Archive for category tDCS/rTMS

[REVIEW] Strategies to implement and monitor in-home transcranial electrical stimulation in neurological and psychiatric patient populations: a systematic review – Full Text

Abstract

Background

Transcranial electrical stimulation is a promising technique to facilitate behavioural improvements in neurological and psychiatric populations. Recently there has been interest in remote delivery of stimulation within a participant’s home.

Objective

The purpose of this review is to identify strategies employed to implement and monitor in-home stimulation and identify whether these approaches are associated with protocol adherence, adverse events and patient perspectives.

Methods

MEDLINE, Embase Classic + Embase, Emcare and PsycINFO databases and clinical trial registries were searched to identify studies which reported primary data for any type of transcranial electrical stimulation applied as a home-based treatment.

Results

Nineteen published studies from unique trials and ten on-going trials were included. For published data, internal validity was assessed with the Cochrane risk of bias assessment tool with most studies exhibiting a high level of bias possibly reflecting the preliminary nature of current work. Several different strategies were employed to prepare the participant, deliver and monitor the in-home transcranial electrical stimulation. The use of real time videoconferencing to monitor in-home transcranial electrical stimulation appeared to be associated with higher levels of compliance with the stimulation protocol and greater participant satisfaction. There were no severe adverse events associated with in-home stimulation.

Conclusions

Delivery of transcranial electrical stimulation within a person’s home offers many potential benefits and appears acceptable and safe provided appropriate preparation and monitoring is provided. Future in-home transcranial electrical stimulation studies should use real-time videoconferencing as one of the approaches to facilitate delivery of this potentially beneficial treatment.

Introduction

Transcranial electrical stimulation (tES) is a technique used to modulate cortical function and human behaviour. It involves weak current passing through the scalp via surface electrodes to stimulate the underlying brain. A common type of tES is transcranial direct current stimulation (tDCS). Several studies have demonstrated tDCS is capable of modulating cortical function, depending on the direction of current flow [123]. When the anode is positioned over a cortical region, the current causes depolarisation of the neuronal cells, increasing spontaneous firing rates [4]. Conversely, positioning the cathode over the target cortical region causes hyperpolarisation and a decrease in spontaneous firing rates [4]. This modulation of cortical activity can be observed beyond the period of stimulation and is thought to be mediated by mechanisms which resemble long term potentiation and depression [5]. Along similar lines, transcranial alternating current stimulation (tACS) and transcranial random noise stimulation (tRNS) are also forms of tES. Both tACS and tRNS are thought to interact with ongoing oscillatory cortical rhythms in a frequency dependent manner to influence human behaviour [678].

The ability of tES to selectively modulate cortical activity offers a promising tool to induce behavioural change. Indeed, several studies have demonstrated that tES may be a favourable approach to reduce impairment following stroke [9], improve symptoms of neglect [10], or reduce symptoms of depression [11]. While these results appear promising, there remains debate around technical aspects of stimulation along with individual participant characteristics that may influence the reliability of a stimulation response [1213141516171819202122]. However, current evidence does suggest that effects of stimulation may be cumulative, with greater behavioural improvements observed following repeated stimulation sessions [20]. Furthermore, tES has shown potential as a tool for maintenance stimulation, with potential relapses of depression managed by stimulation which continued over several months [2324]. Therefore, it may be that repeated stimulation sessions will become a hallmark of future clinical and research trials aiming to improve behavioural outcomes. This would require participants to attend frequent treatment sessions applied over a number of days, months or years. Given that many participants who are likely to benefit from stimulation are those with higher levels of motor or cognitive impairment, the requirement to travel regularly for treatment may present a barrier, limiting potential clinical utility or ability to recruit suitable research participants [25]. In addition, regular daily treatments would also hinder those who travel from remote destinations to receive this potentially beneficial neuromodulation. Therefore, there is a requirement to consider approaches to safely and effectively deliver stimulation away from the traditional locations of research departments or clinical facilities.

One benefit of tES over other forms of non-invasive brain stimulation, such as repetitive transcranial magnetic stimulation, is the ability to easily transport the required equipment. This opportunity may allow for stimulation to be delivered in a participant’s home, which could represent the mode of delivery for future clinical applications. However, it may be unreasonable to expect that a participant would be capable of managing delivery of tES alone and would likely require some form of training and/or monitoring [25]. Although tES is considered relatively safe [26], stimulation should be delivered within established guidelines to avoid adverse events [27]. Inappropriate delivery of stimulation could result in neural damage, detrimental behavioural effects, irritation, burns or lesions of the skin [282930313233]. Therefore, in order to deliver stimulation safely to the appropriate cortical region, it is likely that in-home stimulation may require some form of monitoring [25].

It is currently unclear what the best approach is to implement and monitor in-home tES. An early paper proposed several guidelines to perform in home tES [34]. However, these guidelines were not based on evidence from published clinical trials as there were none available at the time of publication. One recent systematic review sought to discuss current work in this area and highlighted the need for further research to investigate safety, technical monitoring and assessment of efficacy [35]. Given the recent, and growing, interest in home-based brain stimulation, we felt it was now pertinent to conduct a review to specifically identify strategies employed to implement and monitor the use of in-home tES in neurological and psychiatric populations. The secondary questions were to report protocol adherence, adverse events and patient perspectives of in-home tES. Understanding optimal treatment fidelity for in-home brain stimulation will be instrumental to achieving higher levels of tES useability and acceptance within a participant’s home.[…]

 

via Strategies to implement and monitor in-home transcranial electrical stimulation in neurological and psychiatric patient populations: a systematic review | Journal of NeuroEngineering and Rehabilitation | Full Text

Fig. 2 Cochrane risk of bias tool was used to assess quality of included studies

, , , , ,

Leave a comment

[NEWS] Brain stimulation improves depression symptoms, restores brain waves in clinical study — ScienceDaily

Date: March 11, 2019

Source: University of North Carolina Health Care

Summary: With a weak alternating electrical current sent through electrodes attached to the scalp, researchers successfully targeted a naturally occurring electrical pattern in a specific part of the brain and markedly improved depression symptoms in about 70 percent of participants in a clinical study.

FULL STORY

With a weak alternating electrical current sent through electrodes attached to the scalp, UNC School of Medicine researchers successfully targeted a naturally occurring electrical pattern in a specific part of the brain and markedly improved depression symptoms in about 70 percent of participants in a clinical study.

The research, published in Translational Psychiatry, lays the groundwork for larger research studies to use a specific kind of electrical brain stimulation called transcranial alternating current stimulation (tACS) to treat people diagnosed with major depression.

“We conducted a small study of 32 people because this sort of approach had never been done before,” said senior author Flavio Frohlich, PhD, associate professor of psychiatry and director of the Carolina Center for Neurostimulation. “Now that we’ve documented how this kind of tACS can reduce depression symptoms, we can fine tune our approach to help many people in a relatively inexpensive, noninvasive way.”

Frohlich, who joined the UNC School of Medicine in 2011, is a leading pioneer in this field who also published the first clinical trials of tACS in schizophrenia and chronic pain.

His tACS approach is unlike the more common brain stimulation technique called transcranial direct stimulation (tDCS), which sends a steady stream of weak electricity through electrodes attached to various parts of the brain. That approach has had mixed results in treating various conditions, including depression. Frohlich’s tACS paradigm is newer and has not been investigated as thoroughly as tDCS. Frohlich’s approach focuses on each individual’s specific alpha oscillations, which appear as waves between 8 and 12 Hertz on an electroencephalogram (EEG). The waves in this range rise in predominance when we close our eyes and daydream, meditate, or conjure ideas — essentially when our brains shut out sensory stimuli, such as what we see, feel, and hear.

Previous research showed that people with depression featured imbalanced alpha oscillations; the waves were overactive in the left frontal cortex. Frohlich thought his team could target these oscillations to bring them back in synch with the alpha oscillations in the right frontal cortex. And if Frohlich’s team could achieve that, then maybe depression symptoms would be decreased.

His lab recruited 32 people diagnosed with depression and surveyed each participant before the study, according to the Montgomery-Åsberg Depression Rating Scale (MADRS), a standard measure of depression.

The participants were then separated into three groups. One group received the sham placebo stimulation — a brief electrical stimulus to mimic the sensation at the beginning of a tACS session. A control group received a 40-Hertz tACS intervention, well outside the range that the researchers thought would affect alpha oscillations. A third group received the treatment intervention — a 10-Hertz tACS electrical current that targeted each individual’s naturally occurring alpha waves. Each person underwent their invention for 40 minutes on five consecutive days. None of the participants knew which group they were in, and neither did the researchers, making this a randomized double-blinded clinical study — the gold standard in biomedical research. Each participant took the MADRS immediately following the five-day regimen, at two weeks, and again at four weeks.

Prior to the study, Frohlich set the primary outcome at four weeks, meaning that the main goal of the study was to assess whether tACS could bring each individual’s alpha waves back into balance and decrease symptoms of depression four weeks after the five-day intervention. He set this primary outcome because scientific literature on the study of tDCS also used the four-week mark.

Frohlich’s team found that participants in the 10-Hertz tACS group featured a decrease in alpha oscillations in the left frontal cortex; they were brought back in synch with the right side of the frontal cortex. But the researchers did not find a statistically significant decrease in depression symptoms in the 10-Hertz tACS group, as opposed to the sham or control groups at four weeks.

But when Frohlich’s team looked at data from two weeks after treatment, they found that 70 percent of people in the treatment group reported at least a 50 percent reduction of depression symptoms, according to their MADRS scores. This response rate was significantly higher than the one for the two other control groups. A few of the participants had such dramatic decreases that Frohlich’s team is currently writing case-studies on them. Participants in the placebo and control groups experienced no such reduction in symptoms.

“It’s important to note that this is a first-of-its kind study,” Frohlich said. “When we started this research with computer simulations and preclinical studies, it was unclear if we would see an effect in people days after tACS treatment — let alone if tACS could become a treatment for psychiatric illnesses. It was unclear what would happen if we treated people several days in a row or what effect we might see weeks later. So, the fact that we’ve seen such positive results from this study gives me confidence our approach could help many people with depression.”

Frohlich’s lab is currently recruiting for two similar follow-up studies.

Other authors of the Translational Psychiatry paper are co-first authors Morgan Alexander, study coordinator and graduate student, and Sankaraleengam Alagapan, PhD, a postdoctoral fellow, both in the department of psychiatry at UNC-Chapel Hill; David Rubinow, MD, the Assad Meymandi Distinguished Professor and Chair of Psychiatry at the UNC School of Medicine; former UNC postdoctoral fellow Caroline Lustenberger, PhD; and Courtney Lugo and Juliann Mellin, both study coordinators at the UNC School of Medicine.

This research was funded through grants from the Brain Behavior Research Foundation, National Institutes of Health, the BRAIN Initiative, and the Foundation of Hope.

Frohlich holds joint appointments at UNC-Chapel Hill in the department of cell biology and physiology and the Joint UNC-NC State Department of Biomedical Engineering. He is also a member of the UNC Neuroscience Center.

Story Source:

Materials provided by University of North Carolina Health CareNote: Content may be edited for style and length.


Journal Reference:

  1. Morgan L. Alexander, Sankaraleengam Alagapan, Courtney E. Lugo, Juliann M. Mellin, Caroline Lustenberger, David R. Rubinow, Flavio Fröhlich. Double-blind, randomized pilot clinical trial targeting alpha oscillations with transcranial alternating current stimulation (tACS) for the treatment of major depressive disorder (MDD)Translational Psychiatry, 2019; 9 (1) DOI: 10.1038/s41398-019-0439-0

 

via Brain stimulation improves depression symptoms, restores brain waves in clinical study — ScienceDaily

, , , ,

Leave a comment

[Abstract] Efficacy and Safety of High-frequency Repetitive Transcranial Magnetic Stimulation for Post-Stroke Depression:A Systematic Review and Meta-Analysis

Abstract

Objective

To summarize and systematically review the efficacy and safety of high frequency repetitive transcranial magnetic stimulation (HF-rTMS) for depression in stroke patients.

Data Sources

Six databases (Wanfang, CNKI, PubMed, Embase, Cochrane Library, and Web of Science) were searched from inception until November 15, 2018.

Study Selection

Seventeen randomized controlled trials were included for meta-analysis.

Data Extraction

Two independent reviewers selected potentially relevant studies based on the inclusion criteria, extracted data, and evaluated the methodological quality of the eligible trials using the Physiotherapy Evidence Database (PEDro).

Data Synthesis

We calculated the combined effect size (standardized mean difference [SMD] and odds ratio [OR]) for the corresponding effects models. Physiotherapy Evidence Database scores ranged from 7 to 8 points (mean = 7.35). The study results indicated that HF-rTMS had significantly positive effects on depression in stroke patients. The effect sizes of the SMD ranged from small to large (SMD = −1.01; 95% confidence interval [95% CI], −1.36 to −0.66; P < .001; I2 = 85%; n = 1053), and the effect sizes of the OR were large (response rates: 58.43% VS 33.59%; OR = 3.31; 95% CI, 2.25 to 4.88; P < .001; I2 = 0%; n = 529; remission rates: 26.59% VS 12.60%; OR = 2.72; 95% CI, 1.69 to 4.38; P < .001; I2 = 0%; n = 529). In terms of treatment side-effects, the HF-rTMS group was more prone to headache than the control group (OR = 3.53; 95% CI, 1.85 to 8.55; P < .001; I2 = 0%; n = 496).

Conclusions

HF-rTMS is an effective intervention for post-stroke depression, although treatment safety should be further verified via large sample multi-center trials.

via Efficacy and Safety of High-frequency Repetitive Transcranial Magnetic Stimulation for Post-Stroke Depression:A Systematic Review and Meta-Analysis – Archives of Physical Medicine and Rehabilitation

, , , , ,

Leave a comment

[WEB SITE] Depression: Brain stimulation may be a good alternative treatment

A new review, which appears in The BMJ journal, examines the benefits of non-invasive brain stimulation for treating major depression and finds that the technique is a valid alternative to existing treatments.

doctor talking to patient

Doctors should consider brain stimulation as an alternative treatment for people living with severe depression, finds a new review

Over 17 million adults in the United States have had an episode of major depression at one point in their lives.

Some of these people have treatment-resistant depression, which means common prescription drugs do not alleviate the symptoms.

Recent studies have pointed to alternative treatment methods for major depression, such as non-invasive brain stimulation techniques.

For instance, a study that appeared at the end of last year showed that using small electric currents to stimulate a brain area called the orbitofrontal cortex significantly improves the mood of people who did not benefit from conventional antidepressants.

An even more recent trial of a form of brain stimulation called “transcranial alternating current stimulation” (tACS) found that the technique halved depression symptoms in almost 80 percent of the study participants.

Despite such promising results, doctors do not use these techniques widely, as there is not enough data available on their efficacy.

So, a team of researchers led by Julian Mutz at the Institute of Psychiatry, Psychology & Neuroscience at King’s College London, United Kingdom, set out to review some clinical trials that have examined the benefits of non-invasive brain stimulation techniques for people living with depression.

Brain stimulation as additional treatment

Specifically, Mutz and team examined the results of 113 clinical trials. Overall, these trials included 6,750 participants who were 48 years old, on average, and were living with major depressive disorder or bipolar depression.

The original clinical trials involved randomly assigning these participants to 18 treatment interventions or “sham” therapies. The reviewers focussed on the response, or “efficacy” of the treatment, as well as the “discontinuation of treatment for any reason” — or “acceptability” of the therapies. Mutz and colleagues also rated the trials’ risk of bias.

The therapies included in the review were “electroconvulsive therapy (ECT), transcranial magnetic stimulation (repetitive (rTMS), accelerated, priming, deep, and synchronized), theta burst stimulation, magnetic seizure therapy, transcranial direct current stimulation (tDCS), or sham therapy.”

Of these, the treatments that the researchers in the original trial examined most often were high frequency left rTMS and tDCS, which they tested against sham therapy. On the other hand, not many trials covered more recent forms of brain stimulation, such as magnetic seizure therapy and bilateral theta burst stimulation, the review found.

Kutz and his team deemed 34 percent of the trials they reviewed as having a low risk of bias. They considered half of the trials to have an “unclear” risk of bias, and finally, 17 percent to have a high risk of bias. The newer the treatments, the higher was the uncertainty of the trials’ results.

The review found that bitemporal ECT, high dose right unilateral ECT, high frequency left rTMS and tDCS were all significantly more effective than sham therapy both in terms of efficacy and acceptability.

When considering “discontinuation of treatment for any reason,” the researchers found that the participants were not any likelier to discontinue brain stimulation treatments than they were sham therapy. Mutz and colleagues conclude:

These findings provide evidence for the consideration of non-surgical brain stimulation techniques as alternative or add-on treatments for adults with major depressive episodes.”

“These findings also highlight important research priorities in the specialty of brain stimulation, such as the need for further well-designed randomized controlled trials comparing novel treatments, and sham-controlled trials investigating magnetic seizure therapy,” the authors add.

Finally, the researchers also note that their results have clinical implications, “in that they will inform clinicians, patients, and healthcare providers on the relative merits of multiple non-surgical brain stimulation techniques.”

via Depression: Brain stimulation may be a good alternative treatment

, , ,

Leave a comment

[Abstract] Repetitive transcranial magnetic stimulation of lower limb motor function in patients with stroke: a systematic review and meta-analysis of randomized controlled trials

The aim of this study was to evaluate the effects of repetitive transcranial magnetic stimulation (rTMS) on the post-stroke recovery of lower limb motor function.

We searched the databases of PubMed, Cochrane Library, and Embase. The randomized controlled trials were published by 25 January 2019.

We included randomized controlled trials that evaluated the effects of rTMS on lower limb motor recovery in patients with stroke. Two reviewers independently screened the searched records, extracted data, and assessed the risk of bias. The treatment effect sizes were pooled in a meta-analysis by using the RevMan 5.3 software. The internal validity was assessed using topics suggested by the Physiotherapy Evidence Database (PEDro).

Eight studies with 169 participants were included in the meta-analysis. Pooled estimates demonstrated that rTMS significantly improved the body function of the lower limbs (standardized mean difference (SMD) = 0.66; P < 0.01), lower limb activity (SMD = 0.66; P < 0.01), and motor-evoked potential (SMD = 1.13; P < 0.01). The subgroup analyses results also revealed that rTMS improved walking speed (SMD = 1.13) and lower limb scores on the Fugl-Meyer Assessment scale (SMD = 0.63). We found no significant differences between the groups in different mean post-stroke time or stimulation mode over lower limb motor recovery. Only one study reported mild adverse effects.

rTMS may have short-term therapeutic effects on the lower limbs of patients with stroke. Furthermore, the application of rTMS is safe. However, this evidence is limited by a potential risk of bias.

 

via Repetitive transcranial magnetic stimulation of lower limb motor function in patients with stroke: a systematic review and meta-analysis of randomized controlled trials – Yi-Chun Tung, Chien-Hung Lai, Chun-De Liao, Shih-Wei Huang, Tsan-Hon Liou, Hung-Chou Chen, 2019

, , , , ,

Leave a comment

[Abstract] The effect and optimal parameters of repetitive transcranial magnetic stimulation on motor recovery in stroke patients: a systematic review and meta-analysis of randomized controlled trials

The primary aim of this meta-analysis was to evaluate the effects of repetitive transcranial magnetic stimulation (rTMS) on limb movement recovery post-stroke and cortex excitability, to explore the optimal parameters of rTMS and suitable stroke population. Second, adverse events were also included.

The databases of PubMed, EBSCO, MEDLINE, the Cochrane Central Register of Controlled Trials, EBM Reviews-Cochrane Database, the Chinese National Knowledge Infrastructure, and the Chinese Science and Technology Journals Database were searched for randomized controlled trials exploring the effects of rTMS on limb motor function recovery post-stroke before December 2018.

The effect sizes of rTMS on limb motor recovery, the effect size of rTMS stimulation parameters, and different stroke population were summarized by calculating the standardized mean difference (SMD) and the 95% confidence interval using fixed/random effect models as appropriate.

For the motor function assessment, 42 eligible studies involving 1168 stroke patients were identified. The summary effect size indicated that rTMS had positive effects on limb motor recovery (SMD = 0.50, P < 0.00001) and activities of daily living (SMD = 0.82, P < 0.00001), and motor-evoked potentials of the stimulated hemisphere differed according to the stimulation frequency, that is, the high-frequency group (SMD = 0.57, P = 0.0006), except the low-frequency group (SMD = –0.27, P = 0.05). No significant differences were observed among the stimulation parameter subgroups except for the sessions subgroup (P = 0.02). Only 10 included articles reported transient mild discomfort after rTMS.

rTMS promoted the recovery of limb motor function and changed the cortex excitability. rTMS may be better for early and pure subcortical stroke patients. Regarding different stimulation parameters, the number of stimulation sessions has an impact on the effect of rTMS.

via The effect and optimal parameters of repetitive transcranial magnetic stimulation on motor recovery in stroke patients: a systematic review and meta-analysis of randomized controlled trials – Huifang Xiang, Jing Sun, Xiang Tang, Kebin Zeng, Xiushu Wu, 2019

, , , , ,

Leave a comment

[ARTICLE] The Effects of Combined Low Frequency Repetitive Transcranial Magnetic Stimulation and Motor Imagery on Upper Extremity Motor Recovery Following Stroke – Full Text

Objective: To investigate the effects of low frequency transcranial magnetic stimulation (LF-rTMS) combined with motor imagery (MI) on upper limb motor function during stroke rehabilitation.

Background: Hemiplegic upper extremity activity obstacle is a common movement disorder after stroke. Compared with a single intervention, sequential protocol or combination of several techniques has been proven to be better for alleviating motor function disorder. Non-invasive neuromodulation techniques such as repetitive transcranial magnetic stimulation (rTMS) and motor imagery (MI) have been verified to augment the efficacy of rehabilitation.

Methods:Participants were randomly assigned to 2 intervention cohorts: (1) experimental group (rTMS+MI group) was applied at 1 Hz rTMS over the primary motor cortex of the contralesional hemisphere combined with audio-based MI; (2) control group (rTMS group) received the same therapeutic parameters of rTMS combined with audiotape-led relaxation. LF-rTMS protocol was conducted in 10 sessions over 2 weeks for 30 min. Functional measurements include Wolf Motor Function Test (WMFT), the Fugl-Meyer Assessment Upper Extremity (UE-FMA) subscore, the Box and Block Test (BBT), and the Modified Barthel index (MBI) were conducted at baseline, the second week (week 2) and the fourth week (week 4).

Results: All assessments of upper limb function improved in both groups at weeks 2 and 4. In particular, significant differences were observed between two groups at end-intervention and after intervention (p < 0.05). In these findings, we saw greater changes of WMFT (p < 0.01), UE-FMA (p < 0.01), BBT (p < 0.01), and MBI (p < 0.001) scores in the experimental group.

Conclusions: LF-rTMS combined with MI had a positive effect on motor function of upper limb and can be used for the rehabilitation of upper extremity motor recovery in stroke patients.

Introduction

Decreased mobility of hemiplegic upper limb is a common dyskinesia after stroke. At present, clinical researchers have established a number of treatments to improve upper extremity motor function (1). Compared with a single intervention, a combination approach of different techniques has been proven to be better for alleviating movement disorder (2). Lots of trials have shown that movement function improvement after stroke can be enhanced by non-invasive brain stimulation techniques combined with conventional clinical practice (36).

Repetitive transcranial magnetic stimulation (rTMS) is one of non-invasive brain stimulations, and could modulate cortical activity. Stroke is considered to be one possible reason for imbalance of interhemispheric cortical inhibition. rTMS could rebulid the interhemisphere balance by down-regulating the excitability of the non-lesioned hemisphere with low frequency stimulation or up-regulating the lesioned excitability by high frequency stimulation (6). Randomized controlled trials have shown that short courses of inhibitory, contralesional rTMS can improve the motor function of hemiplegia after stroke (78). Evidence suggested that maximum control of the lesioned hemisphere is associated with better function (910). Early damage affected the ability of upper motor neurons to compete with lateral neurons to dominate motor neurons (11). Inhibition of contralateral primary motor cortex (M1) with 1 Hz rTMS may enhance hemispheric motor function. This method has revealed efficacy in the stroke rehabilitation for adults although they do not share the same models (8). Recently, the positive effects of HF-rTMS and LF-rTMS on movement disorder after stroke have been supported by accumulating evidence (7). And LF-rTMS has been confirmed to be in correlation with improved function in patients with chronic stroke (1213). Nowadays, a meta-analysis by Zhang et al. evaluated the therapeutic potential of LF-rTMS on stroke-induced upper limb movement disorder and cortex plasticity. This research supported that, as an add-on therapy, LF-rTMS successfully alleviated the hemiplegic upper limb motor deficit and significantly promoted upper limb function improvement after stroke (14).

Another non-invasive neuromodulation technique-motor imagery (MI), has been validated to increase the efficacy of rehabilitation and improve the performance of tasks associated with MI in patients after stroke (1517). The functional recovery of most stroke patients occurred mainly in the first 3 months, and the functional gain obtained in the chronic phase was limited (18). A possible cause of limited functional recovery in the chronic phase is learned nouse. Patients with severe impairment cannot use their paretic limbs in daily activities may be the reason (19). MI is a dynamic state during which the subject mentally simulates a specific movement without any obvious movement (20). It means that MI has no strict restrictions on the patient’s upper limb motor function, so it can be applied to stroke patients with poor function in chronic phase. According to previous studies, MI and motor execution share the same neural networks related to motor function (172122). These findings support the idea that MI can be used as a substitute for physical exercise which is difficult for patients to do (23). MI training was assumed to enhance motor recovery in stroke rehabilitation (24). Based on traditional rehabilitation training, MI training is more effective than conventional training alone (17). For example, Kang et al. and Xu et al. demonstrated an increase in neural activity in the motor area during MI training (2526). And Kawakami et al. also investigated changes of cortex in reciprocal inhibition following MI in patients with chronic stroke, and reported positive plastic changes during mental practice with MI (27). In another pilot study, Mihara et al. demonstrated that NIRS-mediated neurofeedback MI could enhance the ipsilesional premotor area activation in correlation with MI training and could have significant effects on the motor deficit recovery in stroke patients. Besides these findings, they also found that the change of cortical activation was related to the recovery of the hand function (19).

In view of the fact that rTMS and MI have no strict restrictions on the limb function of patients with chronic stroke, this study intends to combine the two interventions to maximize the motor function recovery of patients. As the author know, few studies explore whether the effect of LF-rTMS can be enhanced by combining with MI on upper extremity activity. In this study, we hypothesize that combination therapy of LF-rTMS with MI training will promote recovery from upper limb movement disorder in patients after chronic stroke; we also predict that activities of daily living might improve accordingly.

Therefore, the objective was to investigate the effects of LF-rTMS combined with MI on improving motor functions of hemiplegic upper extremity in chronic stroke patients.[…]

 

Continue —>  Frontiers | The Effects of Combined Low Frequency Repetitive Transcranial Magnetic Stimulation and Motor Imagery on Upper Extremity Motor Recovery Following Stroke | Neurology

Figure 1. Flow Diagram of the Trial.

, , , , , , , ,

Leave a comment

[WEB PAGE] Transcranial Direct Current Stimulation Promising for Major Depressive Disorder

Transcranial Electrical Stimulation

Transcranial direct current stimulation has produced mixed results in patients with major depressive disorder.

Transcranial direct current stimulation (tDCS) is an investigative modality for major depressive disorder (MDD) that has shown some promising results.1 Though it has a while before it is approved by the US Food and Drug Administration, clinicians and patients have been clamoring for an effective treatment for MDD that is not associated with harmful adverse effects.As 6.7% of the world’s population has MDD, which is resistant to pharmacotherapy in approximately one-third of cases, the push is on to identify treatment with lasting effects to combat this disabling disorder.1

tDCS refers to the use of a noninvasive, weak electrical current (1 to 2 mA) applied to electrodes on the scalp that modify cortical excitability.1,2 tDCS has been tested with favorable outcomes in individuals with stroke, Alzheimer disease, movement disorders, schizophrenia, and addiction.1,2

A Small but Emerging Body of Evidence

tDCS has produced mixed results in patients with MDD.3 Brunoni and colleagues performed a meta-analysis of individual patient data on 289 participants with MDD (mean age, 47.2 years; 62.3% women) in 6 randomized, sham-controlled studies.3 tDCS significantly improved response compared with sham procedures (34% vs 19%, respectively; odds ratio [OR], 2.44; 95% confidence interval [CI], 1.38-4.32; P=.002). Remission rates were also favorable (23.1% vs 12.7%, respectively; OR, 2.38; 95% CI, 1.22-4.64; P=.002). The trials did not uniformly categorize adverse events, but the researchers noted that both the tDCS and sham groups had similar drop-out rates.

“tDCS efficacy is still small, and it should be optimized,” noted lead author André Russowsky Brunoni, MD, PhD, associate professor at the Institute of Psychiatry at the University of São Paulo Medical School in Brazil. “There are some approaches for increasing its efficacy, such as combining with other therapies and/or increasing the dose, although this has not been systematically tested yet.”

Combination tDCS and Antidepressant Therapy

The SELECT-TDCS trial (ClinicalTrials.gov Identifier: NCT01033084) examined the cognitive effects of tDCS on 120 patients with MDD (mean age, 42 years; 68% women) in a 6-week trial of sertraline 50 mg/d vs placebo and tDCS vs sham procedure.4 As assessed by a battery of neuropsychological tests, such as the Mini-Mental Status Exam and the Montreal Cognitive Assessment, patients in the trial neither benefited nor regressed in their cognitive functioning with treatment.

tDCS for Treatment-Resistant MDD

Martin and colleagues sought to determine whether tDCS could be used for patients for whom 2 different pharmacotherapies were ineffective for MDD.5 In the open-label study, 20 patients (mean age, 47.4 years; 50% women) received tDCS during cognitive emotional therapy sessions 3 times a week for 6 weeks. The 17 completers had their mood, cognition, and emotion processing assessed at baseline, 3 weeks, and 6 weeks. At the end of the study, 41% of the participants experienced a ≥50% improvement in their depression score and none reported serious adverse events. During the stimulation, patients reported mild burning, redness, and tingling, which diminished by the end of the study.

“Current evidence suggests that tDCS when given by itself has limited antidepressant efficacy compared to standard medication treatment and that it is also not effective in more treatment-resistant patients,” said lead author Donel Martin, PhD, clinical neuropsychologist from the School of Psychiatry at the University of New South Wales in Sydney, Australia. “What our results suggest is that if patients complete a task during tDCS, which simultaneously activates relevant dysfunctional brain regions instead of doing nothing at all, better antidepressant effects may be achieved.”

Filling the tDCS Research Gaps

Scientists have yet to clearly elucidate the mechanism of action of low-current electrical stimulation with tDCS.2 Still to be discovered: how tDCS modulates neurons, how it affects the neural networks, and how the currents change behavior. When clinicians have a better understanding of the underlying mechanisms, they will be better equipped to select the appropriate patients, administer optimal dosages, pair with synergistic antidepressants, and accurately place the electrodes.

Co-author Opher Donchin, PhD, head of the biomedical engineering department at Ben-Gurion University of the Negev, Be’er Sheva, Israel, acknowledges that researchers and clinicians still need additional information for tDCS to progress. “[Functional magnetic resonance imaging] of the brain region before applying tDCS will assist in delivering tDCS with spatiotemporal accuracy,” he said. “Focal stimulation using small electrodes (with high-definition tDCS) is crucial in intensifying and restricting current flow around the intended region. Also, an individual’s genetic test to assess the sensitivity towards tDCS will determine subject-specific adjustment of stimulation strength.”

In animal studies, tDCS has demonstrated long-term changes in brain plasticity in subjects with depression, but scientists still do not know how this occurs.6 Although many studies extrapolated from depression trials, more needs to be elucidated about depressive phenotypes (eg, anxious, melancholic).

“The goal of the paper was to provide a rigorous framework so that future research may one day impact clinical care,” explained co-author Sarah H. Lisanby, MD, director of the Division of Translational Research and the Noninvasive Neuromodulation Unit at the National Institute of Mental Health in Bethesda, Maryland. “There is a need for better characterization/phenotyping of patients in a heterogeneous disorder, for rigorous trial designs, for optimizing spatial targeting and dosing such that the stimulation delivered to the brain is well characterized, and opportunities for combining tDCS with established efficacious interventions as an augmentation strategy.”

Summary and Clinical Applicability

The application of tDCS may ameliorate depression in patients with MDD. Despite some positive signals, tDCS remains an investigative therapy in the United States. More rigorous studies — including randomized, sham-controlled, and dose-ranging trials — are needed to determine optimal patient selection.

References

  1. Bennabi D, Haffen E. Transcranial direct current stimulation (tDCS): a promising treatment for major depressive disorderBrain Sci.2018;8(5):81.
  2. Das S, Holland P, Frens MA, Donchin O. Impact of transcranial direct current stimulation (tDCS) on neuronal functionsFront Neurosci. 2016;10:550.
  3. Brunoni AR, Moffa AH, Fregni F, et al. Transcranial direct current stimulation for acute major depressive episodes: meta-analysis of individual patient dataBr J Psychiatry. 2016;208(6):522-531.
  4. Brunoni AR, Tortella G, Benseñor IM, Lotufo PA, Carvalho AF, Fregni F. Cognitive effects of transcranial direct current stimulation in depression: results from the SELECT-TDCS trial and insights for further clinical trialsJ Affect Disord. 2016;202:46-52. doi: 10.1016/j.jad.2016.03.066
  5. Martin DM, Teng JZ, Lo TY, et al. Clinical pilot study of transcranial direct current stimulation combined with Cognitive Emotional Training for medication resistant depression. J Affect Disord. 2018;232:89-95.
  6. Bikson M, Brunoni AR, Charvet LE, et al. Rigor and reproducibility in research with transcranial electrical stimulation: an NIMH-sponsored workshopBrain Stimul. 2018;11(3):465-480.

via Transcranial Direct Current Stimulation Promising for Major Depressive Disorder – Psychiatry Advisor

, , , ,

Leave a comment

[VIDEO] What is tDCS? – YouTube

What is tDCS and how tDCS works. To try tDCS or learn more, visit http://www.caputron.com

 

, , ,

Leave a comment

[WEB SITE] tDCS application for motor rehabilitation

Neuer Inhalt

An increasing number of studies highlight the potential application of transcranial direct current stimulation (tDCS) for motor rehabilitation in neurological diseases as well as in healthy aging. tDCS is a technique where a constant weak electric current is passed through scalp electrodes and has been shown to modulate excitability in both cortical and subcortical brain areas. Although the results of tDCS interventions for motor rehabilitation are still preliminary, they encourage further research to better understand its therapeutic potential and to inform optimal clinical use.

This collection of articles aims to present the most recent advances in tDCS for motor rehabilitation, addressing topics such as theoretical, methodological, and practical approaches to be considered when designing tDCS-based rehabilitation. Submissions of both experimental and review studies is encouraged.

This collection of articles has not been sponsored and articles have undergone the journal’s standard peer-review process overseen by the Editor-in-Chief and Associate Editors. The Editor-in-Chief and Associate Editors declare no competing interests.

  1. Content Type:Review

    Transcranial direct current stimulation for the treatment of motor impairment following traumatic brain injury

    After traumatic brain injury (TBI), motor impairment is less common than neurocognitive or behavioral problems. However, about 30% of TBI survivors have reported motor deficits limiting the activities of daily…

    Authors:Won-Seok Kim, Kiwon Lee, Seonghoon Kim, Sungmin Cho and Nam-Jong Paik

    Citation:Journal of NeuroEngineering and Rehabilitation 2019 16:14

    Published on: 25 January 2019

  2. Content Type:Review

    Transcranial direct current stimulation for promoting motor function in cerebral palsy: a review

    Transcranial direct current stimulation (tDCS) has the potential to improve motor function in a range of neurological conditions, including Cerebral Palsy (CP). Although there have been many studies assessing …

    Authors:Melanie K. Fleming, Tim Theologis, Rachel Buckingham and Heidi Johansen-Berg

    Citation:Journal of NeuroEngineering and Rehabilitation 2018 15:121

    Published on: 20 December 2018

  3. Content Type:Commentary

    Transcranial direct current stimulation (tDCS) for upper limb rehabilitation after stroke: future directions.

    Transcranial Direct Current Stimulation (tDCS) is a potentially useful tool to improve upper limb rehabilitation outcomes after stroke, although its effects in this regard have shown to be limited so far. Addi…

    Authors:Bernhard Elsner, Joachim Kugler and Jan Mehrholz

    Citation:Journal of NeuroEngineering and Rehabilitation 2018 15:106

    Published on: 15 November 2018

  4. Content Type:Research

    Home-based transcranial direct current stimulation plus tracking training therapy in people with stroke: an open-label feasibility study

    Transcranial direct current stimulation (tDCS) is an effective neuromodulation adjunct to repetitive motor training in promoting motor recovery post-stroke. Finger tracking training is motor training whereby p…

    Authors:Ann Van de Winckel, James R. Carey, Teresa A. Bisson, Elsa C. Hauschildt, Christopher D. Streib and William K. Durfee

    Citation:Journal of NeuroEngineering and Rehabilitation 2018 15:83

    Published on: 18 September 2018

via tDCS application for motor rehabilitation

, , ,

Leave a comment

%d bloggers like this: