Archive for category Tele/Home Rehabilitation

[VIDEO] MOTORE++ – A new Rehabilitation Robot for the upper limb – YouTube

ECHORD Plus PlusΔημοσιεύτηκε στις 12 Μαΐ 2017
The goal of this experiment was to continue the development of a rehabilitation robot named MOTORE to restore upper limb functionality. MOTORE++ improved the existing MOTORE rehabilitation device by improving the system to the level which is required for commercialization: it works without any links or wire and it is the first robot small enough to be easily carried and as such suitable for in-home rehabilitation. A proprietary software was developed with several exercises and a wide range of exercise parameters. Moreover, a patient database permits the customization of the therapy. The commercial application of this technological development will allow building smaller and lighter robotic systems which are able to interact with patients in hospitals, in retirement homes or are even suitable for in-home therapy. The improved prototype was tested in home-based rehabilitation sessions.

via MOTORE++ – A new Rehabilitation Robot for the upper limb – YouTube

Advertisements

, , , , , ,

Leave a comment

[Abstract] Design and Development of a Robot Guided Rehabilitation Scheme for Upper Extremity Rehabilitation

Abstract

To rehabilitate individuals with impaired upper-limb function, we have designed and developed a robot guided rehabilitation scheme. A humanoid robot, NAO was used for this purpose. NAO has 25 degrees of freedom. With its sensors and actuators, it can walk forward and backward, can sit down and stand up, can wave his hand, can speak to the audience, can feel the touch sensation, and can recognize the person he is meeting. All these qualities have made NAO a perfect coach to guide the subjects to perform rehabilitation exercises. To demonstrate rehabilitation exercises with NAO, a library of recommended rehabilitation exercises involving shoulder (i.e., abduction/adduction, vertical flexion/extension, and internal/external rotation), and elbow (i.e., flexion/extension) joint movements was formed in Choregraphe (graphical programming interface). In experiments, NAO was maneuvered to instruct and demonstrate the exercises from the NRL. A complex ‘touch and play’ game was also developed where NAO plays with the subject that represents a multi-joint movement’s exercise. To develop the proposed tele-rehabilitation scheme, kinematic model of human upper-extremity was developed based modified Denavit-Hartenberg notations. A complete geometric solution was developed to find a unique inverse kinematic solution of human upper-extremity from the Kinect data. In tele-rehabilitation scheme, a therapist can remotely tele-operate the NAO in real-time to instruct and demonstrate subjects different arm movement exercises. Kinect sensor was used in this scheme to get tele-operator’s kinematics data. Experiments results reveals that NAO can be tele-operated successfully to instruct and demonstrate subjects to perform different arm movement exercises. A control algorithm was developed in MATLAB for the proposed robot guided supervised rehabilitation scheme. Experimental results show that the NAO and Kinect sensor can effectively be used to supervise and guide the subjects in performing active rehabilitation exercises for shoulder and elbow joint movements.

Recommended Citation
Assad-Uz-Zaman, Md, “Design and Development of a Robot Guided Rehabilitation Scheme for Upper Extremity Rehabilitation” (2017). Theses and Dissertations. 1578.
https://dc.uwm.edu/etd/1578

via “Design and Development of a Robot Guided Rehabilitation Scheme for Upp” by Md Assad-Uz-Zaman

, , , , , , , , , , , ,

Leave a comment

[Abstract + References] Virtual System Using Haptic Device for Real-Time Tele-Rehabilitation of Upper Limbs – Conference paper

Abstract

This paper proposes a tool to support the rehabilitation of upper limbs assisted remotely, which makes it possible for the physiotherapist to be able to assist and supervise the therapy to patients who can not go to rehabilitation centers. This virtual system for real-time tele-rehabilitation is non-invasive and focuses on involving the patient with mild or moderate mobility alterations within a dynamic therapy based on virtual games; Haptics Devices are used to reeducate and stimulate the movement of the upper extremities, at the same time that both motor skills and Visual-Motor Integration skills are developed. The system contains a virtual interface that emulates real-world environments and activities. The functionality of the Novint Falcon device is exploited to send a feedback response that corrects and stimulates the patient to perform the therapy session correctly. In addition, the therapy session can vary in intensity through the levels presented by the application, and the amount of time, successes and mistakes made by the patient are registered in a database. The first results show the acceptance of the virtual system designed for real-time tele-rehabilitation.

References

  1. 1.
    Ingram, T.T.S.: A historical review of the definition of cerebral palsy, the epidemiology of the cerebral palsies. In: Stanley, F.A.E. (ed.) The Epidemiology of the Cerebral Palsies, pp. 1–11. Lippincott, Philadelphia (1984)Google Scholar
  2. 2.
    Jones, M.W., Morgan, E., Shelton, J.E., Thorogood, C.: Cerebral palsy: introduction and diagnosis (part I). J. Pediatr. Health Care 21(3), 146–152 (2007)CrossRefGoogle Scholar
  3. 3.
    Aicardi, J.: Disease of the Nervous System in Childhood. MacKeith Press, London (1992)Google Scholar
  4. 4.
    Feldman, H.M., Chaves-Gnecco, D., Hofkosh, D.: Developmental-behavioral pediatrics. In: Zitelli, B.J., McIntire, S.C., Norwalk, A.J. (eds.) Atlas of Pediatric Diagnosis, Chap. 3, 6th edn. Elsevier Saunders, Philadelphia (2012)Google Scholar
  5. 5.
    Ketelaar, M., Vermeer, A., Hart, H., et al.: Effects of a functional therapy program on motor abilities of children with cerebral palsy. Phys. Ther. 81, 1534–1545 (2001)CrossRefGoogle Scholar
  6. 6.
    Taub, E., Ramey, S., DeLuca, S., Echols, K.: Efficacy of constraint-induced movement therapy for children with cerebral palsy with asymmetric motor impairment. Pediatrics 113, 305–312 (2004)CrossRefGoogle Scholar
  7. 7.
    Sakzewski, L., Ziviani, J., Boyd, R.N.: Efficacy of upper limb therapies for unilateral cerebral palsy: a meta-analysis. Pediatrics 133(1), e175–e204 (2014)CrossRefGoogle Scholar
  8. 8.
    Galil, A., Carmel, S., Lubetzky, H., Heiman, N.: Compliance with home rehabilitation therapy by parents of children with disabilities in Jews and Bedouin in Israel. Dev. Med. Child Neurol. 43(4), 261–268 (2001)CrossRefGoogle Scholar
  9. 9.
    De Campos, A.C., da Costa, C.S., Rocha, N.A.: Measuring changes in functional mobility in children with mild cerebral palsy. Dev. Neurorehabil. 14, 140–144 (2011)CrossRefGoogle Scholar
  10. 10.
    Prosser, L.A., Lee, S.C., Barbe, M.F., VanSant, A.F., Lauer, R.T.: Trunk and hip muscle activity in early walkers with and without cerebral palsy – a frequency analysis. J. Electromyogr. Kinesiol. 20, 851–859 (2010)CrossRefGoogle Scholar
  11. 11.
    Weiss, P.L.T., Tirosh, E., Fehlings, D.: Role of virtual reality for cerebral palsy management. J. Child Neurol. 29(8), 1119–1124 (2014). 0883073814533007CrossRefGoogle Scholar
  12. 12.
    Mitchell, L., Ziviani, J., Oftedal, S., Boyd, R.: The effect of virtual reality interventions on physical activity in children and adolescents with early brain injuries including cerebral palsy. Dev. Med. Child Neurol. 54, 667–671 (2012)CrossRefGoogle Scholar
  13. 13.
    Snider, L., Majnemer, A., Darsaklis, V.: Virtual reality as a therapeutic modality for children with cerebral palsy. Dev. Neurorehabil. 13, 120–128 (2010)CrossRefGoogle Scholar
  14. 14.
    Chen, Y.P., Lee, S.Y., Howard, A.M.: Effect of virtual reality on upper extremity function in children with cerebral palsy: a meta-analysis. Pediatric Phys. Therapy 26(3), 289–300 (2014)CrossRefGoogle Scholar
  15. 15.
    Golomb, M.R., McDonald, B.C., Warden, S.J., Yonkman, J., Saykin, A.J., Shirley, B., et al.: In-home virtual reality videogame telerehabilitation in adolescents with hemiplegic cerebral palsy. Arch. Phys. Med. Rehabil. 91, 1–8 (2010)CrossRefGoogle Scholar
  16. 16.
    Shin, J., Song, G., Hwangbo, G.: Effects of conventional neurological treatment and a virtual reality training program on eye-hand coordination in children with cerebral palsy. J. Phys. Therapy Sci. 27(7), 2151–2154 (2015).  https://doi.org/10.1589/jpts.27.2151CrossRefGoogle Scholar
  17. 17.
    Chen, Y.P., Kang, L.J., Chuang, T.Y., Doong, J.L., Lee, S.J., Tsai, M.W., Sung, W.H.: Use of virtual reality to improve upper-extremity control in children with cerebral palsy: a single-subject design. Phys. Therapy 87(11), 1441–1457 (2007)CrossRefGoogle Scholar
  18. 18.
    Bortone, I., Leonardis, D., Solazzi, M., Procopio, C., Crecchi, A., Bonfiglio, L., Frisoli, A.: Integration of serious games and wearable haptic interfaces for Neuro Rehabilitation of children with movement disorders: a feasibility study. In: 2017 International Conference on Rehabilitation Robotics (ICORR), pp. 1094–1099. IEEE, July 2017Google Scholar
  19. 19.
    Gupta, A., O’Malley, M.K.: Design of a haptic arm exoskeleton for training and rehabilitation. IEEE/ASME Trans. Mechatron. 11(3), 280–289 (2006)CrossRefGoogle Scholar
  20. 20.
    Kozhaeva, T., Zhestkov, S., Bulakh, D., Houlden, N.: Programmable gesture manipulator for hand injuries rehabilitation. In: Internet Technologies and Applications (ITA), pp. 134–136. IEEE, September 2017Google Scholar
  21. 21.
    Pruna, E., et al.: 3D virtual system using a haptic device for fine motor rehabilitation. In: Rocha, Á., Correia, A.M., Adeli, H., Reis, L.P., Costanzo, S. (eds.) WorldCIST 2017. AISC, vol. 570, pp. 648–656. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-56538-5_66CrossRefGoogle Scholar
  22. 22.
    Bortone, I., Leonardis, D., Solazzi, M., Procopio, C., Crecchi, A., Briscese, L., Andre, P., Bonfiglio, L., Frisoli, A.: Serious game and wearable haptic devices for neuro motor rehabilitation of children with cerebral palsy. In: Converging Clinical and Engineering Research on Neurorehabilitation II, pp. 443–447. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-46669-9_74Google Scholar
  23. 23.
    Khor, K.X., Chin, P.J.H., Hisyam, A.R., Yeong, C.F., Narayanan, A.L.T., Su, E.L.M.: Development of CR2-Haptic: a compact and portable rehabilitation robot for wrist and forearm training. In: IEEEIECBES International Conference on Biomedical Engineering and Sciences, pp. 424–429 (2014)Google Scholar
  24. 24.
    Maciejasz, P., Eschweiler, J., Gerlach-Hahn, K., Jansen-Troy, A., Leonhardt, S.: A survey on robotic devices for upper limb rehabilitation. J. Neuroeng. Rehabil. 11, 3 (2014)CrossRefGoogle Scholar
  25. 25.
    Lum, P.S., Burgar, C.G., Shor, P.C., Majmundar, M., Van der Loos, M.: Robot-assisted movement training compared with conventional therapy techniques for the rehabilitation of upper-limb motor function after stroke. Arch. Phys. Med. Rehabil. 83, 952–959 (2002)CrossRefGoogle Scholar

via Virtual System Using Haptic Device for Real-Time Tele-Rehabilitation of Upper Limbs | SpringerLink

, , , , , , ,

Leave a comment

[Abstract] Home-based tele-rehabilitation presents comparable and positive impact on self-reported functional outcomes as center-based rehabilitation: Singapore tele-technology aided rehabilitation in stroke (STARS) trial

Introduction/Background
Stroke is a leading cause of disability worldwide. Functional, financial and social barriers commonly prevent individuals with acute stroke and disabilities from receiving rehabilitation following their hospital discharge. Home-based rehabilitation is an alternative to center-based rehabilitation but it is often costlier. Tele-rehabilitation is a promising solution for optimizing rehabilitation utilization, as it can enable clinicians to supervise patients and conversely, patients to receive the recommended care remotely. Our team therefore developed a novel tele-rehabilitation, with the primary aim to estimate the extent to which the proposed tele-rehabilitation resulted in an improvement in function during the first three-months after stroke in comparison to usual rehabilitation.

Material and method
This was a randomized controlled trial. We used the Late-Life Function and Disability Instrument (FDI) to assess our primary outcome (with adjustment made for baseline covariate).

Results
We recruited 124 participants and randomized them to receive either 12-week home-based tele-rehabilitation or usual rehabilitation.

Rehabilitation
Over the 12-week rehabilitation period, the intervention group spent 2246-minutes on their rehabilitation whereas the control group spent 2565-minutes. The median difference between the two groups was not statistically significant (P = 0.649).

Primary Outcome (FDI)
The mean FDI frequency score post-rehabilitation for the intervention and control groups were 39.7 (SD 11.7) and 43.0 (SD 10.6) respectively. The mean FDI limitation score post-rehabilitation for the intervention group was 78.5 (SD 20.6) and that for the control group was 85.4 (SD 19.6). The unadjusted and adjusted differences in both FDI scores between the two groups were not statistically significant (Models 1 and 2).

Conclusion
Both groups reported comparable amount of time spent on rehabilitation and similarly positive impact on the primary outcome. Home-based tele-rehabilitation can be an effective strategy for minimizing or eliminating rehabilitation utilization barriers while achieving the same functional outcome as center-based rehabilitation.

via Home-based tele-rehabilitation presents comparable and positive impact on self-reported functional outcomes as center-based rehabilitation: Singapore tele-technology aided rehabilitation in stroke (STARS) trial – ScienceDirect

, , , ,

Leave a comment

[Abstract + Related Articles] Adaptive gameplay and difficulty adjustment in a gamified upper-limb rehabilitation – IEEE Conference Publication

 

Abstract

Lack of motivation during physical rehabilitation is a very common problem that worsens the efficacy of rehabilitation, decreasing the recovery rates of the patient. We suggest a gamified upper-limb rehabilitation that incorporates adaptive gameplay and difficulty so as to overcome that issue, emerging as a support tool for physical therapy professionals. The presence of difficulty adjustment in the game allows a higher motivation level for the patients by preserving the trade off between keeping the difficulty low enough to avoid frustration, but high enough to promote motivation and engagement. This rehabilitation game is a home-based system that allows the patient to exercise at home, due to its Kinect-based portable setup. The game aims to increase the motivation of the patients and thus the speed of their recovery. To accomplish that goal, it is key to potentiate a full immersion into the therapeutic activity. Thus gamification elements, gameplay design and adaptive difficulty are explored and incorporated into the concept.

Related Articles

via Adaptive gameplay and difficulty adjustment in a gamified upper-limb rehabilitation – IEEE Conference Publication

, , , , , , , , ,

Leave a comment

[Abstract] Design of a Low-Cost Exoskeleton for Hand Tele-Rehabilitation After Stroke

Abstract

The impairment of finger movements after a stroke results in a significant deficit in hands everyday performances. To face this kind of problems different rehabilitation techniques have been developed, nevertheless, they require the presence of a therapist to be executed. To overcome this issue have been designed several apparatuses that allow the patient to perform the training by itself. Thus, an easy to use and effective device is needed to provide the right training and complete the rehabilitation techniques in the best way. In this paper, a review of state of the art in this field is provided, along with an introduction to the problems caused by a stroke and the consequences for the mobility of the hand. Then follows a complete review of the low cost home based exoskeleton project design. The objective is to design a device that can be used at home, with a lightweight and affordable structure and a fast mounting system. For implementing all these features, many aspects have been analysed, starting from the rehabilitation requirements and the ergonomic issues. This device should be able to reproduce the training movements on an injured hand without the need for assistance by an external tutor.

via Design of a Low-Cost Exoskeleton for Hand Tele-Rehabilitation After Stroke | SpringerLink

, , , , , , , ,

Leave a comment

[WEB SITE] Verizon’s 5G Network Could Make Virtual Rehabilitation For Patients A Reality

Verizon’s 5G Network Could Make Virtual Rehabilitation For Patients A Reality

Instead of grappling with limited mobility to attend physical therapy sessions, recovering patients can don VR gear as part of rehab, potentially enabling remote therapy and treatment from the privacy of their homes thanks to Verizon’s latest lab project

TODD NEIKIRK, 13 JUNE 2018

 

Most patients who are recovering from serious surgery must go through some form of rehabilitation. These patients are often hindered in their mobility, making getting to and from places a challenge. Professor Steven Feiner and his students at Verizon‘s incubator lab Alley are working on a potential virtual rehab program that could make life easier for both those patients and their therapists.

The program works by “creating a collaborate virtual environment in which the therapist and patient use virtual reality to perform exercises focused on motor rehabilitation when they’re both in different locations.” While this ability would have been unthinkable just a few years ago, the advances in both VR as well as the incredible speed of a 5G connection have made it something possible to test out.

The potential benefits are obvious for both the patient and therapist. Rather than having to leave the home with limited mobility, patients could perform their rehab in their home by simply donning VR eyewear. Doctors and therapists also would be able to take on more patients, as their sessions become more streamlined. While this idea is still in the testing stage, it has the potential to optimize—if not—revolutionize a crucial aspect of healthcare.

 

via Verizon’s 5G Network Could Make Virtual Rehabilitation For Patients A Reality

, , , ,

Leave a comment

[ARTICLE] Automatic Control of Wrist Rehabilitation Therapy (WRist-T) device for Post-Ischemic Stroke Patient – Full Text PDF

Abstract

Since a decade, the wrist rehabilitation services in Malaysia has been operated by the physiotherapist (PT). Throughout the rehabilitative procedure, PT commonly used a conventional method which later triggered some problems related to the effectiveness of the rehab services. Timeconsuming, long-waiting time, lack of human power and all those leading to exhaustion, both for the patient and the provider. Patients could not commit to the therapy session due to logistic and domestic problems. This problem can be greatly solved with rehabilitation robot, but the current product in the market is expensive and not affordable especially for lowincome earners family. In this paper, an automatic control of wrist rehabilitation therapy; called WRist-T device has been developed. There are based on three different modes of exercises that can be carried out by the device which is the flexion/extension, radial/ulnar deviation and pronation/supination. By using this device, the patient can easily receive physiotherapy session with minor supervision from the physiotherapist at the hospital or rehabilitation centre and also can be conducted at patient home.

Full Text: PDF

 

References

N. Bayona,“The role of task-specific training in rehabilitation therapies,”Topics in Stroke Rehabilitation, vol. 12, 2005,pp. 58–65.

R. Bonita, R. Beaglehole, “Recovery of motor function after stroke,”Stroke, 1988,pp. 19.

S. Cramer, J. Riley, “Neuroplasticity and brain repair after stroke,”Current Opinion in Neurology,vol. 21, 2008,pp. 76–82.

D.J. Reinkensmeyer, J. Emken, S. Cramer, “Robotics, motor learning, and neurologic recovery,”Annual Review of Biomedical Engineering, vol. 6, 2004, pp. 497-525.

M. Takaiwa, “Wrist rehabilitation training simulator for P.T. using pneumatic parallel manipulator,”IEEE International Conference on Advanced Intelligent Mechatronics (AIM), 2016, pp. 276-281.

H. Al-Fahaam, S. Davis, S. Nefti-Meziani, “Wrist Rehabilitation exoskeleton robot based on pneumatic soft actuators,”International Conference for Students of Applied Engineering (ICSAE), 2016, pp. 491-496.

D. Dauria, F. Persia, B. Siciliano,“Human-Computer Interaction in Healthcare: How to Support Patients during their Wrist Rehabilitation,”IEEE Tenth International Conference on Semantic Computing (ICSC), 2016, pp. 325-328.

W.M. Hsieh, Y.S. Hwang, S.C. Chen, S.Y. Tan,C.C. Chen, and Y.L. Chen, “Application of the Blobo Bluetooth ball in wrist rehabilitation training,”Journal of Physical Therapy Science, vol. 28, 2016, pp. 27- 32.

A. Hacıoğlu, O.F. Özdemir, A,K, Şahin, Y.S. Akgül, “Augmented reality based wrist rehabilitation system,”Signal Processing and Communication Application Conference (SIU), 2016. pp. 1869-1872.

Z.J. Lu, L.C.B. Wang, L.H. Duan, Q.Q. Lui, H.Q. Sun, Z.I. Chen, “Development of a robot MKW-II for hand and Wrist Rehabilitation Training,”The Annual IEEE International Conference on Cyber Technology in Automation, Control and Intelligent Systems, 2016, pp. 302-307.

 

via Automatic Control of Wrist Rehabilitation Therapy (WRist-T) device for Post-Ischemic Stroke Patient | Mohd Adib | Journal of Telecommunication, Electronic and Computer Engineering (JTEC)

, , , , , , , , ,

Leave a comment

[ARTICLE] A multisession evaluation of an adaptive competitive arm rehabilitation game – Full Text

Background

People with neurological injuries such as stroke should exercise frequently and intensely to regain their motor abilities, but are generally hindered by lack of motivation. One way to increase motivation in rehabilitation is through competitive exercises, but such exercises have only been tested in single brief sessions and usually did not adapt difficulty to the patient’s abilities.

Methods

We designed a competitive arm rehabilitation game for two players that dynamically adapts its difficulty to both players’ abilities. This game was evaluated by two participant groups: 15 participants with chronic arm impairment who exercised at home with an unimpaired friend or relative, and 20 participants in the acute or subacute phase of stroke who exercised in pairs (10 pairs) at a rehabilitation clinic. All participants first played the game against their human opponent for 3 sessions, then played alone (against a computer opponent) in the final, fourth session. In all sessions, participants’ subjective experiences were assessed with the Intrinsic Motivation Inventory questionnaire while exercise intensity was measured using inertial sensors built into the rehabilitation device. After the fourth session, a final brief questionnaire was used to compare competition and exercising alone.

Results

Participants who played against an unimpaired friend or relative at home tended to prefer competition (only 1 preferred exercising alone), and exhibited higher enjoyment and exercise intensity when competing (first three sessions) than when exercising alone (last session).

Participants who played against each other in the clinic, however, did not exhibit significant differences between competition and exercising alone. For both groups, there was no difference in enjoyment or exercise intensity between the first three sessions, indicating no negative effects of habituation or novelty.

Conclusions

Competitive exercises have high potential for unsupervised home rehabilitation, as they improve enjoyment and exercise intensity compared to exercising alone. Such exercises could thus improve rehabilitation outcome, but this needs to be tested in long-term clinical trials. It is not clear why participants who competed against each other at the clinic did not exhibit any advantages of competition, and further studies are needed to determine how different factors (environment, nature of opponent etc.) influence patients’ experiences with competitive exercises.

Trial registration

The study is not a clinical trial. While human subjects are involved, they do not participate in a full rehabilitation intervention, and no health outcomes are examined.

Electronic supplementary material

The online version of this article (10.1186/s12984-017-0336-9) contains supplementary material, which is available to authorized users.

Background

Rehabilitation games

Stroke is a leading cause of disability, with 795,000 new or recurrent strokes per year in the United States alone [1]. 88% of survivors experience motor function impairment and thus require rehabilitation to regain their movement abilities [2]. However, even top hospitals devote only an hour per day to motor rehabilitation [3], and exercise intensity is usually too low for optimal rehabilitation outcome [4]. Patients are thus expected to exercise independently at home after leaving the clinic to fully regain their abilities, but frequently do not exercise frequently or intensely enough. For example, one study found that only 30% of unsupervised patients comply with prescribed home rehabilitation regimens [5]. Another home rehabilitation study found that patients average around 1.5 h of exercise per week [6], while clinical studies involve at least 3 h of exercise per week [78]. To improve home rehabilitation, it is therefore critical to increase the frequency and intensity of exercise.

One key reason for poor compliance in home rehabilitation is lack of motivation, which is an important predictor of rehabilitation outcome [910]. While the definition of motivation in rehabilitation is blurry, it is generally agreed to involve a willingness to actively engage in exercise [1112]. To improve engagement, researchers have thus developed numerous rehabilitation games that try to both ensure high enjoyment (using, e.g., meaningful goals, in-game rewards and entertaining graphics [1215]) and provide an appropriate exercise intensity via automated difficulty adaptation [121416]. The games are controlled using motion tracking hardware such as the Microsoft Kinect or even with rehabilitation robots that provide limb support in addition to motion tracking. However, recent reviews have emphasized that such games are not yet sufficiently engaging for all patients [1718]. Therefore, additional rehabilitation game development and validation is necessary to improve patient engagement.[…]

 

Continue —> A multisession evaluation of an adaptive competitive arm rehabilitation game

An external file that holds a picture, illustration, etc.Object name is 12984_2017_336_Fig1_HTML.jpg

Fig. 1
The Bimeo arm rehabilitation system in the wrist and forearm training configuration. Inertial sensors are attached to the upper arm, attached to the forearm, and integrated in the sphere that supports the hand

, , , , , , , , , , ,

Leave a comment

[Abstract] Tele-Rehabilitation after Stroke: An Updated Systematic Review of the Literature.

Abstract

BACKGROUND:

Tele-rehabilitation for stroke survivors has emerged as a promising intervention for remotely supervised administration of physical, occupational, speech, and other forms of therapies aimed at improving motor, cognitive, and neuropsychiatric deficits from stroke.

OBJECTIVE:

We aimed to provide an updated systematic review on the efficacy of tele-rehabilitation interventions for recovery from motor, higher cortical dysfunction, and poststroke depression among stroke survivors.

METHODS:

We searched PubMed and Cochrane library from January 1, 1980 to July 15, 2017 using the following keywords: “Telerehabilitation stroke,” “Mobile health rehabilitation,” “Telemedicine stroke rehabilitation,” and “Telerehabilitation.” Our inclusion criteria were randomized controlled trials, pilot trials, or feasibility trials that included an intervention group that received any tele-rehabilitation therapy for stroke survivors compared with a control group on usual or standard of care.

RESULTS:

This search yielded 49 abstracts. By consensus between 2 investigators, 22 publications met the criteria for inclusion and further review. Tele-rehabilitation interventions focused on motor recovery (n = 18), depression, or caregiver strain (n = 2) and higher cortical dysfunction (n = 2). Overall, tele-rehabilitation interventions were associated with significant improvements in recovery from motor deficits, higher cortical dysfunction, and depression in the intervention groups in all studies assessed, but significant differences between intervention versus control groups were reported in 8 of 22 studies in favor of tele-rehabilitation group while the remaining studies reported nonsignificant differences.

CONCLUSION:

This updated systematic review provides evidence to suggest that tele-rehabilitation interventions have either better or equal salutary effects on motor, higher cortical, and mood disorders compared with conventional face-to-face therapy.

 

via Tele-Rehabilitation after Stroke: An Updated Systematic Review of the Literature. – PubMed – NCBI

, , , ,

Leave a comment

%d bloggers like this: