Archive for category tDCS/rTMS

[Abstract] Functional Brain Stimulation in a Chronic Stroke Survivor With Moderate Impairment  


OBJECTIVE. To determine the impact of transcranial direct current stimulation (tDCS) combined with repetitive, task-specific training (RTP) on upper-extremity (UE) impairment in a chronic stroke survivor with moderate impairment.

METHOD. The participant was a 54-yr-old woman with chronic, moderate UE hemiparesis after a single stroke that had occurred 10 yr before study enrollment. She participated in 45-min RTP sessions 3 days/wk for 8 wk. tDCS was administered concurrent to the first 20 min of each RTP session.

RESULTS. Immediately after intervention, the participant demonstrated marked score increases on the UE section of the Fugl–Meyer Scale and the Motor Activity Log (on both the Amount of Use and the Quality of Movement subscales).

CONCLUSION. These data support the use of tDCS combined with RTP to decrease impairment and increase UE use in chronic stroke patients with moderate impairment. This finding is crucial, given the paucity of efficacious treatment approaches in this impairment level.

Related Articles
Related Topics

Source: Functional Brain Stimulation in a Chronic Stroke Survivor With Moderate Impairment | American Journal of Occupational Therapy

, , , , , , , , , ,

Leave a comment

[ARTICLE] Using Brain Oscillations and Corticospinal Excitability to Understand and Predict Post-Stroke Motor Function – Full Text

What determines motor recovery in stroke is still unknown and finding markers that could predict and improve stroke recovery is a challenge. In this study, we aimed at understanding the neural mechanisms of motor function recovery after stroke using neurophysiological markers by means of cortical excitability (Transcranial Magnetic Stimulation – TMS) and brain oscillations (electroencephalography – EEG). In this cross-sectional study, fifty-five subjects with chronic stroke (62±14 yo, 17 women, 32±42 months post-stroke) were recruited in two sites. We analyzed TMS measures (i.e. motor threshold – MT – of the affected and unaffected sides) and EEG variables (i.e. power spectrum in different frequency bands and different brain regions of the affected and unaffected hemispheres) and their correlation with motor impairment as measured by Fugl-Meyer. Multiple univariate and multivariate linear regression analyses were performed to identify the predictors of good motor function. A significant interaction effect of MT in the affected hemisphere and power in beta bandwidth over the central region for both affected and unaffected hemispheres was found. We identified that motor function positively correlates with beta rhythm over the central region of the unaffected hemisphere, while it negatively correlates with beta rhythm in the affected hemisphere. Our results suggest that cortical activity in the affected and unaffected hemisphere measured by EEG provides new insights on the association between high frequency rhythms and motor impairment, highlighting the role of excess of beta in the affected central cortical region in poor motor function in stroke recovery.


Stroke is a leading cause of morbidity, mortality, and disability worldwide (12). Among the sequels of stroke, motor impairment is one of the most relevant, since it conditions the quality of life of patients, it reduces their capability to perform their daily activities and it impairs their autonomy (3). Despite the advancements of the acute stroke therapy, patients require an intensive rehabilitation program that will partially determine the extent of their recovery (4). These rehabilitation programs aim at stimulating cortical plasticity to improve motor performance and functional recovery (5). However, what determines motor improvement is still unknown. Indeed, finding markers that could predict and enhance stroke recovery is still a challenge (6). Different types of biomarkers exist: diagnostic, prognostic, surrogate outcome, and predictive biomarkers (7). The identification of these biomarkers is critical in the management of stroke patients. In the field of stroke research, great attention has been put to biomarkers found in the serum, especially in acute care. However, research on biomarkers of stroke recovery is still limited, especially using neurophysiological tools.

A critical research area in stroke is to understand the neural mechanisms underlying motor recovery. In this context, neurophysiological techniques such as transcranial magnetic stimulation (TMS) and electroencephalography (EEG) are useful tools that could be used to identify potential biomarkers of stroke recovery. However, there is still limited data to draw further conclusions on neural reorganization in human trials using these techniques. A few studies have shown that, in acute and sub-acute stage, stroke patients present increased power in low frequency bands (i.e., delta and theta bandwidths) in both affected and unaffected sides, as well as increased delta/alpha ratio in the affected brain area; these patterns being also correlated to functional outcome (811). Recently, we have identified that, besides TMS-indexed motor threshold (MT), an increased excitability in the unaffected hemisphere, coupled with a decreased excitability in the affected hemisphere, was associated with poor motor function (12), as measured by Fugl-Meyer (FM) [assessing symptoms severity and motor recovery in post-stroke patients with hemiplegia—Fugl-Meyer et al. (13); Gladstone et al. (14)]. However, MT measurement is associated with a poor resolution as it indexes global corticospinal excitability. Therefore, combining this information with direct cortical measures such as cortical oscillations, as measured by EEG, can help us to understand further neural mechanisms of stroke recovery.

To date, there are very few studies looking into EEG and motor recovery. For that reason, we aimed, in the present study, to investigate the relationship between motor impairment, EEG, and TMS variables. To do so, we conducted a prospective multicenter study of patients who had suffered from a stroke, in which we measured functional outcome using FM and performed TMS and EEG recordings. Based on our preliminary work, we expected to identify changes in interhemispheric imbalances on EEG power, especially in frequency bands associated with learning, such as alpha and beta bandwidths. […]

Continue —> Frontiers | Using Brain Oscillations and Corticospinal Excitability to Understand and Predict Post-Stroke Motor Function | Neurology

Figure 1. Topoplots showing the topographic distribution of high-beta bandwidth (25 Hz) for every individual. Red areas represent higher high-beta activity, while blue areas represent lower high-beta activity. Central region (C3 or C4) in red stands for the affected side. For patients with poor motor function, a higher beta activity of the affected central region as compared to the affected side is observed in 16 out of 28 individuals. For patients with good motor function, a similar activity over central regions bilaterally, or higher activity over the unaffected central area can be identified in 21 out of 27 individuals. FM = Fugl-Meyer.

, , , , , , , ,

Leave a comment

[ARTICLE] Effect of tDCS stimulation of motor cortex and cerebellum on EEG classification of motor imagery and sensorimotor band power – Full Text



Transcranial direct current stimulation (tDCS) is a technique for brain modulation that has potential to be used in motor neurorehabilitation. Considering that the cerebellum and motor cortex exert influence on the motor network, their stimulation could enhance motor functions, such as motor imagery, and be utilized for brain-computer interfaces (BCIs) during motor neurorehabilitation.


A new tDCS montage that influences cerebellum and either right-hand or feet motor area is proposed and validated with a simulation of electric field. The effect of current density (0, 0.02, 0.04 or 0.06 mA/cm2) on electroencephalographic (EEG) classification into rest or right-hand/feet motor imagery was evaluated on 5 healthy volunteers for different stimulation modalities: 1) 10-minutes anodal tDCS before EEG acquisition over right-hand or 2) feet motor cortical area, and 3) 4-seconds anodal tDCS during EEG acquisition either on right-hand or feet cortical areas before each time right-hand or feet motor imagery is performed. For each subject and tDCS modality, analysis of variance and Tukey-Kramer multiple comparisons tests (p <0.001) are used to detect significant differences between classification accuracies that are obtained with different current densities. For tDCS modalities that improved accuracy, t-tests (p <0.05) are used to compare μ and βband power when a specific current density is provided against the case of supplying no stimulation.


The proposed montage improved the classification of right-hand motor imagery for 4 out of 5 subjects when the highest current was applied for 10 minutes over the right-hand motor area. Although EEG band power changes could not be related directly to classification improvement, tDCS appears to affect variably different motor areas on μ and/or β band.


The proposed montage seems capable of enhancing right-hand motor imagery detection when the right-hand motor area is stimulated. Future research should be focused on applying higher currents over the feet motor cortex, which is deeper in the brain compared to the hand motor cortex, since it may allow observation of effects due to tDCS. Also, strategies for improving analysis of EEG respect to accuracy changes should be implemented.


Transcranial direct current stimulation (tDCS) is a noninvasive technique for brain stimulation where direct current is supplied through two or more electrodes in order to modulate temporally brain excitability [12]. This technique has shown potential to improve motor performance and motor learning [345]. Hence, it could be applied in motor neurorehabilitacion [1]. However, tDCS effects vary depending on several factors, such as the size or position of the stimulation electrodes and the current intensity that is applied [6] or the mental state of the user [7]. Therefore, it should be considered that outcomes of tDCS studies are the result of different affected brain networks that may be involved in attention and movements, among other processes.

Volitional locomotion requires automatic control of movement while the cerebral cortex provides commands that are transmitted by neural projections toward the brainstem and the spinal cord. This control involves predictive motor operations that link activity from the cerebral cortex, cerebellum, basal ganglia and brainstem in order to modify actions at the spinal cord level [8]. In general, this set of structures can be considered to form a motor network that allow voluntary movement.

Different parts of the cerebral cortex participate in the performance of self-initiated movement, like the supplementary motor (SMA), the primary motor (M1) and premotor (PM) areas. It is known that M1 is activated during motor execution. Excitatory effects of M1 have been studied with anodal stimulation [6], finding that activation of this region is related to higher motor evoked potentials (MEPs) and an increment of force movement on its associated body part area [910]. Moreover, M1 seems to be critical in the early phase of consolidation of motor skills during procedural motor learning [11], i.e., the implicit skill acquisition through the repeated practice of a task [12].

In addition, the SMA and PM influence M1 in order to program opportune precise motor commands when movement pattern is modified intentionally, based on information from temporoparietal cortices regarding to the body’s state [8]. The SMA contributes in the generation of anticipatory postural adjustments [13]. Consequently, its facilitatory stimulation seems to increase anticipatory postural adjustments amplitudes, to reduce the time required to perform movements during the learning task of sequential movements, and to produce early initiation of motor responses [141516]. These studies suggest the possibility of using SMA excitation during treatments for motor disorders, since hemiparesis after stroke involves the impairment of anticipatory motor control at the affected limb [17]. In addition, some studies propose the participation of the SMA in motor memory and both implicit and explicit motor learning [18192021], i.e, when new information is acquired without intending to do so and when acquisition of skill is conscious [22], respectively. Complimentary to the role of SMA, the PM is crucial for sensory-guided movement initiation and the consolidation of motor sequence learning during sleep [823], while its facilitation with anodal tDCS seems to enhance the excitability from the ipsilateral M1 [24], which may be useful for treatment of PM disorders.

As previously mentioned, the cerebellum is also involved in locomotion through the regulation of motor processes by influencing the cerebral cortex, among other neural structures. During adaptive control of movement, as in the gait process, it seems that loops that interconnect reciprocally motor cortical areas to the basal ganglia and cerebellum allow predictive control of locomotion and they exhibit correlation with movement parameters [825]. Regarding to studies about cerebellar stimulation, there is still not enough knowledge about the effects of tDCS on different neuronal populations and the afferent pathways, so results are variable among studies and their interpretation is more complex than for cerebral tDCS [26]. Furthermore, the topographical motor organization of the cerebellum is not clear yet [27]. Nevertheless, most studies base their experimental procedure on the existence of decussating cerebello-cerebral connections, even if there are also ipsilateral cerebello-cerebral tracts or inter-hemispheric cerebellar connections [28]. Hence, a cerebellar hemisphere is stimulated to affect cerebellar brain inhibition (CBI), which refers to the inherent suppression of cerebellum over the contralateral M1 [29]. For example, the supply of anodal and cathodal stimulation over the right cerebellum in [30] resulted in incremental and decremental CBI on the left M1, respectively. In contrast, there are some studies that suggest this expectation may be not always appropriate. In [31] it was shown that inhibitory transcranial magnetic stimulation (a stimulation technique that provides magnetic field pulses on the brain [32]) over the lateral right cerebellum led to procedural learning decrement for tasks performed with either the right or left hand, whereas inhibition of lateral left cerebellar hemisphere decreased learning only with the left hand. In addition, results from [33] showed that cathodal cerebellar tDCS worsened locomotor adaptation ipsilaterally. These two studies may provide a reference for using cerebellar inhibition for avoiding undesired brain activity changes during motor rehabilitation, such as compensatory movement habits that might contribute to maladaptative plasticity and hamper the goal of achieving a normal movement pattern [34]. […]

Continue —> Effect of tDCS stimulation of motor cortex and cerebellum on EEG classification of motor imagery and sensorimotor band power | Journal of NeuroEngineering and Rehabilitation | Full Text

Fig. 1 tDCS montage. Scheme of tDCS electrodes position in reference to EEG electrodes and inion (left), and placement of tDCS electrodes on the EEG cap (right). Electrodes 1,2 and 3 are highlighted in red, green and blue, respectively

, , , , , , , ,

Leave a comment

[Abstract] Low-frequency rTMS of the unaffected hemisphere in stroke patients: A systematic review


The aim of this review was to summarize the evidence for the effectiveness of low-frequency (LF) repetitive transcranial magnetic stimulation (rTMS) over the unaffected hemisphere in promoting functional recovery after stroke. We performed a systematic search of the studies using LF-rTMS over the contralesional hemisphere in stroke patients and reviewed the 67 identified articles. The studies have been gathered together according to the time interval that had elapsed between the stroke onset and the beginning of the rTMS treatment. Inhibitory rTMS of the contralesional hemisphere can induce beneficial effects on stroke patients with motor impairment, spasticity, aphasia, hemispatial neglect and dysphagia, but the therapeutic clinical significance is unclear. We observed considerable heterogeneity across studies in the stimulation protocols. The use of different patient populations, regardless of lesion site and stroke aetiology, different stimulation parameters and outcome measures means that the studies are not readily comparable, and estimating real effectiveness or reproducibility is very difficult. It seems that careful experimental design is needed and it should consider patient selection aspects, rTMS parameters and clinical assessment tools. Consecutive sessions of rTMS, as well as the combination with conventional rehabilitation therapy, may increase the magnitude and duration of the beneficial effects. In an increasing number of studies, the patients have been enrolled early after stroke. The prolonged follow-up in these patients suggests that the effects of contralesional LF-rTMS can be long-lasting. However, physiological evidence indicating increased synaptic plasticity, and thus, a more favourable outcome, in the early enrolled patients, is still lacking. Carefully designed clinical trials designed are required to address this question. LF rTMS over unaffected hemisphere may have therapeutic utility, but the evidence is still preliminary and the findings need to be confirmed in further randomized controlled trials.

Source: Low-frequency rTMS of the unaffected hemisphere in stroke patients: A systematic review – Sebastianelli – 2017 – Acta Neurologica Scandinavica – Wiley Online Library

, , , , , , ,

Leave a comment

[VIDEO] How TMS Works – YouTube

, ,

Leave a comment

[ARTICLE] The Effects of Navigated Repetitive Transcranial Magnetic Simulation and Brunnstrom Movement Therapy on Upper Extremity Proprioceptive Sense and Spasticity in Stroke Patients: A Double-Blind Randomized Trial – Full Text PDF


Purpose: The purpose of this study is to investigate the effects of various treatments (repetitive transcranial magnetic stimulation and Brunnstrom movement therapy) on upper extremity proprioceptive sense and spasticity.

Methods: Twenty-one stroke patients were included in the study. The treatment group (Group 1; n=10) was administered navigated real repetitive transcranial magnetic stimulation (rTMS), and the control group (Group 2; n=11) was administered sham rTMS by the first researcher. The patients in both groups had upper extremity exercises according to Brunnstrom movement therapy (BMT). The patients were assessed using the Brunnstrom recovery stages (BRS), proprioceptive sense assessment, and the modified Ashworth scale (MAS).

Results: Between the treatment group and control group patients, there were no significant statistical differences obtained from pre-treatment and postreatment tenth day, first month, and third month by BRS wrist, hand, and upper extremity stages. The intragroup comparison of the treatment group patients revealed a statistically significant difference between the pre-treatment and post-treatment third month BRS-hand and BRS-upper extremity stages.The pretreatment and postreatment tenth day and first month evaluations of the wrist proprioceptive sense of the groups presented a significant difference. There was no statistically significant difference between the groups in terms of MAS scores before and after treatment evaluations.

Conclusion: The rTMS and BMT approaches that were implemented in the study affected the proprioceptive sense of the wrist after the treatment and in the early period but did not change spasticity.

Keywords: Repetitive transcranial magnetic stimulation, stroke, Brunnstrom recovery stages, proprioceptive sense, spasticity


Proprioceptive sense is the individual’s ability to perceive the position and the motion of his/her body segments in the space via somatosensorial impulses sent by the receptors in the skin, muscles, and joints (1). Researchers have stated that the proprioceptive sense, which is the awareness sense of the body, consists of three fundamental senses: kinesthesia, joint position sense, and neuromuscular control (2). The proprioceptive sense plays a crucial role in carrying out and controlling daily activities, maintaining posture and balance, joint stability, and motor learning (3, 4). Neuromuscular control is affected by proprioceptive inefficiencies apart from motor dysfunctions. It has been shown that proprioceptive knowledge is of extreme importance for the neural control of motion and that the upper extremity proprioceptive sense is commonly decreased or evanished following stroke (5). It has been explained that the proprioceptive deficit incidence rate is 50-65% in stroke patients, which affects daily activities and quality of life negatively (6, 7). It has been stated that proprioceptive and motor deficits have different recovery rates in the first six months following stroke (8). In stroke patients, sensorimotor learning calls for a sound somatosensorial impulse, which is possible through sensorimotor rehabilitation (9). The Bobath, Brunnstrom, Johnstone, and Rood proprioceptive neuromuscular facilitation techniques and the motor learning method, commonly utilized by physiotherapists, are based upon treating sensorimotor functions (10). There exist several recent studies that report that the pain-free, non-invasive transcranial magnetic stimulation (rTMS) application decreases spasticity or that it has no effect (11-13). Stroke rehabilitation is provided by decreasing the transcallosal inhibition from the unaffected motor cortex to the affected motor cortex via 1 Hz rTMS applied on the motor cortex (14, 15). Whereas there is a limited number of studies in the literature with various results on the effects of rTMS and physiotherapy combination on spasticity, a study dealing with the effect of rTMS and physiotherapy combination on proprioceptive sense has not been found. This study was planned to investigate the effect of rTMS and Brunnstrom movement therapy (BMT) on upper extremity proprioceptive sense and spasticity (11, 12).

Full Text PDF

, , , , , , , , ,

Leave a comment

[Abstract] Spasticity Management: The Current State of Transcranial Neuromodulation


This narrative review aims to provide an objective view of the non-invasive neuromodulation (NINM) protocols available for treating spasticity, including repetitive transcranial magnetic stimulation (rTMS) and transcranial direct current stimulation (tDCS). On the basis of the relevant randomized controlled trials, we infer that NINM is more effective in reducing spasticity when combined with the conventional therapies than used as a stand-alone treatment. However, the magnitude of NINM aftereffects depends significantly on the applied hemisphere and the underlying pathology. Being in line with these arguments, low-frequency rTMS and cathodal-tDCS over the unaffected hemisphere are more effective in reducing spasticity than high-frequency rTMS and anodal-tDCS over the affected hemisphere in chronic post-stroke. However, most of the studies are heterogeneous in the stimulation setup, patient selection, follow-up duration, and the availability of the sham operation. Therefore, the available data on the usefulness of NINM in reducing spasticity need to be confirmed by further larger and multicentric randomized controlled trials to gather evidence on the efficiency of NINM regimens in reducing spasticity in various neurologic conditions.

Source: Spasticity Management: The Current State of Transcranial Neuromodulation

, , , , , , , ,

Leave a comment

[ARTICLE] The impact of large structural brain changes in chronic stroke patients on the electric field caused by transcranial brain stimulation – Full Text


Transcranial magnetic stimulation (TMS) and transcranial direct current stimulation (TDCS) are two types of non-invasive transcranial brain stimulation (TBS). They are useful tools for stroke research and may be potential adjunct therapies for functional recovery. However, stroke often causes large cerebral lesions, which are commonly accompanied by a secondary enlargement of the ventricles and atrophy. These structural alterations substantially change the conductivity distribution inside the head, which may have potentially important consequences for both brain stimulation methods. We therefore aimed to characterize the impact of these changes on the spatial distribution of the electric field generated by both TBS methods. In addition to confirming the safety of TBS in the presence of large stroke-related structural changes, our aim was to clarify whether targeted stimulation is still possible. Realistic head models containing large cortical and subcortical stroke lesions in the right parietal cortex were created using MR images of two patients. For TMS, the electric field of a double coil was simulated using the finite-element method. Systematic variations of the coil position relative to the lesion were tested. For TDCS, the finite-element method was used to simulate a standard approach with two electrode pads, and the position of one electrode was systematically varied. For both TMS and TDCS, the lesion caused electric field “hot spots” in the cortex. However, these maxima were not substantially stronger than those seen in a healthy control. The electric field pattern induced by TMS was not substantially changed by the lesions. However, the average field strength generated by TDCS was substantially decreased. This effect occurred for both head models and even when both electrodes were distant to the lesion, caused by increased current shunting through the lesion and enlarged ventricles. Judging from the similar peak field strengths compared to the healthy control, both TBS methods are safe in patients with large brain lesions (in practice, however, additional factors such as potentially lowered thresholds for seizure-induction have to be considered). Focused stimulation by TMS seems to be possible, but standard tDCS protocols appear to be less efficient than they are in healthy subjects, strongly suggesting that tDCS studies in this population might benefit from individualized treatment planning based on realistic field calculations.

1. Introduction

Transcranial brain stimulation (TBS) methods are useful tools to induce and to quantify neural plasticity, and as such are increasingly being used in stroke research and as potential adjunct therapies in stroke rehabilitation. The cerebral lesions caused by stroke result in persisting physical or cognitive impairments in around 50% of all survivors (Di Carlo, 2008Leys et al., 2005 ;  Young and Forster, 2007), meaning that new therapies are urgently needed. Transcranial magnetic stimulation (TMS) and transcranial direct current stimulation (TDCS) are two TBS approaches which are being increasingly utilised in stroke research. Single-pulse TMS combined with electromyography (EMG) or electroencephalography (EEG) can be used to assess cortical excitability, for example to index the functional state of the perilesional tissue. The neuromodulatory effects of repetitive TMS protocols (rTMS) may, in association with neuro-rehabilitative treatments, enhance motor recovery (Liew et al., 2014). Similar results have been demonstrated for TDCS. For example, anodal TDCS of the hand area in the primary motor cortex has been shown to improve motor performance of the affected hand (Allman et al., 2016Hummel et al., 2005 ;  Stagg et al., 2012) and anodal TDCS applied over the left frontal cortex enhanced naming accuracy in patients with aphasia (Baker et al., 2010). However, not all studies report a clear-cut positive impact of TBS on the stroke symptoms. Rather, the observed effects are often weak and not consistent across patients, demonstrating the need for a better understanding of the underlying biophysical and physiological mechanisms.

Compared with healthy subjects, several factors might contribute to a change in the neuroplastic response to TBS protocols in stroke patients, including changes in the neural responsiveness to the applied electric fields, as well as differences in the underlying physiology and metabolism (Blicher et al., 2009Blicher et al., 2015 ;  O’Shea et al., 2014). When the lesions are large, they may also substantially alter the generated electric field pattern, meaning that the assumptions on spatial targeting as derived from biophysical modelling and physiological experiments in healthy subjects might no longer be valid. Stroke lesions are often accompanied by secondary macrostructural changes such as cortical atrophy and enlargement of the ventricles (e.g., Skriver et al., 1990), which may further contribute to changes in the field pattern. In addition, the safety of TBS in patients with large lesions needs to be further clarified, as it is possible that the lesions might cause stimulation “hot spots”. In chronic patients, the stroke cavity becomes filled with corticospinal fluid (CSF), which might cause shunting of current, funnelling the generated currents towards the surrounding brain tissue and potentially causing localized areas of dangerously high field strengths.

Here, using finite-element calculations and individual head models derived from structural MR images, we focused on the impact of a large cortical lesion in chronic stroke on the electric field pattern generated in the brain by TMS and TDCS, respectively. Firstly, we assessed the safety of the stimulation by comparing the achieved field strengths with those estimated for a healthy control. Secondly, we tested how reliably we can accurately target the perilesional tissue, often the desired target for TBS, as reorganisation here is thought to underpin functional recovery (Kwakkel et al., 2004). Finally, we were also interested to see whether any observed changes in the field pattern were specific to a patient with a cortical lesion (which is connected to the CSF layer underneath the skull), or whether similar effects might occur in case of large chronic subcortical lesion. We therefore additionally tested the field distribution in a head model of a patient with a subcortical lesion occurring at a similar position as the cortical lesion.

2. Materials and methods

2.1. Selection of patients

The aim of this study was to characterize the effect of a large chronic cortical stroke lesion on the electric field distribution generated by TBS, and to compare the effects of this lesion to that caused by a large chronic subcortical lesion. MR images of several patients were visually inspected to select two datasets, which had a cortical [P01] and subcortical lesion [P02], respectively, within the same gross anatomical regions.

Patient P01 was a 36 year old female with episodic migraine; she was admitted with left hemiparalysis, fascial palsy and a total NIHSS score of 16 due to a right ICI/MCI occlusion. She was treated with IV thrombolysis and thrombectomy and recanalization was achieved 5 h after symptom onset. One year post-stroke she still suffered from motor impairment (Wolf Motor Function Test [WMFT] score of 30) and was scanned as part of a clinical study investigating the effect of combining Constraint-Induced Movement Therapy and tDCS (Figlewski et al., 2017; Clinical trials NCT01983319, Regional Ethics approval: 1-10-72-268-13). The structural scans showed a cortical lesion in the right parietal lobe (Fig. 1A). The lesion volume, delineated manually with reference to T1- and T2-weighted imaging, was 26,415 mm3.

Fig. 1:Fig. 1.

A) Coronal view of patient P01 with a cortical lesion in the right hemisphere. The top shows the T1-weighted MR image and the bottom the reconstructed head mesh. The view was chosen to include the lesion centre. The lesion is marked by red dashed circles. B) Corresponding view of patient P02 with a large subcortical lesion at a similar location in the right hemisphere. C) Corresponding view of the data set of the healthy control. D) The coil and electrode positions were systematically moved along two directions that were approximately perpendicular to each other. Five positions were manually placed every 2 cm in posterior – anterior direction symmetrically around the centre of the cortical lesion. The same was repeated along the lateral – medial direction. Both lines share the same centre position above the lesion, resulting in 9 positions in total. E) At each position, two coil orientations were tested which resulted in a current flow underneath the coil centre from anterior to posterior (top) and from lateral to medial, respectively (bottom). F) For each position of the yellow “stimulating” electrode, two positions of the blue return electrode were tested. First, the contralateral equivalent of the electrode position above the centre of the cortical lesion was used (top). In addition, a position on the contralateral forehead was tested (bottom).

Patient P02 was a 44 year old female. She woke up with a left hemiparesis and an acute CT scan showed no bleeding. No IV thrombolysis was given due to uncertain timing of symptom onset. An embolic stroke was suspect due to a patent foramen ovale, which was subsequently closed. She was scanned with MRI 9 months post stroke showing a right subcortical infarct, at which time she had a WMFT score of 8. The lesion volume, delineated as for P01, was 56,010 mm3. She was scanned as part of a clinical study investigating the effect of combining tDCS with daily motor training (Allman et al., 2016; Regional Ethics approval: Oxfordshire REC A; 10/H0604/98)….

Continue —> The impact of large structural brain changes in chronic stroke patients on the electric field caused by transcranial brain stimulation

, , , , , ,

Leave a comment

[Abstract] The treatment of fatigue by non-invasive brain stimulation


The use of non-invasive brain neurostimulation (NIBS) techniques to treat neurological or psychiatric diseases is currently under development. Fatigue is a commonly observed symptom in the field of potentially treatable pathologies by NIBS, yet very little data has been published regarding its treatment. We conducted a review of the literature until the end of February 2017 to analyze all the studies that reported a clinical assessment of the effects of NIBS techniques on fatigue. We have limited our analysis to repetitive transcranial magnetic stimulation (rTMS) and transcranial direct current stimulation (tDCS). We found only 15 studies on this subject, including 8 tDCS studies and 7 rTMS studies. Of the tDCS studies, 6 concerned patients with multiple sclerosis while 6 rTMS studies concerned fibromyalgia or chronic fatigue syndrome. The remaining 3 studies included patients with post-polio syndrome, Parkinson’s disease and amyotrophic lateral sclerosis. Three cortical regions were targeted: the primary sensorimotor cortex, the dorsolateral prefrontal cortex and the posterior parietal cortex. In all cases, tDCS protocols were performed according to a bipolar montage with the anode over the cortical target. On the other hand, rTMS protocols consisted of either high-frequency phasic stimulation or low-frequency tonic stimulation. The results available to date are still too few, partial and heterogeneous as to the methods applied, the clinical profile of the patients and the variables studied (different fatigue scores) in order to draw any conclusion. However, the effects obtained, especially in multiple sclerosis and fibromyalgia, are really carriers of therapeutic hope.

Source: The treatment of fatigue by non-invasive brain stimulation

, , , , , , , , ,

Leave a comment

[ARTICLE] Transcranial Direct Current Stimulation Does Not Affect Lower Extremity Muscle Strength Training in Healthy Individuals: A Triple-Blind, Sham-Controlled Study – Full Text

The present study investigated the effects of anodal transcranial direct current stimulation (tDCS) on lower extremity muscle strength training in 24 healthy participants. In this triple-blind, sham-controlled study, participants were randomly allocated to the anodal tDCS plus muscle strength training (anodal tDCS) group or sham tDCS plus muscle strength training (sham tDCS) group. Anodal tDCS (2 mA) was applied to the primary motor cortex of the lower extremity during muscle strength training of the knee extensors and flexors. Training was conducted once every 3 days for 3 weeks (7 sessions). Knee extensor and flexor peak torques were evaluated before and after the 3 weeks of training. After the 3-week intervention, peak torques of knee extension and flexion changed from 155.9 to 191.1 Nm and from 81.5 to 93.1 Nm in the anodal tDCS group. Peak torques changed from 164.1 to 194.8 Nm on extension and from 78.0 to 85.6 Nm on flexion in the sham tDCS group. In both groups, peak torques of knee extension and flexion significantly increased after the intervention, with no significant difference between the anodal tDCS and sham tDCS groups. In conclusion, although the administration of eccentric training increased knee extensor and flexor peak torques, anodal tDCS did not enhance the effects of lower extremity muscle strength training in healthy individuals. The present null results have crucial implications for selecting optimal stimulation parameters for clinical trials.


Transcranial direct current stimulation (tDCS) is a non-invasive cortical stimulation procedure in which weak direct currents polarize target brain regions (Nitsche and Paulus, 2000). The application of anodal tDCS to the primary motor cortex of the lower extremity transiently increases corticospinal excitability in healthy individuals (Jeffery et al., 2007Tatemoto et al., 2013) and improves motor function in healthy individuals and patients with stroke (Tanaka et al., 20092011Madhavan et al., 2011Sriraman et al., 2014Chang et al., 2015Montenegro et al., 20152016Angius et al., 2016Washabaugh et al., 2016). Thus, anodal tDCS has a potential to become a new adjunct therapeutic strategy for the rehabilitation of leg motor function and locomotion following a stroke.

Lower leg muscle strength is an important motor function required for patients who have had a stroke to regain activities of daily living (ADL). Lower leg muscle strength correlates with performance in activities, including sit-to-stand, gait, and stair ascent (Bohannon, 2007). Furthermore, lower leg muscle strength training increases muscle strength and improves ADL in patients with stroke (Ada et al., 2006). Therefore, lower leg muscle strength training is one of the important activities rehabilitating patients with stroke to regain their independence in ADL.

Several studies have examined the effect of a single session of tDCS on lower leg muscle strength, although the evidence is inconsistent (Tanaka et al., 20092011Montenegro et al., 20152016Angius et al., 2016Washabaugh et al., 2016). Its effects seem dependent on tDCS protocols, training tasks, muscle groups, and subject populations. Although, most tDCS studies on lower leg muscle strength have focused on the acute effects of a single tDCS application, to the best of our knowledge, no study has examined how lower extremity strength training combined with repeated sessions of tDCS affects lower leg muscle strength. This type of investigation has strong clinical implications for the application of tDCS in rehabilitation for patients with lower leg muscle weakness.

Thus, to examine whether anodal tDCS can enhance the effects of lower extremity muscle strength training, the present study simultaneously applied anodal tDCS and lower extremity muscle strength training to healthy individuals and evaluated their effects on lower extremity muscle strength.

Continue —> Frontiers | Transcranial Direct Current Stimulation Does Not Affect Lower Extremity Muscle Strength Training in Healthy Individuals: A Triple-Blind, Sham-Controlled Study | Perception Science

Figure 1. Experimental setup of the muscle strength training and torque assessment.

, , ,

Leave a comment

%d bloggers like this: