Archive for category spasticity

[Abstract] Post-stroke spasticity management including a chosen physiotherapeutic methods and improvements in motor control – review of the current scientific evidence.

Abstract

Cerebrovascular diseases based on stroke etiology concern millions of people worldwide, and annual rates of disease are still increasing. In the era of an aging society and suffering from a number of risk factors, in particular those modifiable, strokes and muscles’ spastic paresis, subsequently resulting in damage of upper motor neuron structures will become a serious problem for the entire health care system. Effective management and physiotherapy treatment for post-stroke spasticity persisted, both in the acute and chronic, is still a significant medical problem in the interdisciplinary aspect. Care procedures for this type of patient becomes a kind of challenge for specialists in neurology, internal medicine, cardiology, dermatology or neurosurgery, but also for physiotherapists in their everyday clinical practice. The aim of this paper is to present the issues of cerebral stroke and resulting spastic hypertonia in terms of current pharmacological treatment and surgery, and primarily through the use of effective physiotherapy methods, the use of which was confirmed in the way of reliable scientific research in accordance with the principles of Evidence Based Medicine and Physiotherapy (EBMP).

 

via [Post-stroke spasticity management including a chosen physiotherapeutic methods and improvements in motor control – review of the current scientifi… – PubMed – NCBI

Advertisements

, , , , ,

Leave a comment

[ARTICLE] Objective assessment of cortical activity changes in stroke patients before and after hand rehabilitation with and without botulinum toxin injection – Full Text

Abstract

Background Upper limb spasticity is a disabling condition and may result in severe functional limitation. The peripheral action of botulinum toxin (BTX) injection on spasticity is well known, but there are debates around its possible central action.
Aim The aim of this study was to assess the clinical, functional, and cortical activation outcome of two antispastic treatments for stroke of the hand and wrist. Thirty patients with upper limb poststroke spasticity were recruited in this study.
Patients and methods They were randomly allocated to two groups: group A and group B. Both groups received rehabilitation program, whereas group B received additional BTX injection. All patients were assessed at baseline and 8 weeks after treatment using the Modified Ashworth Scale, the Action Research Arm Test and Nine-Hole Peg Test, and somatosensory-evoked potential study of the median nerve.
Results Group B showed a higher percentage of change in Modified Ashworth Scale of the wrist flexors and long flexors of fingers and in Action Research Arm Test compared with group A.
Conclusion BTX injection in spastic muscles of the wrist and hand, followed by a rehabilitation program led to greater clinical and functional improvement compared with implementing the rehabilitation program alone.

Introduction

Upper limb spasticity can be disabling and can result in several functional limitations. Although some neural plasticity following stroke contributes to motor recovery, maladaptive plasticity can weaken motor function and limits the recovery. Spasticity represents an example of maladaptive plasticity [1].

Local injection of botulinum toxin-A (BTX) is the standard treatment for spasticity, particularly in poststroke patients. In addition to its peripheral action, evidence of its possible effects on central nervous systems has emerged [1].

Somatosensory-evoked potential (SEP) studies in patients with spasticity showed improvement in SEP following BTX injection, which may support the possible central action of BTX in the cerebral cortex [2],[3].[…]

Continue —> Objective assessment of cortical activity changes in stroke patients before and after hand rehabilitation with and without botulinum toxin injection Abu-Bakr OA, Nassar NM, Al-Ganzoury AM, Ahmed KA, Tawfik EA – Egypt Rheumatol Rehabil

, ,

Leave a comment

[ARTICLE] Is two better than one? Muscle vibration plus robotic rehabilitation to improve upper limb spasticity and function: A pilot randomized controlled trial – Full Text

Abstract

Even though robotic rehabilitation is very useful to improve motor function, there is no conclusive evidence on its role in reducing post-stroke spasticity. Focal muscle vibration (MV) is instead very useful to reduce segmental spasticity, with a consequent positive effect on motor function. Therefore, it could be possible to strengthen the effects of robotic rehabilitation by coupling MV. To this end, we designed a pilot randomized controlled trial (Clinical Trial NCT03110718) that included twenty patients suffering from unilateral post-stroke upper limb spasticity. Patients underwent 40 daily sessions of Armeo-Power training (1 hour/session, 5 sessions/week, for 8 weeks) with or without spastic antagonist MV. They were randomized into two groups of 10 individuals, which received (group-A) or not (group-B) MV. The intensity of MV, represented by the peak acceleration (a-peak), was calculated by the formula (2πf)2A, where f is the frequency of MV and A is the amplitude. Modified Ashworth Scale (MAS), short intracortical inhibition (SICI), and Hmax/Mmax ratio (HMR) were the primary outcomes measured before and after (immediately and 4 weeks later) the end of the treatment. In all patients of group-A, we observed a greater reduction of MAS (p = 0.007, d = 0.6) and HMR (p<0.001, d = 0.7), and a more evident increase of SICI (p<0.001, d = 0.7) up to 4 weeks after the end of the treatment, as compared to group-B. Likewise, group-A showed a greater function outcome of upper limb (Functional Independence Measure p = 0.1, d = 0.7; Fugl-Meyer Assessment of the Upper Extremity p = 0.007, d = 0.4) up to 4 weeks after the end of the treatment. A significant correlation was found between the degree of MAS reduction and SICI increase in the agonist spastic muscles (p = 0.004). Our data show that this combined rehabilitative approach could be a promising option in improving upper limb spasticity and motor function. We could hypothesize that the greater rehabilitative outcome improvement may depend on a reshape of corticospinal plasticity induced by a sort of associative plasticity between Armeo-Power and MV.

Introduction

Spasticity is defined as a velocity-dependent increase in muscle tone due to the hyper-excitability of muscle stretch reflex [1]. Spasticity of the upper limb is a common condition following stroke and traumatic brain injury and needs to be assessed carefully because of the significant adverse effects on patient’s motor functions, autonomy, and quality of life [2].

Different pharmacological and non-pharmacological approaches are currently available for upper limb spasticity management, as physiotherapy (including magnetic stimulation, electromagnetic therapy, sensory-motor techniques, and functional electrical stimulation treatment) and robot-assisted therapy [34]. In this regard, several studies suggest robotic devices, including the Armeo® (a robotic exoskeleton for the rehabilitation of upper limbs), may help reducing spasticity by modifying spasticity-related synaptic processes at either the brain or spinal level [513], resulting in spasticity reduction in antagonist muscles through, e.g., a strengthening of spinal reciprocal inhibition mechanisms [11].

Growing research is proposing segmental muscle vibration (MV) as being a powerful tool for the treatment of focal spasticity in post-stroke patients [1415]. Mechanical devices deliver low-amplitude/high-frequency vibratory stimuli to specific muscles [1617], thus offering strong proprioceptive inputs by activating the neural pathway from muscle spindle annulospiral endings to Ia-fiber, dorsal column–medial lemniscal pathway, the ventral posterolateral nucleus of the thalamus (and other nuclei of the basal ganglia), up to the primary somatosensory area (postcentral gyrus and posterior paracentral lobule of the parietal lobe), and the primary motor cortex [1819]. At the cortical network level, proprioceptive inputs can alter the excitability of the corticospinal pathway by modulating intracortical inhibitory and facilitatory networks within primary sensory and motor cortex, and affecting the strength of sensory inputs to motor circuits [2022]. In particular, periods of focal MV delivered alone can modify sensorimotor organization within the primary motor cortex (i.e., can increase or decrease motor evoked potential—MEP—and short intracortical inhibition (SICI) magnitude in the vibrated muscles, while opposite changes occur in the neighboring muscles), thus reducing segmental hyper-excitability and spasticity [2022].

While focal MV is commonly used to reduce upper limb post-stroke spasticity, there is no conclusive evidence on the role of robotic rehabilitation in such a condition [1417,2327]. A strengthening of the effects of neurorobotics and MV on spasticity could be achieved by combining MV and neurorobotics. The rationale for combining Armeo-Power and MV to reduce spasticity could lie in the summation and amplification of their single modulatory effects on corticospinal excitability [28]. Specifically, it is hypothesizable that MV may strengthen the learning-dependent plasticity processes within sensory-motor areas that are in turn triggered by the intensive, repetitive, and task-oriented movement training offered by Armeo-Power [2930]. Such an amplification may depend on a sort of associative plasticity (i.e., the one generated by timely coupling two different synaptic inputs) between MV and Armeo-Power [3133].

To the best of our knowledge, this is the first attempt to investigate such approach. Indeed, a previous study combining MV with conventional physiotherapy used Armeo only as evaluating tool [14].

The aim of our study was to assess whether a combined protocol employing MV and Armeo-Power training, as compared to Armeo-Power alone, may improve upper limb spasticity and motor function in patients suffering from a hemispheric stroke in the chronic phase. To this end, we compared the clinical and electrophysiological after-effects of Armeo-Power with or without MV on upper limb spasticity. We also assessed the effects on upper limb motor function and muscle activation, disability burden, and mood, given that spasticity may have significant negative consequences on these outcomes. Further, it is important to evaluate mood, as it may negatively affect functional recovery [3436], increase mortality [37], and weaken the compliance of the patient to the rehabilitative training [3839].[…]

Continue —>  Is two better than one? Muscle vibration plus robotic rehabilitation to improve upper limb spasticity and function: A pilot randomized controlled trial

 

Fig 2. Combined rehabilitative approach. https://doi.org/10.1371/journal.pone.0185936.g002

, , , , , ,

Leave a comment

[WEB SITE] Spasticity – Stroke.org

Spasticity

Spasticity Awareness Week is April 17 – 21, 2017. Please join us in raising awareness about this condition that affects over 12 million people worldwide.

The National Stroke Association has partnered with a growing number of leading organizations to form the Spasticity Alliance. To commemorate Spasticity Awareness Week in 2017, the Spasticity Alliance has launched a Spanish version of its website. Both English and Spanish websites contain resources for individuals living with spasticity, family members, and caregivers who want to learn more about spasticity. The English website can be found at spasticityalliance.org; the Spanish website can be found at spanish.spasticityalliance.org.

The resources below contain information about the symptoms of spasticity, management techniques and treatments that help to ease the symptoms of spasticity. While there is no cure for this condition, there are many tactics that can help individuals living with spasticity resume their normal daily activities.

WHAT IS SPASTICITY?

After a stroke, damage to the brain can block messages between muscles and the brain causing arm and leg muscles to cramp or spasm (spasticity), kind of like a bad charley horse. This will limit your coordination and muscle movement. This post-stroke condition makes daily activities such as bathing, eating and dressing more difficult.

Spasticity can cause long periods of strong contractions in major muscle groups, causing painful muscle spasms. These spasms can produce:

  • A tight fist
  • Bent elbow
  • Arm pressed against the chest
  • Stiff knee
  • Pointed foot
  • Stiffness in the arms, fingers or legs

CAN SPASTICITY BE TREATED?

There are many strategies and treatments for spasticity to help you recover, return to work and regain function. In order to achieve the best results possible, a mixture of therapies and medications are often used to treat spasticity. Ask a healthcare professional about the best treatment plan for you. Some of the options include:

  • Braces. Putting a brace on an affected limb
  • Exercises. Range-of-motion exercises
  • Stretching. Gentle stretching of tighter muscles
  • Movement. Frequent repositioning of body parts
  • Medications. Medications are available to treat the effects of spasticity
  • ITB Therapy. A programmable, battery-powered medical device that stores and delivers medication to treat some of the symptoms of severe spasticity
  • Injections. Injections block the chemicals that make muscles tight
  • Surgery. Surgery on the muscles or tendons and joints may block pain and restore movement

TIPS TO LIVE WITH SPASTICITY

Managing spasticity with assistive devices, aids and home adaptations can help ensure your safety and reduce the risk of spasticity-related falls. Physical and occupational therapists will recommend the appropriate aid(s) as well as safety procedures, maintenance and proper fit. Some modifications in your home to improve safety include:

  • Ramps
  • Grab bars
  • Raised toilet seats
  • Shower or tub bench
  • Plastic adhesive strips on the bottom of the bathtub
  • Braces, canes, walkers and wheelchairs may help you move about freely as you gain strength.

Always follow rehabilitation therapists’ recommendations regarding limitations and safety needs.

Spasticity Resources:

  Spasticity Checklist

  Faces of Stroke and Spasticity

  Spasticity Animated Video       Spasticity Infographic

 

  Tweet to Beat Spasticity

  Mobility Brochure

 

ADDITIONAL RESOURCES

Source: Spasticity | Stroke.org

Leave a comment

[Abstract] The effect of functional stretching exercises on functional outcomes in spastic stroke patients: A randomized controlled clinical trial

Abstract

Background

Stroke is the biggest cause of disability in adults. Spasticity is a primary impairment of stroke with a highly variable prevalence. In the present research, we aimed to determine the impact of functional stretching exercises on functional outcomes in stroke patients.

Methods

Thirty stroke patients were randomized into two groups-Experimental group and control group for the purposes of the study. The subjects in the experimental group participated in a functional stretching training program at the rehabilitation center thrice a week for four weeks. The subjects in both groups were evaluated in 3 intervals, once at baseline, once at the end of the program, and once at 2 months following the program. Clinical assessments, such as measuring spasticity, were conducted using the Modified Modified Ashworth Scale (MMAS). Functional outcomes were also evaluated, using the Timed Up and Go (TUG) test, as well as the Timed 10-Meter Walk Test (WTT). Friedman test in SPSS version 22.0 was used to analysis the response variables with respect to each stage of evaluation. Spearman rank correlation was also used to measure correlation among clinical assessments and functional outcomes.

Results

The comparison between two groups showed significant differences only in the Modified Modified Ashworth Scale and Visual Analogue Scale (VAS) post treatment. The experimental group showed significant differences in the MMAS (p = 0.002), WTT (p < 0.001), and TUG (p < 0.001) scores. Nevertheless, the scores of the control group were not significantly different in different stages of evaluation.

Conclusion

The findings of the study suggest that using functional stretching exercises can improve functional outcomes in chronic spastic stroke patients.

Source: The effect of functional stretching exercises on functional outcomes in spastic stroke patients: A randomized controlled clinical trial – ScienceDirect

, , ,

Leave a comment

[Abstract] The effect of kinesiotaping on hand function in stroke patients: A pilot study

Abstract

Upper extremity motor impairment is one of the most prevalent problems following stroke. Considering the functional importance of the upper extremity in the daily life, the purpose of this study was to investigate the effect of kinesiotaping (KT) on hand function and spasticity in individuals following a stroke. Eight individuals who had experienced a stroke, with their age ranging from 47 to 66, participated in this pretest-posttest clinical study. An I- strip of tape was placed on the extensor muscles of the forearm. Primary outcome measures were the Modified Modified Ashwoth Scale, Box and Block test, and Nine Hole Peg test. At the immediate assessment, there were significant differences between two hand function tests scores. Secondary assessment was done after one week and the results showed significant differences between two hand function test scores. There was no significant change in flexor muscles spasticity after the intervention. This pilot study indicated that KT in the direction of the extensor muscles could result in better hand function in stroke patients.

Source: The effect of kinesiotaping on hand function in stroke patients: A pilot study – Journal of Bodywork and Movement Therapies

, , , , , , , ,

Leave a comment

[Abstract] Soft Tissue Surgery for Adults With Nonfunctional, Spastic Hands Following Central Nervous System Lesions: A Retrospective Study

Purpose

Soft tissue surgery for upper extremity contractures can improve hygiene, pain, and appearance in adults with central nervous system lesions. The goal of such interventions is highly individual; thus, goal attainment scaling (GAS; a method of scoring the extent to which patient’s individual goals are achieved [5 levels] in the course of intervention and using T score values) is pertinent to evaluate outcome. The objective of this study was to assess the effect of soft tissue surgery for upper extremity muscle contractures in patients with central nervous system lesions using GAS.

Methods

Retrospective data from 70 interventions were included (63 patients; 23 women). The mean age was 51.3 ± 16.2 years (range, 24.2–87.0 years). The primary goal was to improve hygiene (n = 58), pain (n = 10), or appearance (n = 2). The etiologies were stroke (n = 35), traumatic brain injury (n = 16), cerebral anoxia (n = 4), neurodegenerative disease (n = 6), and cerebral palsy (n = 2). The GAS score was calculated before surgery and 3 months after surgery.

Results

The T score (which took into account the weight of each goal) was 52.3 at 3 months (38.5 before surgery), corresponding to a “better than expected” outcome. The mean of the differences of the GAS score for each goal before and after surgery increased by 1.27 for hygiene, 1.06 for pain, and 1.00 for appearance.

Conclusions

Soft tissue surgery can safely and effectively improve hygiene, pain, and appearance in adults with cerebral damage. The preoperative evaluation should be multidisciplinary. The GAS is a useful tool to assess the effectiveness of orthopedic surgery for these patients.

Source: Soft Tissue Surgery for Adults With Nonfunctional, Spastic Hands Following Central Nervous System Lesions: A Retrospective Study – Journal of Hand Surgery

, , , , , , , , ,

Leave a comment

[Abstract] Robot-assisted mirroring exercise as a physical therapy for hemiparesis rehabilitation

Abstract:

The paper suggests a therapeutic device for hemiparesis that combines robot-assisted rehabilitation and mirror therapy. The robot, which consists of a motor, a position sensor, and a torque sensor, is provided not only to the paralyzed wrist, but also to the unaffected wrist to induce a symmetric movement between the joints. As a user rotates his healthy wrist to the direction of either flexion or extension, the motor on the damaged side rotates and reflects the motion of the normal side to the symmetric angular position. To verify performance of the device, five stroke patients joined a clinical experiment to practice a 10-minute mirroring exercise. Subjects on Brunnstrom stage 3 had shown relatively high repulsive torques due to severe spasticity toward their neutral wrist positions with a maximum magnitude of 0.300kgfm, which was reduced to 0.161kgfm after the exercise. Subjects on stage 5 practiced active bilateral exercises using both wrists with a small repulsive torque of 0.052kgfm only at the extreme extensional angle. The range of motion of affected wrist increased as a result of decrease in spasticity. The therapeutic device not only guided a voluntary exercise to loose spasticity and increase ROM of affected wrist, but also helped distinguish patients with different Brunnstrom stages according to the size of repulsive torque and phase difference between the torque and the wrist position.

Source: Robot-assisted mirroring exercise as a physical therapy for hemiparesis rehabilitation – IEEE Conference Publication

, , , , , , , , ,

Leave a comment

[ARTICLE] A randomised controlled cross-over double-blind pilot study protocol on THC:CBD oromucosal spray efficacy as an add-on therapy for post-stroke spasticity – Full Text

Abstract

Introduction Stroke is the most disabling neurological disorder and often causes spasticity. Transmucosal cannabinoids (tetrahydrocannabinol and cannabidiol (THC:CBD), Sativex) is currently available to treat spasticity-associated symptoms in patients with multiple sclerosis. Cannabinoids are being considered useful also in the treatment of pain, nausea and epilepsy, but may bear and increased risk for cardiovascular events. Spasticity is often assessed with subjective and clinical rating scales, which are unable to measure the increased excitability of the monosynaptic reflex, considered the hallmark of spasticity. The neurophysiological assessment of the stretch reflex provides a precise and objective method to measure spasticity. We propose a novel study to understand if Sativex could be useful in reducing spasticity in stroke survivors and investigating tolerability and safety by accurate cardiovascular monitoring.

Methods and analysis We will recruit 50 patients with spasticity following stroke to take THC:CBD in a double-blind placebo-controlled cross-over study. Spasticity will be assessed with a numeric rating scale for spasticity, the modified Ashworth scale and with the electromyographical recording of the stretch reflex. The cardiovascular risk will be assessed prior to inclusion. Blood pressure, heart rate, number of daily spasms, bladder function, sleep disruption and adverse events will be monitored throughout the study. A mixed-model analysis of variance will be used to compare the stretch reflex amplitude between the time points; semiquantitative measures will be compared using the Mann-Whitney test (THC:CBD vs placebo) and Wilcoxon test (baseline vs treatment).

Introduction

Stroke is one of the most disabling neurological disease and frequently determines important chronic consequences such as spasticity. Prevalence of poststroke spasticity ranges from 4% to 42.6%, with the prevalence of disabling spasticity ranging from 2% to 13%.1 Treatment of poststroke spasticity is based on rehabilitation, local injection of botulinum toxin (BoNT) in the affected muscles for focal spasticity and/or use of classic oral drugs such as tizanidine, baclofen, thiocolchicoside and benzodiazepines, which are not always effective and have a good number of possible side effects.

The transmucosal administration of delta-9-tetrahydrocannabinol and cannabidiol (THC and CBD at 1:1 ratio oromucosal spray, Sativex) is able to reduce spasticity acting on endocannabinoid receptors CB1and CB2. This novel drug has been licensed after an extensive clinical trial programme2–4 in adult patients with multiple sclerosis who have shown no significant benefit from other antispasmodic drugs. More than 45 000 patient/years of exposure since its approval in more than 15 EU countries support their antispasticity effectiveness and safety profile in this indication.5 Besides improving spasticity, cannabinoids can be beneficial in reducing pain, chemotherapy-induced nausea and vomiting; moreover, they contribute to reducing seizures and to lowering eye pressure in glaucoma.6Cannabinoids can also exert psychological effects by lowering anxiety levels and inducing sedation or euphoria. Marijuana, which is the main source of cannabinoids, is declared illegal in many countries mostly because of the risk of abuse, dependence and withdrawal syndrome, related to the effect of its high amounts of THC. Several reports support an increased ischaemic stroke risk related to relevant abuse of smoked marijuana7–17 as well as synthetic cannabinoids.18–20 Ischaemic stroke following cannabis involves more frequently basal ganglia and cerebellum where CB1 and CB2 receptors show a higher expression.13

The ‘French Association of the Regional Abuse and Dependence Monitoring Centres Working Group on Cannabis Complications’ warns about the increased cardiovascular risk related to the use of herbal cannabis, mostly consisting of acute coronary syndromes and peripheral arteriopathies, potentially leading to life-threatening conditions.21 The detrimental consequences of cannabinoids could be attributed to the increase in heart rate22 as well as arterial spasms also in the context of a reversible cerebral vasoconstriction syndrome,23 but also vasculitis, postural hypotension and cardioembolism.24

On the other side, some studies support a beneficial effect on stroke evolution of cannabinoid receptors stimulation. In fact, cannabinoid-mediated activation of CB1 and CB2 receptors reduces inflammation and neuronal injury in acute ischaemic stroke.25 Activation of CB2 receptors shows protective effects after ischaemic injury26 and inhibits atherosclerotic plaque progression.27 28

To our knowledge, no correlations have been reported between haemorrhagic stroke and cannabinoids intake. In our opinion, the modification of blood pressure is the most important cannabinoid effect that should be taken into account in patients with a previous haemorrhagic stroke or predisposed to intracranial bleeding. Cannabinoids are indeed capable of inducing blood pressure fluctuations in a specific triphasic pattern (low-high-low) potentially harmful if the patient is with bleeding risk.29Ischaemic disease is not included among THC:CBD oromucosal spray contraindications. However, considering that, to our knowledge, no study has been performed with THC:CBD oromucosal spray on post-stroke spasticity, we believe that a particular caution should be used in stroke patients.

The decision of which method of measure is considered as end point is a major issue in studies involving spasticity. The definition of spasticity provided by Lance is one of the most precise and reliable, focusing on the stretch reflex as the neurophysiological equivalent of spasticity.30 Probably because of technical complexity and required expertise, neurophysiological approaches are rarely adopted. Clinical rating scales such as the modified Ashworth scale (MAS)31 or subjective scores such as the numeric rating scale (NRS) for spasticity are being widely used.32 33 Recent evidence supports the idea that MAS and NRS are indeed useful to quickly rate spasticity in a clinical setting, however NRS provide a very variable and imprecise assessment of many symptoms related to spasticity, but where spasticity itself is probably only a common factor.34 The adoption of stretch reflex as the most appropriate neurophysiological measure of spasticity increases the specificity and reduces the variability of the end point and is particularly suitable for clinical trials.

Our proposal is therefore to assess the efficacy of THC:CBD oromucosal spray in patients with spasticity following stroke as add-on to first-line antispasticity medications with an experimental pilot randomised placebo-controlled cross-over clinical trial using the stretch reflex as primary outcome measure. Prior to inclusion in the study, we propose strict selection criteria in order to reduce the risk of relevant side effects. […]

Continue —>  A randomised controlled cross-over double-blind pilot study protocol on THC:CBD oromucosal spray efficacy as an add-on therapy for post-stroke spasticity | BMJ Open

 

Graphical representation of the study protocol, particularly depicting the cross-over design and the time points. THC/CBD, tetrahydrocannabinol/cannabidiol.

, , , ,

Leave a comment

[REVIEW] INFLUENCE OF TRANSCUTANEOUS ELECTRICAL NERVE STIMULATION ON SPASTICITY, BALANCE, AND WALKING SPEED IN STROKE PATIENTS: A SYSTEMATIC REVIEW AND META-ANALYSIS – Full Text PDF

Objective: To evaluate the influence of transcutaneous electrical nerve stimulation in patients with stroke through a systematic review and meta-analysis.

Methods: PubMed, Embase, Web of Science, EBSCO, and Cochrane Library databases were searched systematically. Randomized controlled trials assessing the effect of transcutaneous electrical nerve stimulation vs placebo transcutaneous electrical nerve stimulation on stroke were included. Two investigators independently searched articles, extracted data, and assessed the quality of included studies. The primary outcome was modified Ashworth scale (MAS). Meta-analysis was performed using the random-effect model.

Results: Seven randomized controlled trials were included in the meta-analysis. Compared with placebo transcutaneous electrical nerve stimulation, transcutaneous electrical nerve stimulation supplementation significantly reduced MAS (standard mean difference (SMD) = –0.71; 95% confidence interval (95% CI) = –1.11 to –0.30; p =0.0006), improved static balance with open eyes (SMD = –1.26; 95% CI = –1.83
to –0.69; p<0.0001) and closed eyes (SMD = –1.74; 95% CI = –2.36 to –1.12; p < 0.00001), and increased walking speed (SMD = 0.44; 95% CI = 0.05 to 0.84; p = 0.03), but did not improve results on the Timed Up and Go Test (SMD = –0.60; 95% CI=–1.22 to 0.03; p = 0.06).

Conclusion: Transcutaneous electrical nerve stimulation is associated with significantly reduced spasticity, increased static balance and walking speed, but has no influence on dynamic balance.

Download Full Text PDF

 

, , , , ,

Leave a comment

%d bloggers like this: