Archive for category Tele/Home Rehabilitation

[REVIEW] Telerehabilitation: Review of the State-of-the-Art and Areas of Application – Full Text  

ABSTRACT

Background: Telemedicine applications have been increasing due to the development of new computer science technologies and of more advanced telemedical devices. Various types of telerehabilitation treatments and their relative intensities and duration have been reported.

Objective: The objective of this review is to provide a detailed overview of the rehabilitation techniques for remote sites (telerehabilitation) and their fields of application, with analysis of the benefits and the drawbacks related to use. We discuss future applications of telerehabilitation techniques with an emphasis on the development of high-tech devices, and on which new tools and applications can be used in the future.

Methods: We retrieved relevant information and data on telerehabilitation from books, articles and online materials using the Medical Subject Headings (MeSH) “telerehabilitation,” “telemedicine,” and “rehabilitation,” as well as “disabling pathologies.”

Results: Telerehabilitation can be considered as a branch of telemedicine. Although this field is considerably new, its use has rapidly grown in developed countries. In general, telerehabilitation reduces the costs of both health care providers and patients compared with traditional inpatient or person-to-person rehabilitation. Furthermore, patients who live in remote places, where traditional rehabilitation services may not be easily accessible, can benefit from this technology. However, certain disadvantages of telerehabilitation, including skepticism on the part of patients due to remote interaction with their physicians or rehabilitators, should not be underestimated.

Conclusions: This review evaluated different application fields of telerehabilitation, highlighting its benefits and drawbacks. This study may be a starting point for improving approaches and devices for telerehabilitation. In this context, patients’ feedback may be important to adapt rehabilitation techniques and approaches to their needs, which would subsequently help to improve the quality of rehabilitation in the future. The need for proper training and education of people involved in this new and emerging form of intervention for more effective treatment can’t be overstated.

Introduction

In the last few years, telemedicine applications have been increasing due to the development of new computer science technologies and of more advanced telemedical devices. Long-distance communication can be easily achieved by videoconferencing, email, and texting, to name a few. Today there is the possibility of controlling robots, robotic arms, or drones at a distance. Thanks to these advancements, the course of human action has been considerably transformed [1]. During the last 20 years, demographic changes and increased budget allocation in public health have improved new rehabilitative practices [2]. Rehabilitation is an old branch of medicine, but in the last few years, new telecommunication-based practices have been developed all over the world. These particular approaches in the field of rehabilitation are commonly defined as telerehabilitation, which should be considered as a telemedicine subfield consisting of a system to control rehabilitation at a distance [3].

Telerehabilitation has been developed to take care of inpatients, transferring them home after the acute phase of a disease to reduce patient hospitalization times and costs to both patients and health care providers. Telerehabilitation allows for treatment of the acute phase of diseases by substituting the traditional face-to-face approach in the patient-rehabilitator interaction [4]. Finally, it can cover situations in which it is complicated for patients to reach traditional rehabilitation infrastructures located far away from where they live.

Controlled studies on rehabilitation have demonstrated that quick management of an injury or a disease is critical to achieve satisfactory results in terms of increasing a patient’s self-efficacy. Hence, a rehabilitation program should start as soon as possible, be as intensive as possible, be prolonged, and continue during the recovery phase. A major factor is the initiation time, which, in general, should begin as soon as possible. In most cases, the initial stages of rehabilitation, after the occurrence of a disease or injury, could be performed by patients at home even if they need accurate and intensive treatment. For these reasons, telerehabilitation was developed to achieve the same results as would be achieved by the normal rehabilitation process at a hospital or face to face with a physiotherapist. Various types of telerehabilitation treatments and their relative intensities and duration have been reported [5].

The first scientific publication on telerehabilitation is dated 1998 and, in the last few years, the number of articles on the topic has increased, probably because of the emerging needs of people and due to the development of exciting new communication and computer technologies. Figure 1 shows the number of patients treated through telerehabilitation from 1998 to 2008 according to studies published in the international literature [2].

A remarkable increase in the number of patients treated by telerehabilitation is noticeable from 2002 to 2004. After a subsequent decrease, the number of patients assisted by telerehabilitation increased starting from 2007, probably due to the support of new technologies and the overcoming of the initial skepticism to which every new technology is subjected.

Telerehabilitation is primarily applied to physiotherapy [6,7], and neural rehabilitation is used for monitoring the rehabilitative progress of stroke patients [8]. Telerehabilitation techniques mimic virtual reality [912] and rehabilitation for neurological conditions by using robotics and gaming techniques [13]. Quite often, telerehabilitation has been associated with other nonrehabilitative technologies such as remote monitoring of cardiovascular parameters, including electrocardiogram (ECG), blood pressure, and oxygen saturation in patients with chronic diseases [14]. These technologies belong to another telemedicine branch called telemonitoring, which has been widely developed and used in recent years. A few studies were also centered on the economic aspects of the use of telerehabilitation to reduce the costs of hospitalization [15]. We reviewed the status and future perspectives of telerehabilitation by analyzing their impact on patients’ everyday life. The main topics taken into account were (1) the status of telerehabilitation and analysis of the main medical specialties where it is being applied, (2) quality-of-life improvement due to telerehabilitation, and (3) the future of telerehabilitation.

Figure 1. Number of patients treated from 1998 to 2008 through telerehabilitation techniques.

 

Continue —> JRAT-Telerehabilitation: Review of the State-of-the-Art and Areas of Application | Peretti | JMIR Rehabilitation and Assistive Technologies

, , , ,

Leave a comment

[Abstract+References] High-Intensity Chronic Stroke Motor Imagery Neurofeedback Training at Home: Three Case Reports 

Motor imagery (MI) with neurofeedback has been suggested as promising for motor recovery after stroke. Evidence suggests that regular training facilitates compensatory plasticity, but frequent training is difficult to integrate into everyday life. Using a wireless electroencephalogram (EEG) system, we implemented a frequent and efficient neurofeedback training at the patients’ home. Aiming to overcome maladaptive changes in cortical lateralization patterns we presented a visual feedback, representing the degree of contralateral sensorimotor cortical activity and the degree of sensorimotor cortex lateralization. Three stroke patients practiced every other day, over a period of 4 weeks. Training-related changes were evaluated on behavioral, functional, and structural levels. All 3 patients indicated that they enjoyed the training and were highly motivated throughout the entire training regime. EEG activity induced by MI of the affected hand became more lateralized over the course of training in all three patients. The patient with a significant functional change also showed increased white matter integrity as revealed by diffusion tensor imaging, and a substantial clinical improvement of upper limb motor functions. Our study provides evidence that regular, home-based practice of MI neurofeedback has the potential to facilitate cortical reorganization and may also increase associated improvements of upper limb motor function in chronic stroke patients.

1. Jones TA, Adkins DL. Motor system reorganization after stroke: stimulating and training toward perfection. Physiology (Bethesda). 2015;30:358370. Google Scholar Medline
2. Murray CJL, Vos T, Lozano R, . Disability-adjusted life years (DALYs) for 291 diseases and injuries in 21 regions, 1990-2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet. 2012;380:21972223. Google Scholar CrossRef, Medline
3. Hankey GJ, Jamrozik K, Broadhurst RJ, Forbes S, Anderson CS. Long-term disability after first-ever stroke and related prognostic factors in the Perth Community Stroke Study, 1989-1990. 2002;33:10341040. Google Scholar
4. Jeannerod M. Neural simulation of action: a unifying mechanism for motor cognition. Neuroimage. 2001;14:103109. Google Scholar CrossRef, Medline
5. Cicinelli P, Marconi B, Zaccagnini M, Pasqualetti P, Filippi MM, Rossini PM. Imagery-induced cortical excitability changes in stroke: a transcranial magnetic stimulation study. Cereb Cortex. 2006;16:247253. Google Scholar CrossRef, Medline
6. Langhorne P, Coupar F, Pollock A. Motor recovery after stroke: a systematic review. Lancet Neurol. 2009;8:741754. Google Scholar CrossRef, Medline
7. Page SJ, Levine P, Leonard AC. Effects of mental practice on affected limb use and function in chronic stroke. Arch Phys Med Rehabil. 2005;86:399402. Google Scholar CrossRef, Medline
8. Crosbie JH, McDonough SM, Gilmore DH, Wiggam MI. The adjunctive role of mental practice in the rehabilitation of the upper limb after hemiplegic stroke: a pilot study. Clin Rehabil. 2004;18:6068. Google Scholar Link
9. Liu KP, Chan CC, Lee TM, Hui-Chan CW. Mental imagery for promoting relearning for people after stroke: a randomized controlled trial. Arch Phys Med Rehabil. 2004;85:14031408. Google Scholar CrossRef, Medline
10. Grosse-Wentrup M, Mattia D, Oweiss K. Using brain-computer interfaces to induce neural plasticity and restore function. J Neural Eng. 2011;8:025004. Google Scholar CrossRef
11. Buch E, Weber C, Cohen LG, . Think to move: a neuromagnetic brain-computer interface (BCI) system for chronic stroke. Stroke. 2008;39:910917. Google Scholar CrossRef, Medline
12. Broetz D, Braun C, Weber C, Soekadar SR, Caria A, Birbaumer N. Combination of brain-computer interface training and goal-directed physical therapy in chronic stroke: a case report. Neurorehabil Neural Repair. 2010;24:674679. Google Scholar Link
13. Caria A, Weber C, Brötz D, . Chronic stroke recovery after combined BCI training and physiotherapy: a case report. Psychophysiology. 2011;48:578582. Google Scholar CrossRef, Medline
14. Ramos-Murguialday A, Broetz D, Rea M, . Brain-machine interface in chronic stroke rehabilitation: a controlled study. Ann Neurol. 2013;74:100108. Google Scholar CrossRef, Medline
15. Shindo K, Kawashima K, Ushiba J, . Effects of neurofeedback training with an electroencephalogram-based brain-computer interface for hand paralysis in patients with chronic stroke: a preliminary case series study. J Rehabil Med. 2011;43:951957. Google Scholar CrossRef, Medline
16. Pichiorri F, Morone G, Petti M, . Brain-computer interface boosts motor imagery practice during stroke recovery. Ann Neurol. 2015;77:851865. Google Scholar CrossRef, Medline
17. Zich C, Debener S, Kranczioch C, Bleichner MG, Gutberlet I, De Vos M. Real-time EEG feedback during simultaneous EEG-fMRI identifies the cortical signature of motor imagery. Neuroimage. 2015;114:438447. Google Scholar CrossRef, Medline
18. Debener S, Minow F, Emkes R, Gandras K, De Vos M. How about taking a low-cost, small, and wireless EEG for a walk? Psychophysiology. 2012;49:16171621. Google Scholar CrossRef, Medline
19. Kranczioch C, Zich C, Schierholz I, Sterr A. Mobile EEG and its potential to promote the theory and application of imagery-based motor rehabilitation. Int J Psychophysiol. 2014;91:1015. Google Scholar CrossRef, Medline
20. De Vos M, Kroesen M, Emkes R, Debener S. P300 speller BCI with a mobile EEG system: comparison to a traditional amplifier. J Neural Eng. 2014;11:036008. Google Scholar CrossRef
21. Debener S, Emkes R, De Vos M, Bleichner M. Unobtrusive ambulatory EEG using a smartphone and flexible printed electrodes around the ear. Sci Rep. 2015;5:16743. Google Scholar CrossRef, Medline
22. Renard Y, Lotte F, Gibert G, . OpenViBE : an open-source software platform to design, test, and use brain-computer interfaces in real and virtual. Presence. 2010;19:3553. Google Scholar CrossRef
23. Ward NS, Brown MM, Thompson AJ, Frackowiak RSJ. Neural correlates of outcome after stroke: a cross-sectional fMRI study. Brain. 2003;126:14301448. Google Scholar CrossRef, Medline
24. Ward NS, Brown MM, Thompson AJ, Frackowiak RSJ. Neural correlates of motor recovery after stroke: a longitudinal fMRI study. Brain. 2003;126:24762496. Google Scholar CrossRef, Medline
25. Fugl-Meyer AR, Jääskö L, Leyman I, Olsson S, Steglind S. The post-stroke hemiplegic patient. 1. A method for evaluation of physical performance. Scand J Rehabil Med. 1975;7:1331. Google Scholar Medline
26. Pandyan AD, Johnson GR, Price CI, Curless RH, Barnes MP, Rodgers H. A review of the properties and limitations of the Ashworth and modified Ashworth Scales as measures of spasticity. Clin Rehabil. 1999;13:373383. Google Scholar Link
27. Johansen-Berg H, Rushworth MFS, Bogdanovic MD, Kischka U, Wimalaratna S, Matthews PM. The role of ipsilateral premotor cortex in hand movement after stroke. Proc Natl Acad Sci U S A. 2002;99:1451814523. Google Scholar CrossRef, Medline
28. Feydy A, Carlier R, Roby-Brami A, . Longitudinal study of motor recovery after stroke: recruitment and focusing of brain activation. Stroke. 2002;33:16101617. Google Scholar CrossRef, Medline
29. Cramer SC, Nelles G, Benson RR, . A functional MRI study of subjects recovered from hemiparetic stroke. Stroke. 1997;28:25182527. Google Scholar CrossRef, Medline
30. Chollet F, DiPiero V, Wise RJ, Brooks DJ, Dolan RJ, Frackowiak RS. The functional anatomy of motor recovery after stroke in humans: a study with positron emission tomography. Ann Neurol. 1991;29:6371. Google Scholar CrossRef, Medline
31. Caramia MD, Iani C, Bernardi G. Cerebral plasticity after stroke as revealed by ipsilateral responses to magnetic stimulation. Neuroreport. 1996;7:17561760. Google Scholar CrossRef, Medline
32. Calautti C, Leroy F, Guincestre JY, Marié RM, Baron JC. Sequential activation brain mapping after subcortical stroke: changes in hemispheric balance and recovery. Neuroreport. 2001;12:38833886. Google Scholar CrossRef, Medline
33. Zich C, De Vos M, Kranczioch C, Debener S. Wireless EEG with individualized channel layout enables efficient motor imagery training. Clin Neurophysiol. 2015;126:698710. Google Scholar CrossRef, Medline
34. Blankertz B, Losch F, Krauledat M, Dornhege G, Curio G, Müller K-R. The Berlin brain-computer interface: accurate performance from first-session in BCI-naïve subjects. IEEE Trans Biomed Eng. 2008;55:24522462. Google Scholar CrossRef, Medline
35. Blokland Y, Spyrou L, Thijssen D, . Combined EEG-fNIRS decoding of motor attempt and imagery for brain switch control: an offline study in patients with tetraplegia. IEEE Trans Neural Syst Rehabil Eng. 2014;22:222229. Google Scholar CrossRef, Medline
36. Zich C, Debener S, Kranczioch C, Chen L-C, De Vos M. Lateralization patterns for movement execution and imagination investigated with concurrent EEG-fMRI and EEG-fNRIS. In: Müller-Putz GR, Huggins JE, Steyrl D, eds. Proceedings of the Sixth International Brain-Computer Interface Meeting: BCI Past, Present, and Future, Pacific Grove, California, USA. Graz, Austria: Verlag der Technischen Universität Graz; 2016:101. Google Scholar
37. Zich C, Debener S, Thoene A-K, Chen L-C, Kranczioch C. Simultaneous EEG-fNIRS reveals how age and feedback affect motor imagery signatures. Neurobiol Aging. 2017;49:183197. Google Scholar CrossRef, Medline

Source: High-Intensity Chronic Stroke Motor Imagery Neurofeedback Training at Home: Three Case ReportsClinical EEG and Neuroscience – Catharina Zich, Stefan Debener, Clara Schweinitz, Annette Sterr, Joost Meekes, Cornelia Kranczioch, 2017

, , , , , , , , ,

Leave a comment

[ARTICLE] Home-based neurologic music therapy for arm hemiparesis following stroke: results from a pilot, feasibility randomized controlled trial – Full Text

 

Continue —> Home-based neurologic music therapy for arm hemiparesis following stroke: results from a pilot, feasibility randomized controlled trialClinical Rehabilitation – Alexander J Street, Wendy L Magee, Andrew Bateman, Michael Parker, Helen Odell-Miller, Jorg Fachner, 2017

figure

Figure 1. Study flow diagram. Data collection occurred at weeks 1, 6, 9, 15 and 18. Cross-over analysis required data from weeks 1, 6, 9 and 15.

, , , , , , , , , ,

Leave a comment

[Editorial] E-Rehabilitation: New Reality or Virtual Need?

 

This is an era of digitalization, internet, wifi, use of mobile and smart phones, virtual world, applications and technology. On one hand these are contributing to cyber psychopathology, on the other hand these have a potential for management.

With the understanding of disability as a complex interaction between the effects of illness and contextual factors, both personal and environmental, the relevance of new avenues to deliver rehabilitative services is profound. A significant proportion of the population is underserved, with the National Mental Health Survey of India 2016- a survey which covered 34,802 individuals from 12 states of India- showing a mental morbidity of 10.6% in those over the age of 18 years, and 7.3% in those between the ages of 13 and 17, but with a treatment gap of 28–83% (and 86% for alcohol use disorders). In addition, “three out of four persons with a severe mental disorder experienced significant disability in work, social and family life” [1]. Given the extent of the need and the dearth of services, the report recommends the following, “Technology based applications for near-to-home-based care using smart-phone by health workers, evidence-based (electronic) clinical decision support systems for adopting minimum levels of care by doctors, creating systems for longitudinal follow-up of affected persons to ensure continued care through electronic databases and registers can greatly help in this direction. To facilitate this, convergence with other flagship schemes such as Digital India needs to be explored” [1]. Recent data has shown that smartphone user base in India has crossed 300 million users in 2016, making it the second largest smartphone market in the world [2]. The potential for service delivery via internet enabled devices seems likely only to rise over time, but what are the possibilities before us now, and equally important, what are the challenges to such approaches?

An exploration of the role of modern technology in rehabilitation in January, 2016, has highlighted the various possibilities in terms of social networking and peer support, telepsychiatry, E health services as well as smartphones and apps [3]. It’s interesting that estimates at the time alluded to smartphone users crossing the 200 million mark in 2016, a 100 million users less than later estimates! Looking ahead these are the ways new and emerging technologies could change the ways we approach and conceptualise recovery,

  1. (a)

    Information access: Access to information and more specifically, access to relevant and accurate information have to potential to allow caregivers and patients to recognise mental health issues early, and seek help. Some of this information will be from traditional media, such as radio and television, but a significant proportion of people are likely to glean this information from social media sites and communication apps—such as the almost ubiquitous Whatsapp—on which they also consume other services and obtain their daily news and information from. Search algorithms and the way they rank different sources of information are likely to play an important role in the way people form their opinions about the illnesses they suffer from and the way they seek help. There is a need for curated information on mental health, especially in the Indian context and in vernacular languages, that people can not only refer to themselves, but which they can direct their friends and family toward as reliable sources of information too. Health care professionals must be prepared to help their patients learn ‘eHealth literacy’ [4].

  2. (b)

    Automation: Work is something that most people with mental illness aspire to do, and this can enhance their quality of life significantly [5]. Automation and applications of artificial intelligence are poised to change the face of industry as well as our lifestyles. Some traditional jobs such as fabrication and driving are poised to radically change. This will mean that vocational rehabilitation programmes will have to keep pace with a changing environment, and look to integrating industry expertise in the designing of courses and course materials which remain relevant to patients. Government programmes such as the Skill India initiative have the potential to help evolve this flexibility in course design, and to skill or re-skill persons in their quest to obtain and sustain jobs.

    Workplace is being replaced by home based workstations, computers, laptops and notebooks. People accustomed to these run their office from anywhere and everywhere. There will be a need to redefine ‘work place’ as ‘where ever the laptop is’. Thus, in future, persons undergoing rehabilitation, can ‘work from home’, provided they have the facilities, and job to do. Staying and working from home for persons with mental health problems, will prevent them from ‘live’ socialising, using social skills, and giving respite to family caregivers. On the other hand, they would be under direct supervision of the family, reducing their concerns and anxieties.

  3. (c)

    Digital identities and digital payments: With the increasing digitisation of access to services, there is a growing need for education in digital literacy and security. Programmes which teach life skills will have to help their users familiarise themselves with the advantages of new technologies as well as the risks they bring. A number of records related to disability are likely to form parts of central databases, such as the Unique Disability ID [6], and the potential to offer a number of services through a single user interface to those with disability is significant. It would also ease the accessing of such benefits even when patients travel or move to other states, whether temporarily or permanently. The storage of health records in electronic formats, e-health records, would allow patients to exert control over access to their own records and enable transfers from one healthcare provider to another without delay or loss of information. An e-health record format which is shared among different providers and which allows different hospital information systems to effectively share information is an important need. There can be a possibility to maintain a central registry of persons receiving mental health rehabilitation services.

  4. (d)

    Wearables and digital phenotyping: The mobile devices and other wearable accessories we use have the potential to collect vast amounts of information about our health. Newer approaches look to collect information such as changes in the speed of our typing or motor movements, or the searches we repeat and use these to make estimates about the status of our cognitive and neurological health in real time–an approach called digital phenotyping. This could aid in monitoring persons suffering from dementia or mild cognitive deficits. It could also be used to explore trajectories of development in children and adolescents, and could help inform early intervention programmes. Over and above monitoring, the use of digital assistants could be used to guide and shape behaviour in real time, provide cognitive aids and reduce dependency as well as the burden on caregivers for some tasks.

  5. (e)

    Virtual Reality and Augmented reality: Virtual reality (VR) refers to an interactive immersive experience wherein a computer generated world which a user can interact with is simulated with either a screen or a heads-up display. Augmented reality systems allow perception of the environment around along with the simulated projection. It’s also used to refer to situations where mobile phones or wearables can be used to interact with the environment around to either generate a virtual experience or provide additional information.

    It’s been used as an application for interventions in phobias for some time. Recent gains in the technology have coincided with an expansion of uses to cognitive rehabilitation, social skills training and even craving management in alcohol use disorders [7]. The number of mental health professionals available to deliver these services is low compared to demand and unequally distributed. With the evolution of mobile systems that can deliver VR experiences, such as the Google Daydream platform, it may be possible to translate some of these packages into content that can be delivered across such platforms with fidelity. There is still some work to be done about how perception of such experiences can affect symptoms in those with mental illness, and even if the same visual illusions are perceived differently.

  6. (f)

    Social networks, communication apps and peer support: Social networks and social media increasingly influence information access and viewpoints. They can serve as accepting communities to which people can feel as if they belong. They can also carry risks, including the spread of myths and misconceptions. Peer support groups, much like other networks, are now easier to form and to find. Hence, the potential for persons with mental illness to be involved in advocacy movements and to influence public policy is unprecedented, if still underutilised. The ability to use social networks and the internet to market products and expand networks can help those who chose to be entrepreneurs have greater reach and exposure. The ability to use these networks effectively, and other marketing skills, would also become a skill set that requires mentoring in.

  7. (g)

    The use of learning networks: Virtual classrooms and virtual learning networks have the potential to raise standards of care delivery by spreading best care practices and knowledge. Initiatives like the ECHO network and the Virtual Knowledge Network, NIMHANS can help spread the expertise of institutes by mentoring professionals who are involved in care delivery. They can also serve as ways to allow different institutes to demonstrate their own best practices and innovative models of service delivery to their peers.

The future of psychiatric practice, including psychiatric rehabilitation, in relation to virtual reality, technology and gadgets is likely to change with advances in technology and their usage [8]. While the tools that are available are changing, they will still be guided by the principles that form the bedrock of good practice in rehabilitation. Patients and their families may be drawn to online resources for rehabilitation.

The current issue of the journal is rather healthy with seventeen articles. And there is a good global distribution as well, with descriptions of mental health and rehabilitation services in Vietnam, Nigeria, USA, UK, Canada, Malaysia, and Iran. These have also covered a wide range of themes, from recovery scales, models for community based rehabilitation and community participation, in patient services, first episode psychosis, helping mothers with intellectual disabilities, and infertility. In addition, a book review on a very useful book on challenges of care giving for mental illness, cover an interesting spectrum of articles.

Source: E-Rehabilitation: New Reality or Virtual Need? | SpringerLink

, , , , , , , , , , , ,

Leave a comment

[ARTICLE] Video Game Rehabilitation for Outpatient Stroke (VIGoROUS): protocol for a multi-center comparative effectiveness trial of in-home gamified constraint-induced movement therapy for rehabilitation of chronic upper extremity hemiparesis – Full Text

 

Abstract

Background

Constraint-Induced Movement therapy (CI therapy) is shown to reduce disability, increase use of the more affected arm/hand, and promote brain plasticity for individuals with upper extremity hemiparesis post-stroke. Randomized controlled trials consistently demonstrate that CI therapy is superior to other rehabilitation paradigms, yet it is available to only a small minority of the estimated 1.2 million chronic stroke survivors with upper extremity disability. The current study aims to establish the comparative effectiveness of a novel, patient-centered approach to rehabilitation utilizing newly developed, inexpensive, and commercially available gaming technology to disseminate CI therapy to underserved individuals. Video game delivery of CI therapy will be compared against traditional clinic-based CI therapy and standard upper extremity rehabilitation. Additionally, individual factors that differentially influence response to one treatment versus another will be examined.

Methods

This protocol outlines a multi-site, randomized controlled trial with parallel group design. Two hundred twenty four adults with chronic hemiparesis post-stroke will be recruited at four sites. Participants are randomized to one of four study groups: (1) traditional clinic-based CI therapy, (2) therapist-as-consultant video game CI therapy, (3) therapist-as-consultant video game CI therapy with additional therapist contact via telerehabilitation/video consultation, and (4) standard upper extremity rehabilitation. After 6-month follow-up, individuals assigned to the standard upper extremity rehabilitation condition crossover to stand-alone video game CI therapy preceded by a therapist consultation. All interventions are delivered over a period of three weeks. Primary outcome measures include motor improvement as measured by the Wolf Motor Function Test (WMFT), quality of arm use for daily activities as measured by Motor Activity Log (MAL), and quality of life as measured by the Quality of Life in Neurological Disorders (NeuroQOL).

Discussion

This multi-site RCT is designed to determine comparative effectiveness of in-home technology-based delivery of CI therapy versus standard upper extremity rehabilitation and in-clinic CI therapy. The study design also enables evaluation of the effect of therapist contact time on treatment outcomes within a therapist-as-consultant model of gaming and technology-based rehabilitation.

Background

Clinical practice guidelines recommend outpatient rehabilitation for stroke survivors who remain disabled after discharge from inpatient rehabilitation [1]. Although these guidelines recommend that the majority of stroke survivors receive at least some outpatient rehabilitation [2], many cannot access long-term care [3]. Among those individuals who do undergo outpatient rehabilitation, the standard of care for upper extremity rehabilitation is suboptimal.

In an observational study of 312 rehabilitation sessions (83 occupational and physical therapists at 7 rehabilitation sites), Lang and colleagues [4] found that functional rehabilitation (i.e., movement that accomplishes a functional task, such as eating, as opposed to strength training or passive movement) was provided in only 51% of the sessions of upper extremity rehabilitation, with only 45 repetitions per session on average. This is concerning given that empirically-validated interventions incorporate higher doses of active motor practice [5, 6, 7]. Additionally, functional upper extremity movements are most likely to generalize to everyday tasks [8], an aspect of recovery that is critically important to patients and their families [9, 10, 11]. Yet, passive movement and non-goal-directed exercise are more frequently administered [4].

There appear to be at least two critical elements required for successful upper extremity motor rehabilitation: 1) motor practice that is sufficiently intense and 2) techniques to carryover motor improvements to functional activities. Carry-over techniques to increase a person’s use of the more affected upper extremity for daily activities are extremely important for rehabilitation and appear necessary for structural brain change [12, 13, 14, 15]. When rehabilitation incorporates these techniques, there is substantially improved improvement in self-perceived quality of arm use for daily activities [12, 16]. Carry-over techniques enable the patient to overcome the conditioned suppression of movement (learned nonuse) characteristic of chronic hemiparesis [17]. Techniques include structured self-monitoring, a treatment contract, daily home practice of specific functional motor skills, and guided problem-solving to overcome perceived barriers to using the extremity [18].

Constraint-Induced Movement therapy (CI therapy) has strong empirical backing [5, 19] and combines high-repetition functional practice of the more affected arm with behavioral techniques to enhance carry-over [13, 18]. CI therapy produces consistently superior motor performance and retention of gains versus standard upper extremity rehabilitation [20, 21], particularly when it includes the critically important carry-over (transfer package) techniques [12]. When compared to other equally intensive interventions (i.e., equal hours of training on functional tasks), CI therapy with carry-over (transfer package) techniques has also shown enhanced carry-over of clinical gains to daily activities [12, 13, 22, 23, 24] that are retained for at least 2 years [19, 25, 26, 27, 28].

Despite its inclusion in best practice recommendations [29, 30], CI therapy is available to only a very small minority of those who could benefit from it in the US. CI therapy is not typically covered by insurance and the 30+ hours of assessment and physical training cost upwards of $6000. Access barriers for the patient include limited transportation and insurance coverage, whereas therapists may have difficulty accommodating the CI therapy schedule [31, 32]. Access barriers aside, CI therapy has also been plagued by a variety of misconceptions regarding use of restraint and the transfer package. Most iterations of CI therapy employ use of a restraint mitt to promote use of the affected arm, which is viewed by many patients and clinicians as excessively prohibitive [32]. Yet, literature demonstrates that restraint is not specifically required to achieve positive outcomes [33, 34]. Moreover, the transfer package, a component found to be critical [13, 14], is omitted from the majority of research studies on CI therapy [35].

To address transportation barriers, a telerehabilitation model of CI therapy delivery (AutoCITE) has been tested. AutoCITE is a large specialized motor apparatus (not commercially available, cost not established) that was installed in patients’ homes to enable therapeutic manipulation of actual objects with continuous video monitoring via Internet. This telerehabilitation approach demonstrated efficacy approximately equivalent to that of in-clinic CI therapy [36, 37, 38], thus establishing the feasibility of utilizing technology to deliver CI therapy remotely. However, this system involved specialized equipment at a high cost and did not become available outside a research setting.

To more fully address the barriers to accessing CI therapy and to counter the misconceptions surrounding CI therapy, a patient-centered treatment approach was developed that incorporated the high-repetition practice and carry-over strategies from CI therapy, while reforming non-patient-centric elements of the protocol that lack strong empirical support (i.e., the restraint). To deliver engaging high-repetition practice, a Kinect-based video game was created that can accommodate a wide range of motor disability, can be customized to each user, and automatically progresses in difficulty as the individual’s performance improves (termed “shaping” in the CI therapy literature). A player’s body movements drive game play (there is no external controller), which makes the game easy to use for those who may be unfamiliar with technology. To date, such high-repetition practice through motor gaming [39] has shown initial promise compared to traditional clinic-based approaches [40]. To promote increased use of the weaker arm, a smart watch biofeedback application is utilized in lieu of the restraint mitt. This application counts movements made with the weaker arm and provides alerts when a period of inactivity is detected. Previous approaches for providing CI therapy in the home and reducing the amount of therapist effort have been carried out [36, 37, 38, 41]. These approaches automated the delivery of training and permitted remote supervision of the training via an Internet-based audio-visual link, but did not embed the training within the context of a video game, rely on manipulation of virtual objects, or incorporate a patient-centric substitute for the mitt.

Initial evidence from a pilot trial of this system (Borstad A, Crawfis R, Phillips K, Pax Lowes L, Worthen-Chaudhari L, Maung D, et al.: In-home delivery of constraint induced movement therapy via virtual reality gaming is safe and feasible: a pilot study, submitted) suggests that improvements in motor speed, as measured by Wolf Motor Function Test (WMFT) performance time [42], an outcome of prime importance to stroke survivors, are approximately equivalent to those reported in the traditional CI therapy literature [5, 13, 19, 25]. Qualitative data reveal that the technology is accepted irrespective of age, technological expertise, ethnicity, or cultural background. Thus, this technology has the potential to address the main barriers to adoption of CI therapy, while reducing the cost of care. A randomized clinical trial is now required to provide Level 1 evidence of the comparative effectiveness of this novel model of CI therapy delivery. Data from this trial will enable individuals with motor disability to evaluate whether a home-based video game therapy has the potential to help them meet their rehabilitation goals compared to in-clinic CI therapy and traditional approaches. By combining novel gaming elements with the transfer package from CI therapy, this trial will also address a major limitation of rehabilitation gaming interventions that have been tried to date: extremely limited emphasis on carry-over of training to daily activities.

The primary objective of this trial is to compare the effectiveness of two video game-based models of CI therapy versus traditional clinic-based CI therapy versus standard upper extremity rehabilitation for improving upper extremity motor function. One video gaming group will match the number of total hours spent on the CI therapy transfer package, but will involve fewer days of therapist-client interaction (4 versus 10); the other will match the number of interactions with a therapist to that of clinic-based CI therapy using video consultation between in-person sessions and, as such, will involve more therapist contact hours spent focusing on the transfer package. The secondary objective of this project is to promote personalized medicine by examining individual factors that may differentially influence response to one treatment versus another.

Continue —>  Video Game Rehabilitation for Outpatient Stroke (VIGoROUS): protocol for a multi-center comparative effectiveness trial of in-home gamified constraint-induced movement therapy for rehabilitation of chronic upper extremity hemiparesis | BMC Neurology | Full Text

Fig. 1 Screen capture of the Recovery Rapids gaming environment

, , , , , , , , , , ,

Leave a comment

[ARTICLE] M-health and Physiotherapy – Full Text PDF

ABSTRACT
Rehabilitation exercises are those exercises that help in
improving joint and muscle function, helping people stand,
balance, walked. But these exercises work if done regularly
and done as proposed by the therapist. Sometimes the patients
has problems like scheduling their daily tasks, their
commitment for doing those exercises, and some other
difficultiessimilar to this. Thus failing to do the
movements and get benefit from the exercises. This paper
proposes a system that provides an intuitive way for
rehabilitation. This system contains use of pervasive health
technologies for addressing the over difficulty. The system
would provide a graphical interfacethat would help the
physiotherapist to create exercises in 3Denvironment, wherein
he would be animating a humanoid to showhow the exercise
is to be done.This would show to be more intuitive to patients
rather thanon paper. The system would also let therapist to
monitor patient while he/she is exercising.

1. INTRODUCTION
Physical therapy cures injuries and promotes movements of
injured body parts by examining the patient’s body, diagnosing
the patient and then treating the patient using mechanical
force and movements which is carried out by physical
therapists (also known as physiotherapist). Analysis aims to
extend, and restore maximum functional ability throughout
life action uses the patient history and the physical
examination to find out what really the patient needs to do, to
restore the mobility of the injured muscle. Physical therapy
has many types of specialities:
• Cardiopulmonary
• Geriatrics
• Neurological
• Sports
• Orthopaedic and
• Paediatrics
With the developing technology worldwide, people have
started using handheld devices to carry on their day-to-day
activities. With this advancement, the demand for pervasive
computing and 3D visualization of images and videos has
been raised. The area this paper focuses on is a tele-medicine
and tele-therapy system for helpingthe patient to get the help
of the doctors at their home. When a patient undergoes a
surgery, he may need a physiotherapy session to regain his/her
muscle functionality. For this purpose the patient may need to
take one-to-one session with the physiotherapist. The patient
requires to do these sessions again and again till he/she
regains the muscle functionality. Much man power, resources
and time is need to do all this.
In today’s life, it may be impossible for a patient to get
sometime from the busy schedule and go for these one-to-one
sessions.Also there are elderly people who get surgery but
aren’t able to goto the therapist for every day sessions, also
there are people that live inremote location and due to this
they are not able to get good healthcare services. To resolve
such problems we will be developing a telephysiotherapysystem,
which would help to cater patients at
theirdoorstep. The system would be developed in two stages.
In the firststage the doctor will be provided with an interface
where he/shecan animate a humanoid with the exercise the
patient needs to do.
This would be done using the mobile device the therapist
would behaving. After creating this animation, the therapist
would be ableto record the animation and send the animation
to the appropriatepatient. In the second stage we would be
using sensors and otherdevices to monitor the patient
exercises(If the first stage proves tobe successful).
As stated in the first stage, the therapist would be able to
create3D animations, for which we can use the 3D computer
graphicalrendering on mobile devices. This 3D visualization
would be moreintuitive than the printed paper counterpart.
Thus, it is hoped thatthis would help to improve the patient
health in less costly way.

Full Text PDF

, , , , ,

Leave a comment

[VIDEO] The HandTutor by MediTouch – YouTube

Published on Jun 8, 2017

The HandTutor enables functional rehabilitation of the fingers and wrist with biofeedback. It is particularly effective for treatment of neurological and orthopedic conditions.
The movement biofeedback ensures that the patient is motivated and challenged to perform intensive and controlled practice.
The rehabilitation software gives movement instructions and feedback that prevent the development of undesired and compensatory joint movement and ensures better performance of functional tasks.

The system is used by many leading centers worldwide and has CE and FDA certification. More info at http://meditouch.co.il

, , , , , , ,

Leave a comment

[VIDEO] The ArmTutor by MediTouch HD – YouTube

Published on Jun 8, 2017

The ArmTutor allows for isolated elbow and shoulder and combination elbow and shoulder functional exercise practice. The system provides detailed exercise instructions and precise feedback on the patients exercise performance and improvement. Controlled practice of multi joints within the normal movement pattern prevents the development of undesired and compensatory joint movement and ensures better performance of functional tasks.

The system is used by many leading physical and occupational therapy centres worldwide and has CE and FDA certification.

, , , , , , , ,

Leave a comment

[VIDEO] The LegTutor by MediTouch – YouTube

Δημοσιεύτηκε στις 11 Ιουν 2017

The LegTutor consists of an ergonomic wearable leg brace. Its innovative technology allows lower extremity practice of the hip and knee employing both isolated joints and functional tasks.

The LegTutor is used by the therapist to practice both weight bearing and non weight bearing exercises. The system permits a range of biomechanical evaluations including joint active and passive range of motion. This allows the therapist to measure a baseline of movement ability and document and report progress.

, , , , , ,

Leave a comment

[WEB SITE] Restorative Therapies, Inc. Offers Expanded Options for RT300 at Home Functional Electrical Stimulation Cycling

Restorative Therapies, Inc. advances its new era in physical and occupational therapy systems for neurological injury and paralysis, announcing new options for home-based use of the groundbreaking RT300 functional electrical stimulation (FES) cycling system.

(PRWEB) June 05, 2017

FES is a physical and occupational therapy modality used to evoke functional movements and exercise not otherwise possible for individuals with a neurological impairment such as a spinal cord injury, stroke, multiple sclerosis, cerebral palsy, brain injury or transverse myelitis.

Restorative Therapies is the developer of FES medical devices for clinic and at home activity-based therapies. RT300 FES cycle is the result of Restorative Therapies’ ongoing commitment to the research and development of FES powered physical and occupational therapy systems. RT300 is the FES cycle chosen by all leading neurological rehabilitation clinics. RT300 has been used by over 65,000 individuals with neurological impairments.

RT300 is available for home use with an entry level system starting at $10,995. This 6 channel leg and trunk FES system includes multiple therapy options including standard, isokinetic and interval therapies and access to our FES therapy database RTILink.com which tracks outcomes motivating patients. RT300 is also unique in being easily expanded to include arms, additional channels of FES and ability to target any impaired leg, arm, shoulder or trunk muscle group.

Many people can also benefit from the use of FES separate from cycling, as a therapy for functional activities such as standing, transfers, feeding, brushing hair etc. Restorative Therapies’ new Xcite system evokes coordinated muscle contractions to assist with a wide range of task specific, strengthening and gross motor activities. RT300 home systems are expanding to include Xcite at home so patients can benefit not only from cycling but also these other activities.

Restorative Therapies’ commitment to RT300 home use is supported by our acclaimed insurance reimbursement process and dedicated clinical and technical support teams.

“Very impressed with the ownership Restorative Therapies took of the insurance appeal process. Meredith our installer was wonderful during the install process and I appreciate her knowledge and patience,” said Maryann Murphy, RT300 at home rider. “The quality of RT300 is excellent and the user manuals and website are very helpful. I had an excellent experience with Restorative Therapies and I appreciate the resources and customer support that I have access to as a customer.”

“RT300 is the most practical FES cycle because its flexibility and expandability allow it to cater to the varied needs of people with a neurological injury or paralysis. Reaching over 65,000 individuals is the result of a huge team effort between Restorative Therapies and our clinic partners,” says Andrew Barriskill, CEO of Restorative Therapies. “Together we have worked to make RT300 easy to use at home. Our new entry level systems with important therapy options including Xcite will help us assist more people with neurological impairments at home.”

“The continued growth of home FES cycling is enormously motivating to me and my team,” said Wendy Warfield MSHA, OTR/L, Clinical Manager of Restorative Therapies. “This level of at-home FES use completes the continuum of care for people with weak or paralyzed muscles due to a variety of conditions, diseases, and events,” concludes Warfield.

About Restorative Therapies
Restorative Therapies’ mission is to help people with a neurological impairment or in critical care achieve their full recovery potential. Restorative Therapies combines activity-based physical therapy and Functional Electrical Stimulation as a rehabilitation therapy for those with impaired mobility associated with conditions including but not limited to stroke, multiple sclerosis, cerebral palsy, brain injury, transverse myelitis, and spinal cord injury or for patients in critical care.

Restorative Therapies is a privately held company headquartered in Baltimore. To learn more about Restorative Therapies please visit us at http://www.restorative-therapies.com 

For the original version on PRWeb visit: http://www.prweb.com/releases/2017/06/prweb14388936.htm

Source: Restorative Therapies, Inc. Offers Expanded Options for RT300 at Home Functional Electrical Stimulation Cycling | Benzinga

, , , ,

Leave a comment

%d bloggers like this: