. Journal of Neurophysiology,67(5), 1114–1123.CrossRefGoogle Scholar
8.
Babaiasl, M., Mahdioun, S. H., et al. (2016). A review of technological and clinical aspects of robot-aided rehabilitation of upper-extremity after stroke. Disability and Rehabilitation: Assistive Technology,11(4), 263–280.Google Scholar
9.
Moon, S. B., et al. (2017). Gait analysis of hemiplegic patients in ambulatory rehabilitation training using a wearable lower-limb robot: A pilot study. International Journal of Precision Engineering and Manufacturing,18(12), 1773–1781.CrossRefGoogle Scholar
10.
Dobkin, B. H. (2004). Strategies for stroke rehabilitation. The Lancet Neurology,3(9), 528–536.CrossRefGoogle Scholar
11.
Gillen, G. (2015). Stroke rehabilitation: A function-based approach. Amsterdam: Elsevier.Google Scholar
12.
Lessard, S., Pansodtee, P., et al. (2018). A soft exosuit for flexible upper-extremity rehabilitation. IEEE Transactions on Neural Systems and Rehabilitation Engineering,26(8), 1604–1617.CrossRefGoogle Scholar
13.
Colombo, R., & Sanguineti, V. (2018). Assistive controllers and modalities for robot-aided neurorehabilitation. In Rehabilitation robotics (pp. 63–74). Academic Press.Google Scholar
14.
Ercolini, G., Trigili, E., et al. (2019). A novel generation of ergonomic upper-limb wearable robots: Design challenges and solutions. Robotica,37(12), 2056–2072.CrossRefGoogle Scholar
15.
Heo, P., Gu, G., et al. (2012). Current hand exoskeleton technologies for rehabilitation and assistive engineering. Int. J. Precis. Eng. Manuf.,13(5), 807–824.CrossRefGoogle Scholar
16.
Muellbacher, W., Ziemann, U., et al. (2001). Role of the human motor cortex in rapid motor learning. Experimental Brain Research,136(4), 431–438.CrossRefGoogle Scholar
17.
Perry, J. C., Rosen, J., & Burns, S. (2007). Upper-limb powered exoskeleton design. IEEE/ASME Transactions on Mechatronics,12(4), 408–417.CrossRefGoogle Scholar
18.
Hu, X., Yao, C., & Soh, G. S. (2015). Performance evaluation of lower limb ambulatory measurement using reduced Inertial Measurement Units and 3R gait model. In IEEE international conference on rehabilitation robotics (ICORR) (549–554).Google Scholar
19.
Liao, W. W., et al. (2012). Effects of robot-assisted upper limb rehabilitation on daily function and real-world arm activity in patients with chronic stroke: A randomized controlled trial. Clinical Rehabilitation,26(2), 111–120.MathSciNetCrossRefGoogle Scholar
20.
Park, K., Lee, D. J., et al. (2012). Development of mirror image motion system with sEMG for shoulder rehabilitation of post-stroke hemiplegic patients. International Journal of Precision Engineering and Manufacturing,13(8), 1473–1479.CrossRefGoogle Scholar
21.
Lum, P. S., Burgar, C. G., et al. (2006). MIME robotic device for upper-limb neurorehabilitation in subacute stroke subjects: A follow-up study. Journal of Rehabilitation Research and Development,43(5), 631.CrossRefGoogle Scholar
22.
French, J. A., Rose, C. G., & O’malley, M. K. (2014). System characterization of MAHI Exo-II: a robotic exoskeleton for upper extremity rehabilitation. In Proceedings of the ASME dynamic systems and control conference. NIH Public Access.Google Scholar
23.
KATS:The Report of the anthropometry survey, Korea, KATS Report, 2010.Google Scholar
24.
Perreault, S., & Gosselin, C. M. (2008). Cable-driven parallel mechanisms: Application to a locomotion interface. Journal of Mechanical Design,130(10), 102301.CrossRefGoogle Scholar
25.
Abdolshah, S., & Rosati, G. (2017). Improving performance of cable robots by adaptively changing minimum tension in cables. International Journal of Precision Engineering and Manufacturing,18(5), 673–680.CrossRefGoogle Scholar
26.
Cho, G. R., Kim, S. T., & Kim, J. (2018). Backlash compensation for accurate control of biopsy needle manipulators having long cable transmission. International Journal of Precision Engineering and Manufacturing,19(5), 675–684.CrossRefGoogle Scholar
27.
Lee, C., & Park, S. (2018). Estimation of unmeasured golf swing of arm based on the swing dynamics. Int. J. Precis. Eng. Manuf.,19(5), 745–751.CrossRefGoogle Scholar
28.
Lundin, T. M., Grabiner, M. D., & Jahnigen, D. W. (1995). On the assumption of bilateral lower extremity joint moment symmetry during the sit-to-stand task. Journal of Biomechanics,28(1), 109–112.CrossRefGoogle Scholar
29.
El-Gohary, M., & McNames, J. (2012). Shoulder and elbow joint angle tracking with inertial sensors. IEEE Transactions on Biomedical Engineering,59(9), 2635–2641.CrossRefGoogle Scholar
30.
Cutti, A. G., Paolini, G., et al. (2005). Soft tissue artefact assessment in humeral axial rotation. Gait & Posture,21(3), 341–349.CrossRefGoogle Scholar

 

via A Mechatronic Mirror-Image Motion Device for Symmetric Upper-Limb Rehabilitation | SpringerLink

 

, , , , , , ,

Leave a comment

[Abstract] Comparison of Task Oriented Approach and Mirror Therapy for Poststroke Hand Function Rehabilitation

Abstract

Objective: The purpose of this study was to compare the effectiveness of task-oriented therapy and mirror therapy on improving hand function in post-stroke patients.
Methods: Total subjects 30 were randomly divided into two groups: the task-oriented group (15 patients) and the mirror therapy group (15 patients). The task-oriented group underwent task-oriented training for 45 mins a day for 5 days a week for 4 weeks. The mirror therapy group underwent a mirror therapy program under the same schedule as
task-oriented therapy. The manual dexterity and motor functioning of the hand were evaluated before the intervention and 4 weeks after the intervention by using FMA (Fugl-Meyer assessment) and BBT (Box & Block test).
Results: Hand function of all patients increased significantly after the 4-week intervention program on the evaluation of motor function and manual dexterity by FMA and BBT in both the groups of Task-Oriented approach and Mirror therapy, but Group A Task-oriented approach improved more significantly when compared to Group B Mirror therapy.
Conclusion: The treatment effect was more in patients who received a Task-Oriented approach compared to Mirror therapy. These findings suggest that the Task-Oriented approach was more effective in post stoke hand function rehabilitation.

 Download Full Text PDF

, , , , , , , ,

Leave a comment

[Abstract] Timing-dependent interaction effects of tDCS with mirror therapy on upper extremity motor recovery in patients with chronic stroke: A randomized controlled pilot study

Highlights

  • The priming effect of dual tDCS was important to facilitate motor recovery in combination with mirror therapy in stroke.

Abstract

This study was a randomized, controlled pilot trial to investigate the timing-dependent interaction effects of dual transcranial direct current stimulation (tDCS) in mirror therapy (MT) for hemiplegic upper extremity in patients with chronic stroke. Thirty patients with chronic stroke were randomly assigned to three groups: tDCS applied before MT (prior-tDCS group), tDCS applied during MT (concurrent-tDCS group), and sham tDCS applied randomly prior to or concurrent with MT (sham-tDCS group). Dual tDCS at 1 mA was applied bilaterally over the ipsilesional M1 (anodal electrode) and the contralesional M1 (cathodal electrode) for 30 min. The intervention was delivered five days per week for two weeks. Upper extremity motor performance was measured using the Fugl-Meyer Assessment-Upper Extremity (FMA-UE), the Action Research Arm Test (ARAT), and the Box and Block Test (BBT). Assessments were administered at baseline, post-intervention, and two weeks follow-up. The results indicated that concurrent-tDCS group showed significant improvements in the ARAT in relation to the prior-tDCS group and sham-tDCS group at post-intervention. Besides, a trend toward greater improvement was also found in the FMA-UE for the concurrent-tDCS group. However, no statistically significant difference in the FMA-UE and BBT was identified among the three groups at either post-intervention or follow-up. The concurrent-tDCS seems to be more advantageous and time-efficient in the context of clinical trials combining with MT. The timing-dependent interaction factor of tDCS to facilitate motor recovery should be considered in future clinical application.

via Timing-dependent interaction effects of tDCS with mirror therapy on upper extremity motor recovery in patients with chronic stroke: A randomized controlled pilot study – Journal of the Neurological Sciences

, , , , , , , , , ,

Leave a comment

[VIDEO] Mirror Therapy Combined With Electrical Stimulation Using SaeboStim Micro – YouTube

https://www.saebo.com

Saebo, Inc. is a medical device company primarily engaged in the discovery, development and commercialization of affordable and novel clinical solutions designed to improve mobility and function in individuals suffering from neurological and orthopedic conditions. With a vast network of Saebo-trained clinicians spanning six continents, Saebo has helped over 100,000 clients around the globe achieve a new level of independence.

In 2001, two occupational therapists had one simple, but powerful goal – to provide neurological clients access to transformative and life changing products.

At the time, treatment options for improving arm and hand function were limited. The technology that did exist was expensive and inaccessible for home use. With inadequate therapy options often leading to unfavorable outcomes, health professionals routinely told their clients that they have “reached a plateau” or “no further gains can be made”. The founders believed that it was not the clients who had plateaued, but rather their treatment options had plateaued.

Saebo’s commitment – “No Plateau in Sight” – was inspired by this mentality; and the accessible, revolutionary solutions began.

Saebo’s revolutionary product offering was based on the latest advances in rehabilitation research. From the SaeboFlex which allows clients to incorporate their hand functionally in therapy or at home, to the SaeboMAS, an unweighting device used to assist the arm during daily living tasks and exercise training, “innovation” and “affordability” can now be used in the same sentence.

Over the last ten years, Saebo has grown into a leading global provider of rehabilitative products created through the unrelenting leadership and the strong network of clinicians around the world. As we celebrate our history and helping more than 100,000 clients regain function, we are growing this commitment to affordability and accessibility even further by making our newest, most innovative products more accessible than ever.

via Mirror Therapy Combined With Electrical Stimulation Using SaeboStim Micro – YouTube

, , , , , , , ,

Leave a comment

[Abstract] THE EFFICACY OF MIRROR THERAPY IN ADDITION TO CONVENTIONAL THERAPY VERSUS CT ALONE IN THE ACUTE AND CHRONIC STAGES OF STROKE BASED ON THE ACTION RESEARCH AND ARM TEST: A META-ANALYSIS – Full Text PDF

ABSTRACT

Background: Stroke is one of the leading causes of long term disability for adults and costs the healthcare system 34 billion dollars annually.1-3 Directly after a stroke up to 85% of survivors have an impairment of the upper extremity.4 Previous research has shown mirror therapy (MT) is beneficial for improving function in the upper extremity.5-16

Objective: The objective of this meta-analysis was to determine the efficacy of MT in addition to conventional therapy (CT) versus CT alone in the different stages of stroke rehabilitation including the acute and chronic. 5,7-17

Methods: A literature review was conducted in the fall of 2018 and consisted of the following databases: Pubmed, Medline, and CINAHL. The studies were assessed and reviewed on the specified inclusion/exclusion criteria. A  fixed effect size model of 2 groups was used for the included studies to generate the Q-value, P-value, effect size, and confidence interval.

Results: The results favored MT in addition to CT as compared to CT alone in all stages of stroke rehabilitation. MT in addition to CT used in the acute stage of stroke rehabilitation was favored over MT in addition to CT used in the chronic stage of stroke rehabilitation.

Conclusion: This meta-analysis supports current literature that MT in addition to CT is more effective in improving upper extremity function than CT alone in all stages of stroke rehabilitation. The minimal to moderate effect found in the acute stage of stroke rehabilitation suggests that MT in addition to CT is more beneficial in the acute stage of stroke rehabilitation as compared to use in the chronic stage of stroke rehabilitation. The evidence should, however, be interpreted with caution until further studies are included.

Aaron Larson
May 2019

Full Text PDF

, , , , , , ,

Leave a comment

[Abstract] Advantages of virtual reality in the rehabilitation of balance and gait: Systematic review

Abstract

BACKGROUND:

Virtual reality (VR) has emerged as a therapeutic tool facilitating motor learning for balance and gait rehabilitation. The evidence, however, has not yet resulted in standardized guidelines. The aim of this study was to systematically review the application of VR-based rehabilitation of balance and gait in 6 neurologic cohorts, describing methodologic quality, intervention programs, and reported efficacy.

METHODS:

This study follows the Preferred Reporting Items for Systematic Reviews and Meta-Analyses. VR-based treatments of Parkinson disease, multiple sclerosis, acute and chronic poststroke, traumatic brain injury, and cerebral palsy were researched in PubMed and Scopus, including earliest available records. Therapeutic validity (CONTENT scale) and risk of bias in randomized controlled trials (RCT) (Cochrane Collaboration tool) and non-RCT (Newcastle-Ottawa scale) were assessed.

RESULTS:

Ninety-seven articles were included, 68 published in 2013 or later. VR improved balance and gait in all cohorts, especially when combined with conventional rehabilitation. Most studies presented poor methodologic quality, lacked a clear rationale for intervention programs, and did not utilize motor learning principles meticulously. RCTs with more robust methodologic designs were widely recommended.

CONCLUSION:

Our results suggest that VR-based rehabilitation is developing rapidly, has the potential to improve balance and gait in neurologic patients, and brings additional benefits when combined with conventional rehabilitation. This systematic review provides detailed information for developing theory-driven protocols that may assist overcoming the observed lack of argued choices for intervention programs and motor learning implementation and serves as a reference for the design and planning of personalized VR-based treatments.

 

via Advantages of virtual reality in the rehabilitation of balance and gait: Systematic review. – PubMed – NCBI

, , ,

Leave a comment

[Abstract] How to perform mirror therapy after stroke? Evidence from a meta-analysis

Abstract

BACKGROUND:

A recently updated Cochrane review for mirror therapy (MT) showed a high level of evidence in the treatment of hemiparesis after stroke. However, the therapeutic protocols used in the individual studies showed significant variability.

OBJECTIVE:

A secondary meta-analysis was performed to detect which parameters of these protocols may influence the effect of MT for upper limb paresis after stroke.

METHODS:

Trials included in the Cochrane review, which published data for motor function / impairment of the upper limb, were subjected to this analysis. Trials or trial arms that used MT as group therapy or combined it with electrical or magnetic stimulation were excluded. The analysis focused on the parameters mirror size, uni- or bilateral movement execution, and type of exercise. Data were pooled by calculating the total weighted standardized mean difference and the 95% confidence interval.

RESULTS:

Overall, 32 trials were included. The use of a large mirror compared to a small mirror showed a higher effect on motor function. Movements executed unilaterally showed a higher effect on motor function than a bilateral execution. MT exercises including manipulation of objects showed a minor effect on motor function compared to movements excluding the manipulation of objects. None of the subgroup differences reached statistical significance.

CONCLUSIONS:

The results of this analysis suggest that the effects on both motor function and impairment of the affected upper limb depend on the therapy protocol. They furthermore indicate that a large mirror, unilateral movement execution and exercises without objects may be parameters that enhance the effects of MT for improving motor function after stroke.

 

via How to perform mirror therapy after stroke? Evidence from a meta-analysis. – PubMed – NCBI

, , , , , , , , , ,

Leave a comment

[ARTICLE] Mirror Therapy Using Gesture Recognition for Upper Limb Function, Neck Discomfort, and Quality of Life After Chronic Stroke: A Single-Blind Randomized Controlled Trial – Full Text

Abstract

Background

Mirror therapy for stroke patients was reported to be effective in improving upper-extremity motor function and daily life activity performance. In addition, game-based virtual reality can be realized using a gesture recognition (GR) device, and various tasks can be presented. Therefore, this study investigated changes in upper-extremity motor function, quality of life, and neck discomfort when using a GR device for mirror therapy to observe the upper extremities reflected in the mirror.

Material/Methods

A total of 36 subjects with chronic stroke were randomly divided into 3 groups: GR mirror therapy (n=12), conventional mirror therapy (n=12), and control (n=12) groups. The GR therapy group performed 3D motion input device-based mirror therapy, the conventional mirror therapy group underwent general mirror therapy, and the control group underwent sham therapy. Each group underwent 15 (30 min/d) intervention sessions (3 d/wk for 5 weeks). All subjects were assessed by manual function test, neck discomfort score, and Short-Form 8 in pre- and post-test.

Results

Upper-extremity function, depression, and quality of life in the GR mirror therapy group were significantly better than in the control group. The changes of neck discomfort in the conventional mirror therapy and control groups were significantly greater than in the GR mirror therapy group.

Conclusions

We found that GR device-based mirror therapy is an intervention that improves upper-extremity function, neck discomfort, and quality of life in patients with chronic stroke.

Background

In patients with acute stroke that occurred >6 months previously, 85% have upper-limb disorders, and 55% to 75% have upper-limb disorders []. The upper-limb movement function is decreased due to weakening of upper-limb muscles, which is primarily caused by changes in the central nervous system and secondarily by weakness due to inactivity and reduced activity [,].

Activities of daily living are limited due to body dysfunction, and most stroke patients have limited social interaction; these disorders reduce the quality of life []. In addition, stroke patients may experience depression due to reduced motivation []. Depression results in loss of interest and joy, anxiety, fear, hostility, sadness, and anger, which negatively affect functional recovery and rehabilitation in stroke patients [].

Constraint-induced movement therapy, action observation training, and mirror therapy have been recently studied as therapies for upper-extremity motor function []. These interventions are used to increase the use of paralyzed limbs to overcome disuse syndromes, observe and imitate movement, and change the neural network involved in movement. Providing various tasks in upper-extremity rehabilitation is necessary and virtual reality is used as a method for providing various tasks [,].

Interventions using virtual reality require cognitive factors, such as judgment and memory, as the task progresses. It can use visual and auditory stimuli, and can induce interest and motivation, helping stroke patients to be mentally stable and motivated []. Gesture recognition (GR) is a topic that studies the reading of these movements using algorithms. These GR algorithms mainly focus on the movement of arm, hands, eyes, legs, and other body parts. The main idea is to capture body movements using capture devices and send the acquired data to a computer []. A remarkable example is shown in physical rehabilitation, where the low-cost hardware and algorithms accomplish outstanding results in therapy of patients with mobility issues. A 3D motion input device is required for upper-body rehabilitation in virtual reality. The Leap motion controller, a GR input device, has been recently released, which monitors hand and finger movements and reflects them on the monitor []. In addition, game-based virtual reality can be realized using a GR device, and various tasks can be presented.

Mirror therapy has been used as a therapeutic intervention for phantom pain in amputees. The painful and paralyzed body parts are covered with a mirror. The mirror is placed in the center of the body, and the movement of the paralyzed body is viewed through the mirror. The patient has a visual illusion that the paralyzed side is normally moving []. Mirror therapy for stroke patients was reported to be effective in upper-extremity motor function and daily life activity performance []. However, conventional mirror therapy methods require high concentration and can become tedious, making active participation difficult []. In addition, conventional mirror therapy differs from the actual situation wherein a mirror positioned at the center of the body should be viewed with the head sideways. Because patients are in a suboptimal posture, they may have neck discomfort after mirror therapy. The body has muscle strength disproportion when maintaining poor posture for a long time. This results in inadequate tension on adjacent muscles and joints, resulting in movement restriction, reduced flexibility, pain, and changes in bone and soft tissue [].

This study investigated the effect on upper-extremity motor function, quality of life, and neck discomfort by using GR device mirror therapy in patients with chronic stroke, and evaluated the efficacy of this technique.

[…]

 

Continue —>  Mirror Therapy Using Gesture Recognition for Upper Limb Function, Neck Discomfort, and Quality of Life After Chronic Stroke: A Single-Blind Randomized Controlled Trial

An external file that holds a picture, illustration, etc.Object name is medscimonit-25-3271-g002.jpg

Figure 2
(A) Gesture recognition mirror therapy group, (B) Conventional mirror therapy, (C) Control group.

, , , , , , , , ,

Leave a comment

[Abstract + References] Investigation of the effects of mirror therapy on the spasticity, motor function and functionality of impaired upper limbs in chronic stroke patients

Background/Aims

Strokes lead to different levels of disability. During the chronic stage, hemiparesis, spasticity and motor deficits may cause loss of functional independence. Mirror therapy aims to reduce deficits and increase functional recovery of the impaired upper limb. This study aimed to evaluate the effects of mirror therapy on upper limb spasticity and motor function, as well as its impact on functional independence in chronic hemiparetic patients.

Methods

In this quasi-experimental study, eight chronic hemiparetic patients (age 55.5 ± 10.8 years) were assessed to determine their degree of spasticity (Modified Ashworth Scale), level of upper limb motor function (Fugl-Meyer Assessment) and functionality (Functional Independence Measure). All participants received 12 sessions of mirror therapy delivered three times per week, over a period of 4 weeks. Participants were re-evaluated post-intervention and these results were compared to their pre-intervention scores to determine the impact of mirror therapy.

Results

A decrease in spasticity was observed, with significant improvements in shoulder extensors (P=0.033) and a significant increase in motor function (P=0.002). The therapeutic protocol adopted did not have a significant effect on functional independence (P=0.105).

Conclusions

Mirror therapy led to improvements in upper limb spasticity and motor function in chronic hemiparetic stroke patients. No effects on functional independence were observed. Further research with a larger number of patients is needed to provide more robust evidence of the benefits of mirror therapy in chronic hemiparetic stroke patients.

 

References

via Investigation of the effects of mirror therapy on the spasticity, motor function and functionality of impaired upper limbs in chronic stroke patients | International Journal of Therapy and Rehabilitation

, , , , , , , , , ,

Leave a comment

[Abstract + References] Robotic hand system design for mirror therapy rehabilitation after stroke

Abstract

This paper developed a robotics-assisted device for the stroke patients to perform the hand rehabilitation. Not only the system can perform passive range of motion exercises for impaired hand, but also can perform mirror therapy for pinching and hand grasping motions under the guidance of the posture sensing glove worn on patient’s functional hand. Moreover, the framework and operation flow of the developed system has been and delineated in this paper. Practical results with human subjects are shown in this paper to examine the usability of proposed system, trial experiment of advance mirror therapy that use the proposed system to interact with realities is also presented in this paper.

References

  1. Bruder N (2010) Faculty of 1000 evaluation for Robot assisted therapy for long-term upper-limb impairment after stroke. F1000—post-publication peer review of the biomedical literatureGoogle Scholar
  2. Bullock IM et al (2012) Assessing assumptions in kinematic hand models: a review. In: 4th IEEE RAS/EMBS international conference on biomedical robotics and biomechatronicsGoogle Scholar
  3. Burgar CG et al (2011) Robot-assisted upper-limb therapy in acute rehabilitation setting following stroke: Department of Veterans Affairs multisite clinical trial. J Rehabil Res Dev 48:445–458CrossRefGoogle Scholar
  4. Dohle C et al (2009) Mirror therapy promotes recovery from severe hemiparesis: a randomized controlled trial. Neurorehabil Neural Repair 23(3):209–217CrossRefGoogle Scholar
  5. Emerson et al (2016) Control Implementation for an Integrated robotic and virtual mirror therapy system for stroke rehabilitation. In 2016 IEEE 14th international workshop on advanced motion control (AMC)Google Scholar
  6. Hesse S et al (2006) Machines to support motor rehabilitation after stroke 10 years of experience in Berlin. J Rehabil Res Dev 53(5):671–678CrossRefGoogle Scholar
  7. Huang VS, Krakauer JW (2009) Robotic neurorehabilitation: a computational motor learning perspective. J NeuroEng Rehabil 5(6):5CrossRefGoogle Scholar
  8. Johansson BB (2000) Brain plasticity and stroke rehabilitation the Willis lecture. Stroke 31(1):223–230CrossRefGoogle Scholar
  9. Krebs HI et al (2008) A paradigm shift for rehabilitation robotics. IEEE Eng Med Biol Magn 27(4):61–70CrossRefGoogle Scholar
  10. Lo AC et al (2010) Robot-assisted therapy for long-term upper-limb impairment after stroke. New Engl J Med 362(19):1772–1783CrossRefGoogle Scholar
  11. Lum P, Burgar CG et al (2005) The mime robotic system for upper-limb neuro-rehabilitation: results from a clinical trial in subacute stroke. In: 9th International conference on rehabilitation robotics, pp 511–514Google Scholar
  12. Mendis S (2013) Stroke disability and rehabilitation of stroke: World Health Organization perspective. Int J Stroke 8(1):3–4CrossRefGoogle Scholar
  13. Morris C et al (2017) Low-cost assistive robot for mirror therapy rehabilitation. In: Proceedings of the 2017 IEEE international conference on robotics and biomimetics, pp 2057–2062Google Scholar
  14. Mukherjee D, Patil CG (2011) Epidemiology and the global burden of stroke. World Neurosurg 76(6):S85–S90CrossRefGoogle Scholar
  15. Narang G et al (2013) Use of unobtrusive human-machine interface for rehabilitation of stroke victims through robot assisted mirror therapy. In: Technologies for practical robot applications (TePRA), 2013 IEEE international conference on, pp 1–6Google Scholar
  16. Pérez-Cruzado D et al (2016) Systematic review of mirror therapy compared with conventional rehabilitation in upper extremity function in stroke survivors. Aust Occup Ther J 64(2):91–112CrossRefGoogle Scholar
  17. Pu S-W et al (2016) Anthropometry-based structural design of a hand exoskeleton for rehabilitation. In: 23rd International conference on mechatronics and machine vision in practice (M2VIP)Google Scholar
  18. Shahbazi M et al (2014) A framework for supervised robotics-assisted mirror rehabilitation therapy. In: 2014 IEEE/RSJ international conference on intelligent robots and systems (IROS 2014)Google Scholar
  19. Summers JJ et al (2007) Bilateral and unilateral movement training on upper limb function in chronic stroke patients: a TMS study. J Neurol Sci 252(1):76–82CrossRefGoogle Scholar
  20. Sydney Hand Surgery Pty Ltd (2017) Sydney hand surgery clinic. Available: http://www.sydneyhandsurgeryclinic.com.au/anatomy.asp. Accessed 2017
  21. Takeuchi N, Izumi S-I (2013) Rehabilitation with poststroke motor recovery: a review with a focus on neural plasticity. Stroke Res Treat 2013:1–13CrossRefGoogle Scholar

via Robotic hand system design for mirror therapy rehabilitation after stroke | SpringerLink

, , , , , , ,

Leave a comment

%d bloggers like this: