Archive for category Uncategorized

[APTA Blog] Confessions of a Tech-Challenged PT: Asking Searching Questions – And Getting Useful Answers

By Stephanie Miller, PT

I’ll admit it: I’m excited about all that I can do with PTNow. This is somewhat unusual for me, because I’ve always felt a little daunted by technology (see my first post for more on that).

But this thing is awesome.

And yet, the fact that PTNow is so awesome—that it contains so much information—can feel a little … overwhelming. I mean, where do you start? How do you start?

Here’s how I got my feet wet, and a few tips based on what I’ve learned along the way.

To begin with, I decided early on that I’d focus on small chunks, and get comfortable with bits and pieces at a time. I mean, anything new I learn today is more than I knew yesterday, right? Since I’d like to do a better job at searching articles, I thought ArticleSearch would be a good place to start. Seemed easy enough.

As heart failure is a common diagnosis in my practice area of home health, I decided to search on that topic. I began with the “basic search” option. The search window is what you’d expect: a box in which you can type in whatever search terms you’re looking for.

But then came the challenging part … all of the databases. ArticleSearch lets you choose which databases you want to use in your search, and although I vaguely recognized a few from grad school, I hated to admit that a lot of them were foreign to me. But where there’s a will, there’s a way! I was determined to understand the value of each and identify why I would select one over the other. Fortunately, the PTNow tutorial video helps to explain the differences.

The abstracts to the best articles are found using the Cumulative Index to Nursing and Allied Health Literature (CINAHL), ProQuest Health and Medical Complete, ProQuest Nursing and Allied Health Source, and SPORTDiscus. There are differences between them. Here’s a quick comparison, based on what I learned from the PTNow tutorial.

CINAHL

  • Topics: nursing, allied health, general health
  • Over 1,300 journals
  • Full-text
  • Evidence-based care sheets and quick lessons

ProQuest Nursing and Allied Health Source

  • Topics: nursing, allied health, alternative and complementary medicine
  • Journals, clinical training videos, evidence-based resources
  • Over 1,000 full-text articles
  • Over 15,000 full-text dissertations

ProQuest Health and Medical Complete

  • Topics: clinical and biomedical, consumer health, health administration
  • Over 1,500 publications; over 1,000 of them full-text

SPORTDiscus

  • Topics: sports and sports medicine, fitness, health, sport studies
  • Full-text for 550 journals

Cochrane Database of Systematic Reviews

  • Full-text articles, all systematic reviews
  • Protocols and evidence-based data
  • Updated regularly
  • Investigations of the effects of interventions for prevention, treatment, and rehabilitation

If you’re looking for a specific kind of research resource, here’s what the tutorial suggests:

Full-text articles
CINAHL Complete, Proquest Nursing and Allied Health Source, Proquest Health and Medical Complete, SPORTDiscus (be sure to select the “full-text only” option on the search page)

Systematic reviews
Cochrane Database of Systematic Reviews

Physical therapy-specific research
CINAHL Complete, Proquest Nursing and Allied Health Source, Proquest Health and Medical Complete

Sport-related information
SPORTDiscus

As for my own search …

After becoming more comfortable with the benefits of each database, I decided that the Cochrane database was the place I wanted to begin my investigation into the effects of exercise on patients with congestive heart failure. I clicked on the link, typed in “effects of exercise on patients with congestive heart failure” in the search bar, and chose the Cochrane database. In a few seconds I found articles on the beneficial effects of combined exercise training on early recovery, the effects of specific inspiratory muscle training on the sensation of dyspnea and exercise tolerance, the role resistance exercise training can play in improving heart function and physical fitness in stable patients with heart failure, and the effects of short-term exercise training and activity restriction on functional capacity in patients with severe chronic congestive heart failure, to name just a few. Wow.

Through this whole experience, I not only learned some of the details of how ArticleSearch works, I also got a better sense of how to get the most out of my searches. I suggest a few general tips:

  1. Take time to learn. Invest the time in learning each database and the benefits of using one over the other.
  2. More isn’t always better. Avoid searching every database. You can end up with so many potentially irrelevant options to review that it’s easy to get overwhelmed as you attempt to weed out the information you want. Choose only the search engines that can best target your specific topic, using the above information to guide your selection.
  3. Get help early on. If you start feeling confused, your time will be better spent if you take a break from your search and learn more about the resources you’re working with—trying and trying again when you don’t really understand the system can be frustrating and may result in you missing out on some valuable information. If you start to feel a little unsure of yourself, take a few minutes to check out the PTNow Video Tutorial and FAQ page. Have a more specific question? You can even access an actual PTNow librarian at ArticleSearch@apta.org.

If, like me, you sometimes wrestle with technology, you’ll understand this mixed bag I feel when I’m faced with something outside my technological comfort zone: I know technology can make my professional life easier, but I worry that the technology itself won’t be easy. I was happily mistaken with ArticleSearch. It was so easy!

How easy? Let me put it this way—I have a lot of reading to do.

Stephanie Miller is a staff development specialist with Celtic Healthcare.

Source: Confessions of a Tech-Challenged PT: Asking Searching Questions – And Getting Useful Answers

, , , , , , ,

Leave a comment

[Abstract+References] Fuzzy System as an Assessment Tool for Analysis of the Health-Related Quality of Life for the People After Stroke

Abstract

Stroke remains one of the leading causes of long-term disability in both developed and developing countries. Prevalence and impact of the stroke-related disability on Health-Related Quality of Life (HRQoL) as a recognized and important outcome after stroke is huge. Quick, valid and reliable assessment of the HRQoL in people after stroke constitutes a significant worldwide problem for scientists and clinicians – there are many tools, but no one fulfills all requirements or has prevailing advantages. This paper presents proposition of an evaluation of HRQoL based on the two-level hierarchical fuzzy system. It uses five clinical scores and scales as the inputs and gives in result value from the interval [0; 1]. It may constitute a useful semi-automated tool for supplementary initial assessment of patient functioning and further cyclic re-assessment for rehabilitation process and patient-centered goals of rehabilitation shaping purposes.

Source: Fuzzy System as an Assessment Tool for Analysis of the Health-Related Quality of Life for the People After Stroke | SpringerLink

, , , , , , ,

Leave a comment

[ARTICLE] Textile-Based Assistive Wearables – Full Text

Abstract
Advances in computing technology such as conductive textiles and shrinking chip sizes offer new possibilities for assistive technology (AT). Wearable computing platforms provide many advantages (e.g., reachability, continuous support, communication) that may be especially useful for AT. We provide a snapshot of wearable assistive computing literature spanning the past 20 years in an effort to better understand the trends, usage patterns in this space. We focus especially on the emerging capabilities of textile-based wearable computing platforms. Additionally, we reflect on the trajectory of
these technologies and suggest potential directions for the development of computer-based wearable assistive technologies.

Introduction
Approximately 19% of the US population lives with a disability (Brault 4). Assistive technology (AT) can help overcome many challenges imposed by an inaccessible environment, such as through the use of sensory substitution (e.g., converting visual information into sound), alternative computer input and output (e.g., eye tracking), and communication support (e.g., text to speech).

AT presents both benefits and drawbacks, with an average of 1/3 of all AT devices abandoned often due to functional and social-cultural reasons (Kintsch and DePaula 2). Some of these problems may be addressed by creating AT that is less heavy, bulky, and obtrusive.

In this paper, we explore the benefits of textile-based wearable computing AT, as these devices may potentially provide support without drawing too much attention. The rise of mobile computing platforms and microelectromechanical systems have solved several power, weight,
size, and bandwidth constraints which previously hampered wearable computing development.

Similarly, advances in e-textiles (e.g., conductive fabrics) enable worn computers that are lighter, smaller, and more flexible, enabling them to be worn comfortably throughout the day or to be designed to look like “normal” attire, avoiding the unwanted attention that some AT produces.

This paper presents an overview of textile-based wearable assistive technology developed over the past 20 years. We specifically focus on how these wearable technologies (wearables) can improve usability, comfort, and social acceptability for people with disabilities (PwD), and identify general trends, opportunities, and challenges for developing new wearable AT. […]

Full Text PDF
 

 

, , ,

Leave a comment

[ARTICLE] Non-Invasive Brain Stimulation to Enhance Upper Limb Motor Practice Poststroke: A Model for Selection of Cortical Site – Full Text

Motor practice is an essential part of upper limb motor recovery following stroke. To be effective, it must be intensive with a high number of repetitions. Despite the time and effort required, gains made from practice alone are often relatively limited, and substantial residual impairment remains. Using non-invasive brain stimulation to modulate cortical excitability prior to practice could enhance the effects of practice and provide greater returns on the investment of time and effort. However, determining which cortical area to target is not trivial. The implications of relevant conceptual frameworks such as Interhemispheric Competition and Bimodal Balance Recovery are discussed. In addition, we introduce the STAC (Structural reserve, Task Attributes, Connectivity) framework, which incorporates patient-, site-, and task-specific factors. An example is provided of how this framework can assist in selecting a cortical region to target for priming prior to reaching practice poststroke. We suggest that this expanded patient-, site-, and task-specific approach provides a useful model for guiding the development of more successful approaches to neuromodulation for enhancing motor recovery after stroke.

Poststroke Arm Impairment

Upper limb motor impairment following stroke is highly prevalent and often persists even after intensive rehabilitation efforts (14). It is also one of the most disabling of stroke sequela, limiting functional independence and precluding return to work and other roles (5).

Upper extremity motor control relies heavily on input transmitted via the corticospinal tract (CST). The CST descends through the posterior limb of the internal capsule, an area vulnerable to middle cerebral artery stroke and in which CST fibers are densely packed. Thus, even a small lesion in this location can have devastating effects on motor function (69). A loss of voluntary wrist and finger extension is particularly common and appears to be related to the extent of CST damage (10). There is also evidence that those who retain wrist extension and have considerable CST sparing are more likely to be responsive to existing therapies (7811).

However, even individuals who lack voluntary wrist and finger extension often retain some ability to move the shoulder and elbow. Unfortunately, only a few stereotyped movement patterns can be performed and these are often not functional. The combination of shoulder flexion with elbow extension that is required for most functional reaching tasks, for example, is frequently lost. Nevertheless, previous studies have demonstrated that reaching practice with trunk restraint can improve unconstrained reaching ability, even in patients who lack wrist and finger extension (1215). Still, a great deal of time and effort is required and the improvements are relatively small.

Non-Invasive Brain Stimulation

Non-invasive brain stimulation offers a potential method of enhancing the effects of practice and thus giving patients greater returns on their investment of time and effort. Approaches to non-invasive brain stimulation are rapidly expanding but generally fall into two major categories: transcranial magnetic stimulation (TMS) and transcranial electrical stimulation [TES; see Ref. (16) for overview of non-invasive techniques for neuromodulation]. These modalities are applied to the scalp overlying a specific cortical area that is being targeted. The level of spatial specificity varies depending on many factors including the modality used (TMS is generally more precise than TES), the stimulation intensity (higher intensity results in a more widespread effect), and the architecture of the underlying tissue. The excitability of the underlying pool of neurons can be modulated by varying stimulation parameters such as the frequency and temporal pattern of the stimuli. Therefore, stimulation can be used to temporarily inhibit or facilitate the underlying cortical area for a sustained period of time after the stimulation ends (usually 20–40 min). In this way, non-invasive brain stimulation could be used to “prime” relevant cortical areas before a bout of practice, potentially enhancing the effects of practice. However, there is little guidance for how such cortical sites might be selected and in which direction (inhibition or facilitation) their activity should be modulated. Conceptual models that could offer such guidance are considered below.

Mechanistic Models to Guide Neuromodulation

Continue —> Frontiers | Non-Invasive Brain Stimulation to Enhance Upper Limb Motor Practice Poststroke: A Model for Selection of Cortical Site | Neurology

Figure 1. On randomly delivered trials, transcranial magnetic stimulation (TMS) perturbation was applied just after a “Go” cue. The effect of this pre-movement perturbation on the speed of the subsequent reaching movement is expressed relative to that in trials with no TMS perturbation. The amount of slowing due to TMS perturbation of the lesioned vs. non-lesioned hemispheres is shown for patients with good structural reserve (left) and patients with poor structural reserve (right).

, , , , , , , , , , , , ,

Leave a comment

[WEB SITE] Neuroprosthetics: Recovering from injury using the power of your mind

Neuroprosthetics, also known as brain-computer interfaces, are devices that help people with motor or sensory disabilities to regain control of their senses and movements by creating a connection between the brain and a computer. In other words, this technology enables people to move, hear, see, and touch using the power of thought alone. How do neuroprosthetics work? We take a look at five major breakthroughs in this field to see how far we have come – and how much farther we can go – using just the power of our minds.
woman with electrodes attached to skull]

Using electrodes, a computer, and the power of thought, neuroprosthetic devices can help patients with motor or sensory difficulties to move, feel, hear, and see.

Every year, hundreds of thousands of people worldwide lose control of their limbs as a result of an injury to their spinal cord. In the United States, up to 347,000 people are living with spinal cord injury (SCI), and almost half of these people cannot move from the neck down.

For these people, neuroprosthetic devices can offer some much-needed hope.

Brain-computer interfaces (BCI) usually involve electrodes – placed on the human skull, on the brain’s surface, or in the brain’s tissue – that monitor and measure the brain activity that occurs when the brain “thinks” a thought. The pattern of this brain activity is then “translated” into a code, or algorithm, which is “fed” into a computer. The computer, in turn, transforms the code into commands that produce movement.

Neuroprosthetics are not just useful for people who cannot move their arms and legs; they also help those with sensory disabilities. The World Health Organization (WHO) estimate that approximately 360 million people across the globe have a disabling form of hearing loss, while another 39 million people are blind.

For some of these people, neuroprosthetics such as cochlear implants and bionic eyes have given them back their senses and, in some cases, they have enabled them to hear or see for the very first time.

Here, we review five of the most significant developments in neuroprosthetic technology, looking at how they work, why they are helpful, and how some of them will develop in the future.

Ear implant

Probably the “oldest” neuroprosthetic device out there, cochlear implants (or ear implants) have been around for a few decades and are the epitome of successful neuroprosthetics.

The U.S. Food and Drug Administration (FDA) approved cochlear implants as early as 1980, and by 2012, almost 60,000 U.S. individuals had had the implant. Worldwide, more than 320,000 people have had the device implanted.

A cochlear implant works by bypassing the damaged parts of the ear and stimulating the auditory nerve with signals obtained using electrodes. The signals relayed through the auditory nerve to the brain are perceived as sounds, although hearing through an ear implant is quite different from regular hearing.

Although imperfect, cochlear implants allow users to distinguish speech in person or over the phone, with the media abound with emotional accounts of people who were able to hear themselves for the first time using this sensory neuroprosthetic device.

Here, you can watch a video of a 29-year-old woman who hears herself for the first time using a cochlear implant:

Eye implant

The first artificial retina – called the Argus II – is made entirely from electrodes implanted in the eye and was approved by the FDA in February 2013. In much the same way as the cochlear implant, this neuroprosthetic bypasses the damaged part of the retina and transmits signals, captured by an attached camera, to the brain.

This is done by transforming the images into light and dark pixels that get turned into electrical signals. The electrical signals are then sent to the electrodes, which, in turn, send the signal to the brain’s optic nerve.

While Argus II does not restore vision completely, it does enable patients with retinitis pigmentosa – a condition that damages the eye’s photoreceptors – to distinguish contours and shapes, which, many patients report, makes a significant difference in their lives.

Retinitis pigmentosa is a neurodegenerative disease that affects around 100,000 people in the U.S. Since its approval, more than 200 patients with retinitis pigmentosa have had the Argus II implant, and the company that designed it is currently working to make color detection possible as well as improve the resolution of the device.

Neuroprosthetics for people with SCI

Almost 350,000 people in the U.S. are estimated to live with SCI, and 45 percent of those who had an SCI since 2010 are considered tetraplegic – that is, paralyzed from the neck down.

At Medical News Today, we recently reported on a groundbreaking one-patient experiment that enabled a man with quadriplegia to move his arms using the sheer power of his thoughts.

Bill Kochevar had electrodes surgically fitted into his brain. After training the BCI to “learn” the brain activity that matched the movements he thought about, this activity was turned into electrical pulses that were then transmitted back to the electrodes in his brain.

In much the same way that the cochlear and visual implants bypass the damaged area, so too does this BCI area avoid the “short circuit” between the brain and the patient’s muscles created by SCI.

With the help of this neuroprosthetic, the patient was able to successfully drink and feed himself. “It was amazing,” Kochevar says, “because I thought about moving my arm and it did.” Kochevar was the first patient in the world to test the neuroprosthetic device, which is currently only available for research purposes.

You can learn more about this neuroprosthetic from the video below:

However, this is not where SCI neuroprosthetics stop. The Courtine Lab – which is led by neuroscientist Gregoire Courtine in Lausanne, Switzerland – is tirelessly working to help injured people to regain control of their legs. Their research efforts with rats have enabled paralyzed rodents to walk, achieved by using electrical signals and making them stimulate nerves in the severed spinal cord.

“We believe that this technology could one day significantly improve the quality of life of people confronted with neurological disorders,” says Silvestro Micera, co-author of the experiment and neuroengineer at Courtine Labs.

Recently, Prof. Courtine has also led an international team of researchers to successfully create voluntary leg movement in rhesus monkeys. This was the first time that a neuroprosthetic was used to enable walking in nonhuman primates.

However, “it may take several years before all the components of this intervention can be tested in people,” Prof. Courtine says.

An arm that feels

Silvestro Micera has also led other projects on neuroprosthetics, among which is the arm that “feels.” In 2014, MNT reportedon the first artificial hand that was enhanced with sensors.

Researchers measured the tension in the tendons of the artificial hand that control grasping movements and turned it into electric current. In turn, using an algorithm, this was translated into impulses that were then sent to the nerves in the arm, producing a sense of touch.

Since then, the prosthetic arm that “feels” has been improved even more. Researchers from the University of Pittsburgh and the University of Pittsburgh Medical Center, both in Pennsylvania, tested the BCI on a single patient with quadriplegia: Nathan Copeland.

The scientists implanted a sheath of microelectrodes below the surface of Copeland’s brain – namely, in his primary somatosensory cortex – and connected them to a prosthetic arm that was fitted with sensors. This enabled the patient to feel sensations of touch, which felt, to him, as though they belonged to his own paralyzed hand.

While blindfolded, Copeland was able to identify which finger on his prosthetic arm was being touched. The sensations he perceived varied in intensity and were felt as differing in pressure. 

Neuroprosthetics for neurons?

We have seen that brain-controlled prosthetics can restore patients’ sense of touch, hearing, sight, and movement, but could we build prosthetics for the brain itself?

Researchers from the Australian National University (ANU) in Canberra managed to artificially grow brain cells and create functional brain circuits, paving the way for neuroprosthetics for the brain.

By applying nanowire geometry to a semiconductor wafer, Dr. Vini Gautam, of ANU’s Research School of Engineering, and colleagues came up with a scaffolding that allows brain cells to grow and connect synaptically.

Project group leader Dr. Vincent Daria, from the John Curtin School of Medical Research in Australia, explains the success of their research:

We were able to make predictive connections between the neurons and demonstrated them to be functional with neurons firing synchronously. This work could open up a new research model that builds up a stronger connection between materials nanotechnology with neuroscience.”

Neuroprosthetics for the brain might one day help patients who have experienced a stroke or who live with neurodegenerative diseases to recover neurologically.

Every year in the U.S., almost 800,000 people have had a stroke, and more than 130,000 people die from it. Neurodegenerative diseases are also widespread, with 5 million U.S. adults estimated to live with Alzheimer’s disease, 1 million to have Parkinson’s, and 400,000 to experience multiple sclerosis.

Learn about Facebook’s newest endeavour: the development of BCIs.

Source: Neuroprosthetics: Recovering from injury using the power of your mind – Medical News Today

, , , , , , ,

Leave a comment

[Abstract] Linking of the quality of life in neurological disorders (Neuro-QoL) to the international classification of functioning, disability and health

Abstract

Background

The quality of life in neurological disorders (Neuro-QoL) is a U.S. National Institutes of Health initiative that produced a set of self-report measures of physical, mental, and social health experienced by adults or children who have a neurological condition or disorder.

Objective

To describe the content of the Neuro-QoL at the item level using the World Health Organization’s international classification of functioning, disability and health (ICF).

Methods

We assessed the Neuro-QoL for its content coverage of functioning and disability relative to each of the four ICF domains (i.e., body functions, body structures, activities and participation, and environment). We used second-level ICF three-digit codes to classify items into categories within each ICF domain and computed the percentage of categories within each ICF domain that were represented in the Neuro-QoL items.

Results

All items of Neuro-QoL could be mapped to the ICF categories at the second-level classification codes. The activities and participation domain and the mental functions category of the body functions domain were the areas most often represented by Neuro-QoL. Neuro-QoL provides limited coverage of the environmental factors and body structure domains.

Conclusions

Neuro-QoL measures map well to the ICF. The Neuro-QoL–ICF-mapped items provide a blueprint for users to select appropriate measures in ICF-based measurement applications.

Source: Linking of the quality of life in neurological disorders (Neuro-QoL) to the international classification of functioning, disability and health | SpringerLink

, , , , , ,

Leave a comment

[WEB SITE] Can wine protect your neurons? Study investigates

Excessive alcohol consumption has a wide range of harmful health effects, but some previous research has indicated that a moderate intake of wine can have positive cognitive effects. A new study investigates why that may be the case.
[pouring a glass of red wine]

New research looks at the molecular mechanism behind the neuroprotective effect of wine compounds.

Although the negative effects of alcohol consumption are well-known, some studies have indicated that a moderate intake of red wine may delay age-related cognitive impairment, as well as the onset of neurodegenerative diseases such as Alzheimer’s and Parkinson’s disease.

Moderate consumption was defined in these studies as under 250 milliliters per day.

A new study – published in the journal Frontiers in Nutrition – set out to investigate the molecular mechanism behind this.

The researchers – led by Dr. Esteban-Fernández, from the Institute of Food Science Research in Madrid, Spain – decided to examine the gut metabolites that the human body produces after wine consumption.

Wine compounds prevent neuronal death, gut microbiome plays key role

Dr. Esteban-Fernández and team selected these metabolites from the urine and feces of people who consume wine regularly and moderately.

The researchers then added these metabolites to human neurons. The researchers induced stress in these human cells to simulate the conditions that usually lead to neuronal death in neurodegenerative diseases.

The study revealed that wine-derived metabolites prevent the neurons from dying under these stress conditions.

Surprisingly, the results also showed that these metabolites are active at different points during the cell signaling process that ultimately leads to neuronal death.

According to the researchers, this means that the exact composition of the wine metabolites is crucial for this protective effect. Furthermore, this composition depends, in turn, on the composition of the gut microbiome – that is, the trillions of microorganisms living inside our intestines.

The gut microbiome is responsible for processing and breaking down wine into various metabolites, including phenolic acid and aroma compounds – wine compounds whose neuroprotective effects were demonstrated in this study.

“In other words, differences in our gut microbiota are leading to the different metabolites. Which underpins the idea that humans benefit from food in different ways,” the study’s lead author explains.

Healthful diet is crucial for healthy brain function

“This individual difference is a factor not to be neglected to understand the health effects of certain foods. We are now in need to advance our understanding of the effect of diet in the promotion of normal brain function,” Dr. Esteban-Fernández adds.

She also comments on the importance of a balanced diet for preventing neurodegeneration:

It is very important to understand that certain food compounds are responsible for this health benefit in protecting against the onset of neurodegenerative diseases; no medication was involved. I am not advocating to replace medicines by diet, but I want to raise more awareness [on] how your diet is helping to prevent diseases or reduces the risk of getting sick. It is more than feasible to go to the supermarket and buy vegetables and fruit: it depends only on the individuals to maintain a balanced diet.”

Although she advocates for a diet rich in fruits, vegetables, and low in saturated fats, Dr. Esteban-Fernández also cautions against an excessive preoccupation with nutrition and urges the public to discern between accurate and false diet information.

“Society is nowadays full of false myths about diet, and it is the role of both science and media to avoid the spread of these rumors, as well as make people aware of the importance of diet for your health,” the author adds.

Learn how a red wine compound was found to slow down neural aging in mice.

Source: Can wine protect your neurons? Study investigates – Medical News Today

, , , ,

Leave a comment

[WEB SITE] Experiences of patients with traumatic brain injury and their carers during transition from in-patient rehabilitation to the community – CNS

PURPOSE: To explore the experiences of individuals who have had a severe
traumatic brain injury (TBI) and their carers in the first month post-discharge
from in-patient rehabilitation into living in the community.

METHOD: Using a qualitative approach underpinned by critical realism, we explored the narratives of 10 patients and nine carers using semi-structured interviews approximately one month post-discharge. Thematic analysis was carried out independently by two researchers.

RESULTS: Firstly, perceptions of support were mixed but many patients and carers felt unsupported in the inpatient phase, during transitions between units and when preparing for discharge. Secondly, they struggled to accept a new reality of changed abilities, loss of roles and loss of autonomy. Thirdly, early experiences post-discharge exacerbated fears for the future.

CONCLUSIONS: Most patients and carers struggled to identify a cohesive plan that supported their transition to living in the community. Access to services required much persistence on the part of carers and tended to be short-term, and therefore did not meet their long-term needs. We propose the need for a case manager to be involved at an early stage of their rehabilitation and act as a key point for information and access to on-going rehabilitation and other support services. Implications for Rehabilitation Traumatic Brain Injury (TBI) is a major cause of long-term disability. It can affect all areas of daily life and significantly reduce quality of life for both patient and carer. Professionals appear to underestimate the change in abilities and impact on daily life once patients return home. Community services maintain a short-term focus, whereas patients and carers want to look further ahead – this dissonance adds to anxiety. The study’s findings on service fragmentation indicate an urgent need for better integration within health services and across health, social care and voluntary sectors. A link person/case manager who oversees the patient journey from admission onwards would help improve integrated care and ensure the patient, and
carer, are at the center of service provision.

Source: Traumatic Brain Injury Resource Guide – Research Reports – Experiences of patients with traumatic brain injury and their carers during transition from in-patient rehabilitation to the community

, ,

Leave a comment

[BLOG POST] How do muscles change shape when they are passively lengthened?

Muscles are often referred to as ‘motors’ that drive human and animal movements. This analogy certainly captures the important role of muscles as active generators of force and movement. However, it sells the equally important passive properties of muscles short. Most of us will only appreciate the importance of passive muscle properties when these are affected by disease. For instance, people who have had a stroke or children with cerebral palsy frequently develop muscle contractures – a stiffening of muscles even when the muscle is not activated. Contractures frequently lead to loss of mobility, bone deformities and other undesirable effects that limit physical independence.

Aiming to better understand the passive mechanical properties of muscles, we have used diffusion tensor imaging (DTI), a magnetic resonance imaging (MRI) technique, to obtain the most detailed measurements to date of changes in muscle structure of a human calf muscle (medial gastrocnemius) during passive lengthening (Bolsterlee et al., 2017; note that for those interested in more details on this novel imaging technique, there is a recent review paper by Damon et al., 2017). From the DTI data we measured how several thousands of muscle fibres changed length, orientation and curvature when the whole muscle was lengthened. We also measured the change in dimensions of muscle fibres, which can be thought of as several centimeter long cylindrical tubes with diameters similar to human hairs. From anatomical MRI scans the changes in three-dimensional whole-muscle shape were derived.

Example of a three-dimensional reconstruction of the architecture of the human medial gastrocnemius from diffusion tensor imaging (DTI) data.

WHAT DID WE FIND?

We found that the medial gastrocnemius reduced both its width and its depth when the muscle lengthened. Muscle fibres rotated by about 8° and lengthened by 35% when the whole muscle changed its length by 7%. The diffusion properties of muscle tissue measured by DTI (which gives information about the microstructure of muscle cells) suggest that the diameter of muscle fibres decreases when fibres are lengthened, presumably to maintain a constant volume.

SIGNIFICANCE AND IMPLICATIONS

These data help us understand the complex changes in structure that human muscles undergo when they passively lengthen. We can now use these methods to study, in unprecedented detail, the differences in muscle structure between healthy people and people with muscle contractures. This may give us new insights into the mechanisms of contracture, which will ultimately enable better management or treatment of this condition.

PUBLICATION

Bolsterlee B, D’Souza A, Gandevia SC, Herbert RD (2017). How does passive lengthening change the architecture of the human medial gastrocnemius muscle? J Appl Physiol, 122(4): 727-738.

KEY REFERENCES

Damon BM, Froeling M, Buck AK, Oudeman J, Ding Z, Nederveen AJ, Bush EC, Strijkers GJ (2017). Skeletal muscle diffusion tensor-MRI fiber tracking: rationale, data acquisition and analysis methods, applications and future directions. Nmr Biomed 30. DOI: 10.1002/nbm.3563.

SIMILAR POSTS

Muscle: a novel way to study its structure. Written by Arkiev D’Souza

Human muscles fascicles: what can ultrasound and diffusion tensor imaging reveal? Written by Bart Bolsterlee

Source: How do muscles change shape when they are passively lengthened? – Motor Impairment

, ,

Leave a comment

[BLOG POST] Everything You Want To Know About Stairlifts Is Right Here  

Photo of a room with a dining table with chairs in the middle. In the corner are stairs, and a stairlift is attached to it.

Ever wondered if you can make stairs at home accessible for your elderly loved ones or other family members whose disabilities may prevent them from going up and down the stairs? Our friends over at Home Healthcare Adaptations have created a comprehensive guide that will walk you through the types of stairlifts, mechanics of how they work, who would need them, their costs, benefits, and safety features. Watch this quick video below to understand the basics of stairlifts. Text version is below the video.

What are stairlifts?

  • Stairlifts are lifting devices powered by electricity which enable people with limited mobility to travel ip and down staircases with ease.
  • They are equipped with a chair or a platform, the selection dependent upon the specific user’s needs.

How does a stairlift work?

  • A stairlift moves along a rail which is fitted to the stairs and a motor is used to move the stairlift along a track.
  • This motor is powered by a battery which charges automatically on a continual basis. It can be charged at either the top or the bottom of the stairs and will always be sufficiently charged so that it will never cut out halfway along the stairs.
  • Stairlifts are easy to operate. They are controlled by a small toggle or joystick on the armrest – simply direct this up or down to move the stairlift.
  • If you have 2 or more people using the same stairlift, it comes as standard with 2 remotes that will enable a user to summon it up/down the stairs.

Who is most likely to need a stairlift?

  • Someone with multiple sclerosis or arthritis.
  • Someone who has undergone hip replacements.
  • Someone whose mobility is affected following an operation.
  • An elderly person with notable frailty.

Types of Stairlifts

  • Straight stairlifts are the simplest of all stairlift types and can fit the majority of staircases that have a straight flight from bottom to top.
  • Curved stairlifts are used when the staircase for which it is being fitted has one or more turns.
  • Perch (or standing) stairlifts are ideal for those who find it difficult to bend their knees and sit. The seat is smaller and positioned higher than with a standard stairlift, allowing the user to perch rather than sit.
  • Outdoor lifts have similar features to indoor stairlifts, in addition to being waterproof and able to withstand extreme conditions.

How much do stairlifts cost?

  • Straight stairlifts cost in the region of €1,800 (supply and maintenance) and can be fitted within 2-3 days of being ordered.
  • Curved stairlifts are more expensive, as they are made to measure. They usually cost between €5,000 and €6,000, while manufacture and fitting could take 5-6 weeks from the initial order date.

Stairlift safety features

  • Sensors to detect potential obstructions.
  • Lockable on/off switch to deactivate the stairlift when not in use.
  • Mechanical and electrical braking systems to braking systems to bring the stairlift to a smooth, safe stop.
  • Safety belts on the seat/perch to prevent users from falling off the stairlift.
  • Swiveling footplates to bridge the gap between the stairlift and the top of the stairs.

Benefits of Stairlifts

  • Provide a safe, comfortable method of moving freely around your home.
  • Promote a substantial degree of independence.
  • No need to walk up and down stairs to fo to an upstairs bathroom or bedroom.
  • You can continue living in your current home without the need to relocate.
  • Extremely easy to use – all you need to do to operate a stairlift is move a control pad.
  • Easy to fold and unfold so as to be unobstrusive when not in use.
  • Very affordable – running costs are similar to what you’d use in boiling a kettle

Source: Home Healthcare Adaptations

Read more here.

Source: Everything You Want To Know About Stairlifts Is Right Here – Assistive Technology Blog

,

Leave a comment

%d bloggers like this: