Archive for category Paretic Hand

[Abstract] Hand strengthening exercises in chronic stroke patients: Dose-response evaluation using electromyography


Study Design


Purpose of the Study

This study evaluates finger flexion and extension strengthening exercises using elastic resistance in chronic stroke patients.


Eighteen stroke patients (mean age: 56.8 ± 7.6 years) with hemiparesis performed 3 consecutive repetitions of finger flexion and extension, using 3 different elastic resistance levels (easy, moderate, and hard). Surface electromyography was recorded from the flexor digitorum superficialis (FDS) and extensor digitorum (ED) muscles and normalized to the maximal electromyography of the non-paretic arm.


Maximal grip strength was 39.2 (standard deviation: 12.5) and 7.8 kg (standard deviation: 9.4) in the nonparetic and paretic hand, respectively. For the paretic hand, muscle activity was higher during finger flexion exercise than during finger extension exercise for both ED (30% [95% confidence interval {CI}: 19-40] vs 15% [95% CI: 5-25] and FDS (37% [95% CI: 27-48] vs 24% [95% CI: 13-35]). For the musculature of both the FDS and ED, no dose-response association was observed for resistance and muscle activity during the flexion exercise (P > .05).


The finger flexion exercise showed higher muscle activity in both the flexor and extensor musculature of the forearm than the finger extension exercise. Furthermore, greater resistance did not result in higher muscle activity during the finger flexion exercise. The present results suggest that the finger flexion exercise should be the preferred strengthening exercise to achieve high levels of muscle activity in both flexor and extensor forearm muscles in chronic stroke patients. The finger extension exercise may be performed with emphasis on improving neuromuscular control.

Level of Evidence


Source: Hand strengthening exercises in chronic stroke patients: Dose-response evaluation using electromyography – Journal of Hand Therapy

, , , , , , , , , ,

Leave a comment

[WEB SITE] Stroke rehabilitation device lets the patient do the shocking


When a person’s arm has become paralyzed due to a stroke, therapists often try to get it moving again using what’s known as functional electrical stimulation – this involves delivering electric shocks to the arm, causing its muscles to move. Studies have shown, however, that it works better when the patient is in charge of delivering those shocks themselves. A new device lets them do so, and it has met with promising results.

The system was developed by Intento, a company affiliated with Switzerland’s EPFL research institute. It consists of three parts: electrodes that the patient places on their arm, a controller that is operated by their “good” hand, and a tablet running custom software.

The therapist starts by selecting a desired arm movement on the tablet, and then loading it into the controller. A display on the tablet’s screen then shows the patient where the electrodes should be placed. Once those are attached, the patient sets about using the controller to deliver shocks to their arm muscles, resulting in the targeted movement – this could be something like pressing a button or picking up an object.

Ideally, once the action has been repeated enough times, the muscles will be “trained” and it will be possible for the patient to perform the movement without any external stimulation.

In a clinical trial performed at Lausanne University Hospital, 11 severely stroke-paralyzed patients – for whom other therapies hadn’t worked – used for the device for 1.5-hour daily sessions, over a course of 10 days. A claimed 70 percent of them subsequently “showed a significant improvement in their motor functions,” as opposed to just 30 percent who were undergoing conventional occupational therapy.

A larger clinical study is now being planned, after which the device will hopefully be commercialized. The research is described in a paper that was recently published in the journal Archives of Physical Medicine and Rehabilitation.

Source: EPFL

Source: Stroke rehabilitation device lets the patient do the shocking


, , , , , , ,

Leave a comment

[Abstract] Electrically Assisted Movement Therapy in Chronic Stroke Patients With Severe Upper Limb Paresis: A Pilot, Single-Blind, Randomized Crossover Study  



To evaluate the effects of electrically assisted movement therapy (EAMT) in which patients use functional electrical stimulation, modulated by a custom device controlled through the patient’s unaffected hand, to produce or assist task-specific upper limb movements, which enables them to engage in intensive goal-oriented training.


Randomized, crossover, assessor-blinded, 5-week trial with follow-up at 18 weeks.


Rehabilitation university hospital.


Patients with chronic, severe stroke (N=11; mean age, 47.9y) more than 6 months poststroke (mean time since event, 46.3mo).


Both EAMT and the control intervention (dose-matched, goal-oriented standard care) consisted of 10 sessions of 90 minutes per day, 5 sessions per week, for 2 weeks. After the first 10 sessions, group allocation was crossed over, and patients received a 1-week therapy break before receiving the new treatment.

Main Outcome Measures

Fugl-Meyer Motor Assessment for the Upper Extremity, Wolf Motor Function Test, spasticity, and 28-item Motor Activity Log.


Forty-four individuals were recruited, of whom 11 were eligible and participated. Five patients received the experimental treatment before standard care, and 6 received standard care before the experimental treatment. EAMT produced higher improvements in the Fugl-Meyer scale than standard care (P<.05). Median improvements were 6.5 Fugl-Meyer points and 1 Fugl-Meyer point after the experimental treatment and standard care, respectively. The improvement was also significant in subjective reports of quality of movement and amount of use of the affected limb during activities of daily living (P<.05).


EAMT produces a clinically important impairment reduction in stroke patients with chronic, severe upper limb paresis.

Source: Electrically Assisted Movement Therapy in Chronic Stroke Patients With Severe Upper Limb Paresis: A Pilot, Single-Blind, Randomized Crossover Study – Archives of Physical Medicine and Rehabilitation

, , , , , , , , , , , ,

Leave a comment

[ARTICLE] Impact of virtual reality games on psychological well-being and upper limb performance in adults with physical disabilities: A pilot study – Full Text PDF


Introduction: There is limited information regarding the effects of interactive virtual reality (VR) games on psychological and physical well-being among adults with physical disabilities. We aimed to examine the impact of VR games on psychological well-being, upper limb motor function and reaction time in adults with physical disabilities.

Methods: Fifteen participants completed the intervention using Wii VR games in this pilot study. Depressive, Anxiety and Stress Scales (DASS) and Capabilities of Upper Extremity (CUE) questionnaires were used to measure psychological well-being and upper limb motor function respectively. Upper limb reaction time was measured using reaction time test.

Results: Results showed that there was a significant difference (p<0.05) in DASS questionnaire and average reaction time score after intervention.

Conclusion: There is a potential for using interactive VR games as an exercise tool to improve psychological wellbeing and upper limb reaction time among adults with disabilities.


Adults with disabilities around the world have been estimated to be around one billion, which consist of 15% of the world’s population.1 In Malaysia, there are approximately 300,000 adults with disabilities.2 Impairments in cardiovascular fitness, balance, motor control, sensation, proprioception and coordination are common in adults with physical disabilities.3 These impairments can lead to functional dependence, poor quality of life, limited mobility and decreased participation in leisure activities.

Opportunities to participate in regular exercise are especially important for groups that are less physically active than the
general population. This is because adults with disabilities are more prone to secondary complications such as pain, fatigue and de-conditioning.4 Virtual reality (VR) games are games played in a stimulated 3-dimensional (3D) environment. VR games have been developed for leisure activities but we found VR to be beneficial for rehabilitation in our local studies.5-7

Involvement in physical activity among people with disabilities is limited. Utilisation of technology may promote adherence, motivation and participation in physical activity and exercise programmes. However, as opposed to conventional rehabilitation and physiotherapy for adults with disabilities, evidence of VR games in improving function is limited. Therefore, the aim of this study was to examine the impact of VR games on psychological well-being, upper limb motor function and reaction time in adults with physical disabilities. …

Full Text PDF


, , , , , , ,

Leave a comment

[WEB SITE] Regain Use of Arm After Stroke – National Stroke Association

Regain Use of Arm After Stroke
Technology Now Widely Available Means Moderately to Severely Weakened Arms and Hands May Function Again

Experiencing a stroke can be devastating.  Many are left with an arm so weak it seems useless.  The biggest loss can be your independence.

But for many, regaining use of your arm and hand and your independence is possible.  Myomo, a medical robotics company, has developed the MyoPro—a lightweight, non-invasive powered brace (orthosis). It is the only orthosis that, sensing a patient’s own neurological signals through sensors on the surface of the skin, can restore their ability to use their arms and hands so that they can return to work, live independently and reduce their cost of care.

Hundreds of patients have used it successfully.  It is recommended by clinicians at leading rehabilitation facilities and 20 VA hospitals. (MyoPro is not for everyone and your results may vary.)

Read the whitepaper Technology Giving Hope to Stroke Patients Now Widely Available and see videos of patients and physicians describing their experience with MyoPro.


Source: National Stroke Association

, , , , , ,

Leave a comment

[ARTICLE] A Neuromuscular Electrical Stimulation (NMES) and robot hybrid system for multi-joint coordinated upper limb rehabilitation after stroke – Full Text



It is a challenge to reduce the muscular discoordination in the paretic upper limb after stroke in the traditional rehabilitation programs.


In this study, a neuromuscular electrical stimulation (NMES) and robot hybrid system was developed for multi-joint coordinated upper limb physical training. The system could assist the elbow, wrist and fingers to conduct arm reaching out, hand opening/grasping and arm withdrawing by tracking an indicative moving cursor on the screen of a computer, with the support from the joint motors and electrical stimulations on target muscles, under the voluntary intention control by electromyography (EMG). Subjects with chronic stroke (n = 11) were recruited for the investigation on the assistive capability of the NMES-robot and the evaluation of the rehabilitation effectiveness through a 20-session device assisted upper limb training.


In the evaluation, the movement accuracy measured by the root mean squared error (RMSE) during the tracking was significantly improved with the support from both the robot and NMES, in comparison with those without the assistance from the system (P < 0.05). The intra-joint and inter-joint muscular co-contractions measured by EMG were significantly released when the NMES was applied to the agonist muscles in the different phases of the limb motion (P < 0.05). After the physical training, significant improvements (P < 0.05) were captured by the clinical scores, i.e., Modified Ashworth Score (MAS, the elbow and the wrist), Fugl-Meyer Assessment (FMA), Action Research Arm Test (ARAT), and Wolf Motor Function Test (WMFT).


The EMG-driven NMES-robotic system could improve the muscular coordination at the elbow, wrist and fingers.


Stroke is a main cause of long-term disability in adults [1]. Approximately 70 to 80% stroke survivors experienced impairments in their upper extremity, which greatly affects the independency of their daily living [23]. In the upper limb rehabilitation, it also has been found that the recovery of the proximal joints, e.g., the shoulder and the elbow, is much better than the distal, e.g., the wrist and fingers [45]. The main possible reasons are: 1) The spontaneous motor recovery in early stage after stroke is from the proximal to the distal; and 2) the proximal joints experienced more effective physical practices than the distal joints throughout the whole rehabilitation process, since the proximal joints are easier to be handled by a human therapist and are more voluntarily controllable by most of stroke survivors [2]. However, improved proximal functions in the upper limb without the synchronized recovery at the distal makes it hard to apply the improvements into meaningful daily activities, such as reaching out and grasping objects, which requires the coordination among the joints of the upper limb, including the hand. More effective rehabilitation methods which may benefit the functional restoration at both the proximal and the distal are desired for post-stroke upper limb rehabilitation.

Besides the weakness and spasticity of muscles in the paretic upper limb, discoordination among muscles is also one of the major impairments after stroke, mainly reflected as abnormal muscular co-activating patterns and loss of independent joint control [26]. Stereotyped movements of the entire limb with compensation from the proximal joints are commonly observed in most of persons with chronic stroke who have passed six months after the onset of the stroke, during which abnormal motor synergies were gradually developed. Neuromuscular electrical stimulation (NMES) is a technique that can generate limb movements by applying electrical current on the paretic muscles [7]. Post-stroke rehabilitation assisted with NMES has been found to effectively prevent muscle atrophy and improve muscle strength [7], and the stimulation also evokes sensory feedback to the brain during muscle contraction to facilitate motor relearning [8]. It has been found that NMES can improve muscular coordination in a paralysed limb by limiting ‘learned disuse’ that stroke survivors are gradually accustomed to managing their daily activities without using certain muscles, which has been considered as a significant barrier to maximizing the recovery of post-stroke motor function [9]. However, difficulties have been found in NMES alone to precisely activate groups of muscles for dynamic and coordinated limb movements with desired accuracy in kinematics, for example, speeds and trajectories. It is because most of the NMES systems adopted transcutaneous stimulation with surface electrodes only recruiting muscles located closely to the skin surface with limited stimulation channels [8]. Therefore, the muscular force evoked may not be enough to achieve the precise limb motions. However, limb motions with repeated and close-to-normal kinematic experiences are necessary to enhance the sensorimotor pathways in rehabilitation, which has been found to contribute to the motor recovery after stroke [10]. Furthermore, faster muscular fatigue would be experienced when using NMES with intensive stimuli, in comparison with the muscle contraction by biological neural stimulation [11].

The use of rehabilitation robots is one of the solutions to the shortage of affordable professional manpower in the industry of physical therapy, to cope with the long-term and labour-demanding physical practices [10]. In comparison with the NMES, robots can well control the limb movements with electrical motors. Various robots have been proposed for upper limb training after stroke [1213]. Among them, the robots with the involvement of voluntary efforts from persons after stroke demonstrated better rehabilitation effects than those with passive limb motions, i.e., the limb movements are totally dominated by the robots [10]. Physical training with passive motions only contributed to the temporary release of muscle spasticity; whereas, voluntary practices could improve the motor functions of the limb with longer sustainability [1014]. In our previous studies, we designed a series of voluntary intention-driven rehabilitation robotics for physical training at the elbow, the wrist and fingers [1415161718]. Residual electromyography (EMG) from the paretic muscles was used to control the robots to provide assistive torques to the limb for desired motions. The results of applying these robots in post-stroke physical training showed that the target joint could obtain motor improvements after the training; however, more significant improvements usually appeared at its neighbouring proximal joint mainly due to the compensatory exercises from the proximal muscles [1517]. In order to improve the muscle coordination during robot-assisted training, we integrated NMES into the EMG-driven robot as an intact system for wrist rehabilitation [1619]. It has been found that the combined assistance with both robot and NMES could reduce the excessive muscular activities at the elbow and improve the muscle activation levels related to the wrist, which was absent in the pure robot assisted training [16]. More recently, combined treatment with robot and NMES for the wrist by other research group also demonstrated more promising rehabilitation effectiveness in the upper limb functions than pure robot training [20]. However, most of the proposed devices are for single joint treatment, and cannot be used for multi-joint coordinated upper limb training. Furthermore, the training tasks provided by these devices are not easy to be directly translated into daily activities. We hypothesized that multi-joint coordinated upper limb training assisted by both NMES and robot could improve the muscular coordination in the whole upper limb and promote the synchronized recovery at both the proximal and distal joints. In this work, we designed a multi-joint robot and NMES hybrid system for the coordinated upper limb physical practice at the elbow, wrist and fingers. Then, the rehabilitation effectiveness with the assistance of the device was evaluated by a pilot single-group trial. EMG signals from target muscles were used for voluntary intention control for both the robot and NMES parts.


The NMES-robot system

The system developed is a wearable device as shown in Fig. 1. It can support a stroke subject to perform sequencing limb movements, i.e., 1) elbow extension, 2) wrist extension associated with hand open, 3) wrist flexion and 4) elbow flexion, with the purpose of simulating the coordination of the joints in arm reaching out, hand open for grasping, and withdrawing in daily activities. The starting position of the motion cycle was set at the elbow joint extended at 180° and the wrist extended at 45°, which is also the end point for a motion cycle. In each phase of the motion, visual guidance on a computer screen was provided to a subject by following a moving cursor on the computer screen with a constant angular velocity at 10°/s for the movement of the wrist and the elbow. The subject was asked to minimize the target and actual joint positions during the tracking. In the limb tasks, assistances would be provided from the mechanical motors and NMES at the same time related to the wrist and elbow flexion/extension. NMES alone was applied for finger extension, and there was no assistance from the system for finger flexion (hand grasp). It is because that the main impairment in the hand for persons with chronic stroke is hand open, and the hand grasp can be achieved passively due to spasticity in finger flexors, and one channel NMES has demonstrated the capacity to achieve the gross open of the hand with finger extensions in clinical practices [2]. With the attempt to reduce the overall weight of the system, especially at the distal joints, for the coordinated multi-joint training of the whole upper limb, finger motions were only supported by the NMES in this work. The robot and NMES combined effects on individual finger motions in chronic stroke have been investigated in our previous work [21]. A hanging system was used to lift up the testing limb to a horizontal level (Fig. 1), to compensate the limb gravity and the weight of the wearable part of the system (totally 895 g).

Fig. 1 a The schematic diagram of the experimental setup, b a photo of a subject who is conducting the tracking task with the NMES-robot, c a photo of a subject wearing the mechanical parts of the system, d the configuration of the NMES electrodes and EMG electrodes on a driving muscle. The driving muscles in the study are BIC, TRI, FCR and the muscle union of ECU-ED

Continue —> A Neuromuscular Electrical Stimulation (NMES) and robot hybrid system for multi-joint coordinated upper limb rehabilitation after stroke | Journal of NeuroEngineering and Rehabilitation | Full Text


, , , , , , , , , ,

Leave a comment

[Abstract] A Randomized Controlled Study: Effectiveness of Functional Electrical Stimulation on Wrist and Finger Flexor Spasticity in Hemiplegia


The objective of this study was to investigate the effectiveness of functional electrical stimulation (FES) applied to the wrist and finger extensors for wrist flexor spasticity in hemiplegic patients.


Thirty stroke patients treated as inpatients were included in the study. Patients were randomly divided into study and control groups. FES was applied to the study group. Wrist range of movement, the Modified Ashworth Scale (MAS), Rivermead Motor Assessment (RMA), Brunnstrom (BS) hand neurophysiological staging, Barthel Index (BI), and Upper Extremity Function Test (UEFT) are outcome measures.


There was no significant difference regarding range of motion (ROM) and BI values on admission between the groups. A significant difference was found in favor of the study group for these values at discharge. In the assessment within groups, there was no significant difference between admission and discharge RMA, BS hand, and UEFT scores in the control group, but there was a significant difference between the admission and discharge values for these parameters in the study group. Both groups showed improvement in MAS values on internal assessment.


It was determined that FES application is an effective method to reduce spasticity and to improve ROM, motor, and functional outcomes in hemiplegic wrist flexor spasticity.


Source: A Randomized Controlled Study: Effectiveness of Functional Electrical Stimulation on Wrist and Finger Flexor Spasticity in Hemiplegia – Journal of Stroke and Cerebrovascular Diseases

, , , , , , , , , , ,

Leave a comment

[Conference paper] 3D Virtual System Using a Haptic Device for Fine Motor Rehabilitation -Abstract+References


It is presented a 3D Virtual system with a haptic device that allows the interaction between a user and a virtual environment developed in Unity3D. This System was designed for rehabilitation of paretic hands in adult people with Stroke; the virtual environment was developed considering a daily life’s activity (watering plants in pots). The system was used by five people with mild and moderate Stroke according to ASWRTH 1+ scale, which completed the exercise showed in the virtual application. Patients performed a usability test SUS with outcomes (79, 5 ± 3, 67) this allows to define that the system has a good acceptance for rehabilitation.

Source: 3D Virtual System Using a Haptic Device for Fine Motor Rehabilitation | SpringerLink

, , , , , , ,

Leave a comment

[Conference paper] VRAndroid System Based on Cognitive Therapeutic Exercises for Stroke Patients – Abstract+References


It is presented VRAndroid System designed in Android and implemented on an Android Tablet, the system consists in a set of nine shapes based on cognitive therapeutic exercises for the motor rehabilitation in upper limbs, this tools provides perceptive feedback (vibration) to the patient as he follows the correct shape with his finger. There are two performed rehabilitation phases: (1) Through the Perffeti Technique (15 sessions), (2) Through VRAndroid System (15 sessions), the evolution and results of the rehabilitation are evaluated by the BOX AND BLOCK test, which shows that, the rehabilitation through this techniques help in the motor recovery of the upper limbs, moreover, the VRAndroid System is a useful tool to be used as a traditional rehabilitation supplement.

Source: VRAndroid System Based on Cognitive Therapeutic Exercises for Stroke Patients | SpringerLink

, , , , , , , , ,

Leave a comment

[ARTICLE] Quantification of task-dependent cortical activation evoked by robotic continuous wrist joint manipulation in chronic hemiparetic stroke – Full Text



Cortical damage after stroke can drastically impair sensory and motor function of the upper limb, affecting the execution of activities of daily living and quality of life. Motor impairment after stroke has been thoroughly studied, however sensory impairment and its relation to movement control has received less attention. Integrity of the somatosensory system is essential for feedback control of human movement, and compromised integrity due to stroke has been linked to sensory impairment.


The goal of this study is to assess the integrity of the somatosensory system in individuals with chronic hemiparetic stroke with different levels of sensory impairment, through a combination of robotic joint manipulation and high-density electroencephalogram (EEG). A robotic wrist manipulator applied continuous periodic disturbances to the affected limb, providing somatosensory (proprioceptive and tactile) stimulation while challenging task execution. The integrity of the somatosensory system was evaluated during passive and active tasks, defined as ‘relaxed wrist’ and ‘maintaining 20% maximum wrist flexion’, respectively. The evoked cortical responses in the EEG were quantified using the power in the averaged responses and their signal-to-noise ratio.


Thirty individuals with chronic hemiparetic stroke and ten unimpaired individuals without stroke participated in this study. Participants with stroke were classified as having severe, mild, or no sensory impairment, based on the Erasmus modification of the Nottingham Sensory Assessment. Under passive conditions, wrist manipulation resulted in contralateral cortical responses in unimpaired and chronic stroke participants with mild and no sensory impairment. In participants with severe sensory impairment the cortical responses were strongly reduced in amplitude, which related to anatomical damage. Under active conditions, participants with mild sensory impairment showed reduced responses compared to the passive condition, whereas unimpaired and chronic stroke participants without sensory impairment did not show this reduction.


Robotic continuous joint manipulation allows studying somatosensory cortical evoked responses during the execution of meaningful upper limb control tasks. Using such an approach it is possible to quantitatively assess the integrity of sensory pathways; in the context of movement control this provides additional information required to develop more effective neurorehabilitation therapies.


The cerebral cortex plays an important role in feedforward (i.e. voluntary motor drive) and feedback control (i.e. reflexes and modulation of spinal reflexes) of human movement [1]. Cortical damage after stroke impairs both feedforward and feedback control. Altered feedforward control after stroke has been thoroughly studied and may lead to motor impairments such as weakness and abnormal synergy-dependent motor control [23].

Cortical involvement in feedback control (including sensorimotor integration and spinal reflex modulation) requires connectivity between somatosensory receptors in the periphery and the sensorimotor cortex, yet compromised integrity of this somatosensory system after stroke has received little attention in the literature. Understanding the impact of sensory impairment, as well as motor impairment, is highly relevant for the development and selection of neurorehabilitation therapies aimed to enhance and normalize motor control [4567] and for evaluating their effectiveness.

Proprioceptive and tactile information are required for feedback control of a joint, and can be studied in an experimental setting by disturbing the joint via a robotic manipulator during motor control tasks. This robotic joint manipulation results in activation of spinal reflex loops [8910] as well as in activation of the somatosensory cortex via high-resolution sensory pathways [11]. However, the cortical activity evoked by joint manipulation and consequently the cortical involvement in feedback control have received less attention.

In able-bodied individuals, evoked cortical responses to robotic joint manipulation have been studied with transient [1213] and continuous disturbances [141516]. Continuous disturbances uninterruptedly provide input to the sensory system, allowing for studying movement control and somatosensory cortical activity during meaningful motor tasks. This study determines the cortical representation of afferent (proprioceptive and tactile) information in individuals with chronic hemiparetic stroke under different upper limb control conditions, relying on objective metrics derived from the electroencephalogram (EEG). Here, the goal is to quantify evoked cortical activation in individuals with chronic hemiparetic stroke, through a combination of robotic continuous joint manipulation of the paretic limb and high-density EEG. The evoked cortical activation reveals the integrity of the connections between sensory receptors in the periphery and the sensorimotor cortices.

It is hypothesized that, due to stroke-induced damage to the somatosensory system, individuals with clinically assessed proprioceptive and tactile impairment will show decreased cortical evoked responses to continuous joint manipulation in the absence of voluntary motor activity of the affected upper limb, as compared to unimpaired persons. In general, when voluntary motor activity of the affected upper limb is required, individuals with hemiparesis have been shown to recruit their contralesional brain hemisphere, i.e. ipsilateral to the movement [17181920]. It is unclear, however, what this recruitment means with regard to somatosensory (i.e. afferent) evoked cortical activity, as the anatomical pathways conducting proprioceptive and tactile information mainly connect to the contralateral hemisphere [21]; thus, increased evoked cortical activation of the ipsilateral hemisphere is not expected.

Continue —> Quantification of task-dependent cortical activation evoked by robotic continuous wrist joint manipulation in chronic hemiparetic stroke | Journal of NeuroEngineering and Rehabilitation | Full Text

Fig. 1 Experimental setup. a The forearm of the participant is strapped into an armrest and the hand is strapped to the handle of the robotic manipulator, requiring no hand force to hold the handle. b Visual feedback as presented to the participant. The circle and crosshairs are always visible. The yellow arrow is only visible during the active task and points up if the target torque is applied. c Close-up of the arm in the robotic manipulator. The wrist joint is aligned with the axis of the motor and is placed in the neutral angle, defined as 20° wrist flexion. d One period of the disturbance signal applied to the wrist (root-mean-square of 0.02 rad). Zero radians corresponds to the neutral angle of the wrist

, , , , , , , , , , ,

Leave a comment

%d bloggers like this: