Archive for category tDCS/rTMS

[ΒΟΟΚ] Navigated Transcranial Magnetic Stimulation in Neurosurgery – Βιβλία Google

Εξώφυλλο
Sandro Krieg
Springer, 13 Ιουλ 2017295 σελίδες
This book is the first comprehensive work summarizing the advances that have been made in the neurosurgical use of navigated transcranial magnetic stimulation (nTMS) over the past ten years. Having increasingly gained acceptance as a presurgical mapping modality in neurosurgery, today it is widely used for preoperative mapping of cortical motor and language function, risk stratification and improving the accuracy of subcortical fiber bundle visualization. 

This unique work will provide neurosurgeons and neuroscientists who are starting their nTMS program essential and detailed information on the technique and protocols, as well as the current clinical evidence on and limitations of the various applications of nTMS. At the same time, more experienced nTMS users looking for deeper insights into nTMS mapping and treatment in neurosurgery will find clearly structured, accessible information. The book was prepared by an international mix of authors, each of which was chosen for their status as a respected expert on the respective subtopic, as evinced by their landmark publications on nTMS.

Προεπισκόπηση αυτού του βιβλίου »

Source: Navigated Transcranial Magnetic Stimulation in Neurosurgery – Βιβλία Google

, , , ,

Leave a comment

[Abstract] Basic and functional effects of transcranial Electrical Stimulation (tES)—An introduction

Highlights

    – Clinical and research interest in noninvasive brain stimulation has grown exponentially.– Here, we present the main findings on the physiological basis of transcranial electric stimulation (tES).– In a second part, we discuss evidence for applications of tES in behavioral research and clinical settings.– We note several challenges which need to be addressed before extensive clinical use of tES.

Abstract

Non-invasive brain stimulation (NIBS) has been gaining increased popularity in human neuroscience research during the last years. Among the emerging NIBS tools is transcranial electrical stimulation (tES), whose main modalities are transcranial direct, and alternating current stimulation (tDCS, tACS). In tES, a small current (usually less than 3 mA) is delivered through the scalp. Depending on its shape, density, and duration, the applied current induces acute or long-lasting effects on excitability and activity of cerebral regions, and brain networks. tES is increasingly applied in different domains to (a) explore human brain physiology with regard to plasticity, and brain oscillations, (b) explore the impact of brain physiology on cognitive processes, and (c) treat clinical symptoms in neurological and psychiatric diseases. In this review, we give a broad overview of the main mechanisms and applications of these brain stimulation tools.

Source: Basic and functional effects of transcranial Electrical Stimulation (tES)—An introduction – ScienceDirect

, , , , , , , , , ,

Leave a comment

[WEB SITE] Electric Brain Stimulation No Better Than Meds For Depression: Study

Wednesday, June 28, 2017

HealthDay news imageWEDNESDAY, June 28, 2017 (HealthDay News) — For people who battle depression and can’t find relief, stimulating the brain with electric impulses may help. But a new study by Brazilian researchers says it’s still no better than antidepressant medication.

In a trial that pitted transcranial, direct-current stimulation (tDCS) against the antidepressant escitalopram (Lexapro), researchers found that lessening of depression was about the same for either treatment.

“We found that antidepressants are better than tDCS and should be the treatment of choice,” said lead researcher Dr. Andre Brunoni. He’s director of the Service of Interdisciplinary Neuromodulation at the University of Sao Paulo.

“In circumstances that antidepressant drugs cannot be used, tDCS can be considered, as it was more effective than placebo,” he said.

The researchers used the Hamilton Depression Rating Scale. This test has a score range of zero to 52, with higher scores indicating more depression.

People who received brain stimulation lowered their depression score by 9 points. Those taking Lexapro had depression scores drop by 11 points. Patients receiving placebo experienced a drop of 6 points in their depression score, the researchers found.

“tDCS has been increasingly used as an off-label treatment by physicians,” Brunoni said. “Our study revealed that it cannot be recommended as a first-line therapy yet and should be investigated further.”

The report was published June 29 in the New England Journal of Medicine.

Dr. Sarah Lisanby is director of the Division of Translational Research at the U.S. National Institute of Mental Health. “When you consider if this treatment adds anything to the ways we have to treat depression, you want to know that a new treatment is better than or at least as good as what’s available today,” she said.

“But this study failed to show that tDCS was better than medication,” said Lisanby, who wrote an accompanying journal editorial.

Lisanby pointed out that unapproved tDCS units are being sold on the internet. She cautioned that trying brain stimulation at home to relieve depression or enhance brain function is risky business, because side effects can include mania.

“There are people who are doing do-it-yourself tDCS,” she said. “People are trying to find ways to treat depression, but it’s important for them to know that tDCS is experimental and not proven to be as effective or more effective than antidepressant medications.”

To get a better idea of how well brain stimulation worked for depression, Brunoni and colleagues randomly assigned 245 patients suffering from depression to one of four groups. One group had brain stimulation plus a placebo pill, another had fake brain stimulation plus Lexapro. The third group had brain stimulation plus Lexapro, and the final group had fake brain stimulation plus a placebo.

Brain stimulation involved wearing sponge-covered electrodes on the head. The treatment was given for 15 consecutive days at 30 minutes each, then once a week for seven weeks.

Lexapro was taken daily for three weeks, after which the daily dose was increased from 10 milligrams (mg) to 20 mg for the next seven weeks.

After 10 weeks, patients receiving brain stimulation fared no better than those taking Lexapro. Patients receiving brain stimulation, however, suffered from more side effects, the researchers found.

Specifically, patients receiving brain stimulation had higher rates of skin redness, ringing in the ears and nervousness than those receiving fake brain stimulation.

In addition, two patients receiving brain stimulation developed new cases of mania. That condition can include elevated mood, inflated self-esteem, decreased need for sleep, racing thoughts, difficulty maintaining attention and excessive involvement in pleasurable activities.

Patients taking Lexapro reported more frequent sleepiness and constipation.

Brunoni, however, is not ready to write off brain stimulation as a treatment for depression based on this study.

“We did not test, in this study, the combined effects of tDCS with other techniques, such as cognitive behavior therapy and other antidepressant drugs,” he said.

“Previous findings from our group showed that tDCS increases the efficacy of antidepressant drugs, however, it should not be used alone, and its use must be supervised by physicians due to the side effects,” Brunoni said.

Lisanby said the tDCS dose in the study may be in question. She said it may have to be adjusted to each individual patient in terms of how strong the electrical stimulation should be. The treatment length also needs to be individualized, as does what part of the brain it should be directed toward.

Also, “we need larger studies to give us the definitive answer about whether tDCS is better than the treatments we have today,” Lisanby said.

SOURCES: Andre Brunoni, M.D., Ph.D., director, Service of Interdisciplinary Neuromodulation, University of Sao Paulo, Brazil; Sarah Lisanby, M.D., director, Division of Translational Research, U.S. National Institute of Mental Health; June 29, 2017, New England Journal of Medicine

Source: Electric Brain Stimulation No Better Than Meds For Depression: Study: MedlinePlus Health News

, , ,

Leave a comment

[VIDEO] Can You Use Electricity to Supercharge Your Brain? | tDCS – YouTube

,

Leave a comment

[ARTICLE] Does non-invasive brain stimulation modify hand dexterity? Protocol for a systematic review and meta-analysis – Full Text

 

Abstract

Introduction Dexterity is described as coordinated hand and finger movement for precision tasks. It is essential for day-to-day activities like computer use, writing or buttoning a shirt. Integrity of brain motor networks is crucial to properly execute these fine hand tasks. When these networks are damaged, interventions to enhance recovery are frequently accompanied by unwanted side effects or limited in their effect. Non-invasive brain stimulation (NIBS) are postulated to target affected motor areas and improve hand motor function with few side effects. However, the results across studies vary, and the current literature does not allow us to draw clear conclusions on the use of NIBS to promote hand function recovery. Therefore, we developed a protocol for a systematic review and meta-analysis on the effects of different NIBS technologies on dexterity in diverse populations. This study will potentially help future evidence-based research and guidelines that use these NIBS technologies for recovering hand dexterity.

Methods and analysis This protocol will compare the effects of active versus sham NIBS on precise hand activity. Records will be obtained by searching relevant databases. Included articles will be randomised clinical trials in adults, testing the therapeutic effects of NIBS on continuous dexterity data. Records will be studied for risk of bias. Narrative and quantitative synthesis will be done.

Strengths and limitations of this study

  • This is a novel systematic review and meta-analysis focusing specifically on dexterity.

  • We use continuous data not dependent on the evaluator or participant.

  • This work will potentially help future evidence-based research and guidelines to refine non-invasive brain stimulation.

Introduction

The hand’s somatotopy is extensively represented in the human motor cortex.1 2 Phylogenetically, this relates to the development of corticomotoneuronal cells that specialise in creating patterns of muscle activity that synergises into highly skilled movements.3 This organised hand-and-finger movement to use objects during a specific task is known as dexterity.4 Evolutionary, dexterity played a pivotal role in human survival and is fundamental to actives of daily living, and hence quality of life.5 6

This precision motor movement relies on integration of information from the cerebral cortex, the spinal cord, several neuromusculoskeletal systems and the external world to coordinate finger force control, finger independence, timing and sequence performance.7 During these tasks, multivoxel pattern decoding shows bilateral primary motor cortex activation (M1), which was responsible for muscle recruitment timing and hand movement coordination.8 9 This is related to motor cortex connectivity through the corpus callosum, to motor regions of the cerebellum and white matter integrity.10–15 Adequate motor output translates into successfully executed tasks, like picking up objects, turning over cards, manipulating cutlery, writing, using computer–hand interfaces like smartphones, playing an instrument and performing many other similarly precise skills.16

These motor tasks are negatively impacted when motor output networks are affected, as seen in stroke or Parkinson’s disease.17 18 Therapeutic interventions that restore these damaged motor networks can be vital to restore fine motor movement after injury occurs. Pharmaceutical approaches often lead to adverse effects such as dyskinesias in Parkinson’s disease. Moreover, even after intensive rehabilitation programmes, only about 5%–20% of patients with stroke fully recover their motor function.19–21 Non-invasive brain stimulation (NIBS) techniques, like transcranial direct current stimulation (tDCS) and repetitive transcranial magnetic stimulation (rTMS), are proposed adjuvant or stand-alone interventions to target these affected areas and improve fine motor function.22 23 Briefly, these NIBS interventions are shown to influence the nervous system’s excitability and modulate long-term plasticity, which may be beneficial to the brain’s recovery of functions after injury.24–27

Fine hand motor ability is not studied as much in previous reviews of NIBS. Specifically, one narrative review focuses on rTMS in affected hand recovery poststroke; however, it does not consider the implications of varying International Classification of Functioning, Disability and Health (ICF) domains, data types and rater dependent outcomes, and its interpretability is limited without quantitative synthesis.28–31 The overarching conclusion was supportive of rTMS for paretic hand recovery, though with limited data to support its regular use, and a pressing need to study individualised patient parameters.28 One meta-analysis had positive and significant results when specifically studying the effects of rTMS on finger coordination and hand function after stroke.32 However, while various meta-analysis, and another systematic review, studied upper-limb movement after NIBS in distinct populations, they did not focus on precise hand function, pooled upper-limb outcomes with hand outcomes and presented mixed results.33–38

Motivated by this gap in the evidence for NIBS in dexterity, we will do a systematic review and meta-analysis of the literature on these brain stimulation technologies using outcomes that focus exactly on manual dexterity. These outcomes will be continuous and not dependent on the participant’s or rater’s observation (ie, they will be measured in seconds, or number of blocks/pegs placed, and not by an individual’s interpretation). They will be comprised of multiple domains as defined by the ICF, providing an appreciation of function rather than only condition or disease.29–31 By focusing on the ICF model, we will be able to study dexterity across a larger sample of studies, NIBS techniques and conditions in order to provide a better understanding of brain stimulation efficacy on hand function in various populations.[…]

Continue —. Does non-invasive brain stimulation modify hand dexterity? Protocol for a systematic review and meta-analysis | BMJ Open

, , , , , , ,

Leave a comment

[ARTICLE] Personalized Brain-Computer Interface Models for Motor Rehabilitation – Full Text PDF

Abstract

We propose to fuse two currently separate research lines on novel therapies for stroke rehabilitation: brain-computer interface (BCI) training and transcranial electrical stimulation (TES). Specifically, we show that BCI technology can be used to learn personalized decoding models that relate the global configuration of brain rhythms in individual subjects (as measured by EEG) to their motor performance during 3D reaching movements. We demonstrate that our models capture substantial across-subject heterogeneity, and argue that this heterogeneity is a likely cause of limited effect sizes observed in TES for enhancing motor performance. We conclude by discussing how our personalized models can be used to derive optimal TES parameters, e.g., stimulation site and frequency, for individual patients.

I. INTRODUCTION
Motor deficits are one of the most common outcomes of stroke. According to the World Health Organization, 15 million people worldwide suffer a stroke each year. Of these, five million are permanently disabled. For this third, upper limb weakness and loss of hand function are among the most devastating types of disabilities, which affect the quality of their daily life [1]. Despite a wide range of rehabilitation therapies, including medication treatment [2], conventional physiotherapy [3], and robot physiotherapy [4], only approximately 20% of patients achieve some form of functional recovery in the first six months [5], [6].

Current research on novel therapies includes neurofeedback training based on brain-computer interface (BCI) technology and transcranial electrical stimulation (TES). The former approach attempts to support cortical reorganization by providing haptic feedback with a robotic exoskeleton that is congruent to movement attempts, as decoded in real-time from neuroimaging data [7], [8]. The latter type of research aims to reorganize cortical networks in a way that supports motor performance, because post-stroke alterations of cortical networks have been found to correlate with the severity of motor deficits [9], [10]. While initial evidence suggested that both approaches, BCIbased training [11] and TES [12], have a positive impact, the significance of these results over conventional physiotherapy was not always achieved by different studies [13], [14], [15].

One potential explanation for the difficulty to replicate the initially promising findings is the heterogeneity of stroke patients. Different locations of stroke-induced structural changes
are likely to result in substantial across-patient variance in the functional reorganization of cortical networks. As a result, not all patients may benefit from the same neurofeedback or stimulation protocol. We thus propose to fuse these two research themes and use BCI technology to learn personalized models that relate the configuration of cortical networks to each patient’s motor deficits. These personalized models may then be used to predict which TES parameters, e.g., spatial location and frequency band, optimally support rehabilitation in each individual patient.

In this study, we address the first step towards personalized TES for stroke rehabilitation. Using a transfer learning framework developed in our group [16], we show how to create personalized decoding models that relate the EEG of healthy subjects during a 3D reaching task to their motor performance in individual trials. We further demonstrate that the resulting decoding models capture substantial acrosssubject heterogeneity, thereby providing empirical support for the need to personalize models. We conclude by reviewing our findings in the light of TES studies to improve motor performance in healthy subjects, and discuss how personalized TES parameters may be derived from our models.[…]

Full Text PDF

, , , ,

Leave a comment

[Abstract] Effects of Transcranial direct current stimulation with sensory modulation on stroke motor rehabilitation: A randomized controlled trial  

 

Abstract

Objective

To test whether a multi-strategy intervention enhanced recovery immediately and longitudinally in patients with severe to moderate upper extremity (UE) paresis.

Design

Double-blind randomized controlled trial with placebo control.

Setting

An outpatient department of a local medical center.

Participants

People (n = 25) with chronic stroke were randomly assigned to 2 groups. Participants in the transcranial direct current stimulation with sensory modulation (tDCS-SM) and in the control group were 55.3±11.5 (n=14) and 56.9±13.5 (n=11) years old, respectively.

Interventions

8-week intervention. The tDCS-SM group received bilateral tDCS, bilateral cutaneous anesthesia, and high repetitions of passive movements on the paretic hand. The control group received the same passive movements but with sham tDCS and sham anesthesia. During the experiment, all participants continued their regular rehabilitation.

Main outcome measures

Voluntary UE movement, spasticity, UE function, and basic activities of daily living. Outcomes were assessed at baseline, at post-intervention, and at 3- and 6-month follow-ups.

Results

No significant differences were found between groups. However, there was a trend that the voluntary UE movement improved more in the tDCS-SM group than in the control group, with a moderate immediate effect (partial η2, ηp2 = 0.14, p = 0.07) and moderate long-term effects (ηp2 =0.17, p = 0.05 and ηp2 = 0.12, p = 0.10). Compared with the control group, the tDCS-SM group had a trend of a small immediate effect (ηp2 = 0.02 – 0.04) on reducing spasticity but no long-term effect. A trend of small immediate and long-term effects in favor of tDCS-SM was found on UE function and daily function recovery (ηp2= 0.02 – 0.09).

Conclusions

Accompanied with traditional rehabilitation, tDCS-SM had a non-significant trend of having immediate and longitudinal effects on voluntary UE movement recovery in patients with severe to moderate UE paresis after stroke, but its effects on spasticity reduction and functional recovery may be limited. (NCT01847157)

Source: Effects of Transcranial direct current stimulation with sensory modulation on stroke motor rehabilitation: A randomized controlled trial – Archives of Physical Medicine and Rehabilitation

, , , , , , , , , ,

Leave a comment

[BLOG POST] UCLA offers transcranial magnetic stimulation to treat patients with depression

Download PDF Copy

Americans spend billions of dollars each year on antidepressants, but the National Institutes of Health estimates that those medications work for only 60 percent to 70 percent of people who take them. In addition, the number of people with depression has increased 18 percent since 2005, according to the World Health Organization, which this year launched a global campaign encouraging people to seek treatment.

The Semel Institute for Neuroscience and Human Behavior at UCLA is one of a handful of hospitals and clinics nationwide that offer a treatment that works in a fundamentally different way than drugs. The technique, transcranial magnetic stimulation, beams targeted magnetic pulses deep inside patients’ brains — an approach that has been likened to rewiring a computer.

TMS has been approved by the FDA for treating depression that doesn’t respond to medications, and UCLA researchers say it has been underused. But new equipment being rolled out this summer promises to make the treatment available to more people.

“We are actually changing how the brain circuits are arranged, how they talk to each other,” said Dr. Ian Cook, director of the UCLA Depression Research and Clinic Program. “The brain is an amazingly changeable organ. In fact, every time people learn something new, there are physical changes in the brain structure that can be detected.”

Nathalie DeGravel, 48, of Los Angeles had tried multiple medications and different types of therapy, not to mention many therapists, for her depression before she heard about magnetic stimulation. She discussed it with her psychiatrist earlier this year, and he readily referred her to UCLA.

Within a few weeks, she noticed relief from the back pain she had been experiencing; shortly thereafter, her depression began to subside. DeGravel says she can now react more “wisely” to life’s daily struggles, feels more resilient and is able to do much more around the house. She even updated her resume to start looking for a job for the first time in years.

During TMS therapy, the patient sits in a reclining chair, much like one used in a dentist’s office, and a technician places a magnetic stimulator against the patient’s head in a predetermined location, based on calibrations from brain imaging.

The stimulator sends a series of magnetic pulses into the brain. People who have undergone the treatment commonly report the sensation is like having someone tapping their head, and because of the clicking sound it makes, patients often wear earphones or earplugs during a session.

TMS therapy normally takes 30 minutes to an hour, and people typically receive the treatment several days a week for six weeks. But the newest generation of equipment could make treatments less time-consuming.

“There are new TMS devices recently approved by the FDA that will allow patients to achieve the benefits of the treatment in a much shorter period of time,” said Dr. Andrew Leuchter, director of the Semel Institute’s TMS clinical and research service. “For some patients, we will have the ability to decrease the length of a treatment session from 37.5 minutes down to 3 minutes, and to complete a whole course of TMS in two weeks.”

Leuchter said some studies have shown that TMS is even better than medication for the treatment of chronic depression. The approach, he says, is underutilized. “We are used to thinking of psychiatric treatments mostly in terms of either talk therapies, psychotherapy or medications,” Leuchter said. “TMS is a revolutionary kind of treatment.”

Bob Holmes of Los Angeles is one of the 16 million Americans who report having a major depressive episode each year, and he has suffered from depression his entire life. He calls the TMS treatment he received at UCLA Health a lifesaver.

“What this did was sort of reawaken everything, and it provided that kind of jolt to get my brain to start to work again normally,” he said.

Doctors are also exploring whether the treatment could also be used for a variety of other conditions including schizophrenia, epilepsy, Parkinson’s disease and chronic pain.

“We’re still just beginning to scratch the surface of what this treatment might be able to do for patients with a variety of illnesses,” Leuchter said. “It’s completely noninvasive and is usually very well tolerated.”

Source: UCLA offers transcranial magnetic stimulation to treat patients with depression

, , , ,

Leave a comment

[WEB SITE] Doctors use magnetic stimulation to ‘rewire’ the brain for people with depression

Doctors use magnetic stimulation to ‘rewire’ the brain for people with depression

Dr. Andrew Leuchter talks with a patient who is about to undergo transcranial magnetic stimulation, which treats depression by sending magnetic pulses to a specific area of the brain. Credit: UCLA Health

Americans spend billions of dollars each year on antidepressants, but the National Institutes of Health estimates that those medications work for only 60 percent to 70 percent of people who take them. In addition, the number of people with depression has increased 18 percent since 2005, according to the World Health Organization, which this year launched a global campaign encouraging people to seek treatment.

The Semel Institute for Neuroscience and Human Behavior at UCLA is one of a handful of hospitals and clinics nationwide that offer a  that works in a fundamentally different way than drugs. The technique, , beams targeted magnetic pulses deep inside patients’ brains—an approach that has been likened to rewiring a computer.

TMS has been approved by the FDA for treating  that doesn’t respond to medications, and UCLA researchers say it has been underused. But new equipment being rolled out this summer promises to make the treatment available to more people.

“We are actually changing how the brain circuits are arranged, how they talk to each other,” said Dr. Ian Cook, director of the UCLA Depression Research and Clinic Program. “The brain is an amazingly changeable organ. In fact, every time people learn something new, there are physical changes in the brain structure that can be detected.”

Nathalie DeGravel, 48, of Los Angeles had tried multiple medications and different types of therapy, not to mention many therapists, for her depression before she heard about magnetic stimulation. She discussed it with her psychiatrist earlier this year, and he readily referred her to UCLA.

Within a few weeks, she noticed relief from the back pain she had been experiencing; shortly thereafter, her depression began to subside. DeGravel says she can now react more “wisely” to life’s daily struggles, feels more resilient and is able to do much more around the house. She even updated her resume to start looking for a job for the first time in years.

During TMS therapy, the patient sits in a reclining chair, much like one used in a dentist’s office, and a technician places a magnetic stimulator against the patient’s head in a predetermined location, based on calibrations from brain imaging.

The stimulator sends a series of  into the brain. People who have undergone the treatment commonly report the sensation is like having someone tapping their head, and because of the clicking sound it makes, patients often wear earphones or earplugs during a session.

TMS therapy normally takes 30 minutes to an hour, and people typically receive the treatment several days a week for six weeks. But the newest generation of equipment could make treatments less time-consuming.

“There are new TMS devices recently approved by the FDA that will allow patients to achieve the benefits of the treatment in a much shorter period of time,” said Dr. Andrew Leuchter, director of the Semel Institute’s TMS clinical and research service. “For some patients, we will have the ability to decrease the length of a treatment session from 37.5 minutes down to 3 minutes, and to complete a whole course of TMS in two weeks.”

Leuchter said some studies have shown that TMS is even better than medication for the treatment of chronic depression. The approach, he says, is underutilized.

“We are used to thinking of psychiatric treatments mostly in terms of either talk therapies, psychotherapy or medications,” Leuchter said. “TMS is a revolutionary kind of treatment.”

Bob Holmes of Los Angeles is one of the 16 million Americans who report having a major depressive episode each year, and he has suffered from depression his entire life. He calls the TMS treatment he received at UCLA Health a lifesaver.

“What this did was sort of reawaken everything, and it provided that kind of jolt to get my  to start to work again normally,” he said.

Doctors are also exploring whether the treatment could also be used for a variety of other conditions including schizophrenia, epilepsy, Parkinson’s disease and chronic pain.

“We’re still just beginning to scratch the surface of what this treatment might be able to do for patients with a variety of illnesses,” Leuchter said. “It’s completely noninvasive and is usually very well tolerated.”

 Explore further: Study finds non-invasive method that may help speed relief from depression

Source: Doctors use magnetic stimulation to ‘rewire’ the brain for people with depression

, ,

Leave a comment

[Abstract] Changes in transcranial magnetic stimulation outcome measures in response to upper-limb physical training in stroke: A systematic review of randomized controlled trials

Abstract

Background

Physical training is known to be an effective intervention to improve sensorimotor impairments after stroke. However, the link between brain plastic changes, assessed by transcranial magnetic stimulation (TMS), and sensorimotor recovery in response to physical training is still misunderstood. We systematically reviewed reports of randomized controlled trials (RCTs) involving the use of TMS over the primary motor cortex (M1) to probe brain plasticity after upper-limb physical training interventions in people with stroke.

Methods

We searched 5 databases for articles published up to October 2016, with additional studies identified by hand-searching. RCTs had to investigate pre/post-intervention changes in at least one TMS outcome measure. Two independent raters assessed the eligibility of potential studies and reviewed the selected articles’ quality by using 2 critical appraisal scales.

Results

In total, 14 reports of RCTs (pooled participants = 358; mean 26 ± 12 per study) met the selection criteria. Overall, 11 studies detected plastic changes with TMS in the presence of clinical improvements after training, and these changes were more often detected in the affected hemisphere by using map area and motor evoked potential (MEP) latency outcome measures. Plastic changes mostly pointed to increased M1/corticospinal excitability and potential interhemispheric rebalancing of M1 excitability, despite sometimes controversial results among studies. Also, the strength of the review observations was affected by heterogeneous TMS methods and upper-limb interventions across studies as well as several sources of bias within the selected studies.

Conclusions

The current evidence encourages the use of TMS outcome measures, especially MEP latency and map area to investigate plastic changes in the brain after upper-limb physical training post-stroke. However, more studies involving rigorous and standardized TMS procedures are needed to validate these observations.

Keywords

  • Transcranial magnetic stimulation,
  • Stroke,
  • Upper-limb physical training,
  • Systematic review,
  • Brain plasticity,
  • Clinical outcome

Source: Elsevier: Article Locator

, , , , , , , , ,

Leave a comment

%d bloggers like this: