Archive for category Uncategorized

[ARTICLE] Home-based transcranial direct current stimulation plus tracking training therapy in people with stroke: an open-label feasibility study – Full Text

Abstract

Background

Transcranial direct current stimulation (tDCS) is an effective neuromodulation adjunct to repetitive motor training in promoting motor recovery post-stroke. Finger tracking training is motor training whereby people with stroke use the impaired index finger to trace waveform-shaped lines on a monitor. Our aims were to assess the feasibility and safety of a telerehabilitation program consisting of tDCS and finger tracking training through questionnaires on ease of use, adverse symptoms, and quantitative assessments of motor function and cognition. We believe this telerehabilitation program will be safe and feasible, and may reduce patient and clinic costs.

Methods

Six participants with hemiplegia post-stroke [mean (SD) age was 61 (10) years; 3 women; mean (SD) time post-stroke was 5.5 (6.5) years] received five 20-min tDCS sessions and finger tracking training provided through telecommunication. Safety measurements included the Digit Span Forward Test for memory, a survey of symptoms, and the Box and Block test for motor function. We assessed feasibility by adherence to treatment and by a questionnaire on ease of equipment use. We reported descriptive statistics on all outcome measures.

Results

Participants completed all treatment sessions with no adverse events. Also, 83.33% of participants found the set-up easy, and all were comfortable with the devices. There was 100% adherence to the sessions and all recommended telerehabilitation.

Conclusions

tDCS with finger tracking training delivered through telerehabilitation was safe, feasible, and has the potential to be a cost-effective home-based therapy for post-stroke motor rehabilitation.

Background

Post-stroke motor function deficits stem not only from neurons killed by the stroke, but also from down-regulated excitability in surviving neurons remote from the infarct [1]. This down-regulation results from deafferentation [2], exaggerated interhemispheric inhibition [3], and learned non-use [4]. Current evidence suggests that post-stroke motor rehabilitation therapies should encourage upregulating neurons and should target neuroplasticity through intensive repetitive motor practice [56]. Previously, our group has examined the feasibility and efficacy of a custom finger tracking training program as a way of providing people with stroke with an engaging repetitive motor practice [789]. In this program, the impaired index finger is attached to an electro-goniometer, and participants repeatedly move the finger up and down to follow a target line that is drawn on the display screen. In successive runs, the shape, frequency and amplitude of target line is varied, which forces the participant to focus on the tracking task. In one study, we demonstrated a 23% improvement in hand function (as measured by the Box and Block test; minimal detectable change is 18% [10]) after participants with stroke completed the tracking training program [9]. While our study did not evaluate changes in activity in daily life (ADL) or quality of life (because efficacy of the treatment was not the study objective), the Box and Block test is moderately correlated (r = 0.52) to activities in daily life and quality of life (r = 0.59) [11]. In addition, using fMRI, we showed that training resulted in an activation transition from ipsilateral to contralateral cortical activation in the supplementary motor area, primary motor and sensory areas, and the premotor cortex [9].

Recently, others have shown that anodal transcranial direct current stimulation (tDCS) can boost the beneficial effects of motor rehabilitation, with the boost lasting for at least 3 months post-training [12]. Also, bihemispheric tDCS stimulation (anodal stimulation to excite the ipsilateral side and cathodal stimulation to downregulate the contralateral side) in combination with physical or occupational therapy has been shown to provide a significant improvement in motor function (as measured by Fugl-Meyer and Wolf Motor Function) compared to a sham group [13]. Further, a recent meta-analysis of randomized-controlled trials comparing different forms of tDCS shows that cathodal tDCS is a promising treatment option to improve ADL capacity in people with stroke [14]. Compared to transcutaneous magnetic stimulation (TMS), tDCS devices are inexpensive and easier to operate. Improvement in upper limb motor function can appear after only five tDCS sessions [15], and there are no reports of serious adverse events when tDCS has been used in human trials for periods of less than 40 min at amplitudes of less than 4 mA [16].

Moreover, tDCS stimulation task also seems beneficial for other impairments commonly seen in people post-stroke. Stimulation with tDCS applied for 20 sessions of 30 min over a 4-week period has been shown to decrease depression and improve quality of life in people after a stroke [1718]. Four tDCS sessions for 10 min applied over the primary and sensory cortex in eight patients with sensory impairments more than 10 months post-stroke enhanced tactile discriminative performance [19]. Breathing exercises with tDCS stimulation seems to be more effective than without stimulation in patient with chronic stroke [20], and tDCS has shown promise in treating central post-stroke pain [21]. Finally, preliminary research on the effect of tDCS combined with training on resting-state functional connectivity shows promise to better understand the mechanisms behind inter-subject variability regarding tDCS stimulation [22].

Motor functional outcomes in stroke have declined at discharge from inpatient rehabilitation facilities [2324], likely a result of the pressures to reduce the length of stay at inpatient rehabilitation facilities as part of a changing and increasingly complex health care climate [2526]. Researchers, clinicians, and administrators continue to search for solutions to facilitate and post-stroke rehabilitation after discharge. Specifically, there has been considerable interest in low-cost stroke therapies than can be administered in the home with only a modest level of supervision by clinical professionals.

Home telerehabilitation is a strategy in which rehabilitation in the patient’s home is guided remotely by the therapist using telecommunication technology. If patients can safely apply tDCS to themselves at home, combining telerehabilitation with tDCS would be an easy way to boost therapy without costly therapeutic face-to-face supervision. For people with multiple sclerosis, the study of Charvet et al. (2017) provided tDCS combined with cognitive training, delivered through home telerehabilitation, and demonstrated greater improvement on cognitive measures compared to those who received just the cognitive training [27]. The authors demonstrated the feasibility of remotely supervised, at-home tDCS and established a protocol for safe and reliable delivery of tDCS for clinical studies [28]. Some evidence shows that telerehabilitation approaches are comparable to conventional rehabilitation in improving activities of daily living and motor function for stroke survivors [2930], and that telemedicine for stroke is cost-effective [3132]. A study in 99 people with stroke receiving training using telerehabilitation (either with home exercise program or robot assisted therapy with home program) demonstrated significant improvements in quality of life and depression [33].

A recent search of the literature suggests that to date, no studies combine tDCS with repetitive tracking training in a home telerehabilitation setting to determine whether the combination leads to improved motor rehabilitation in people with stroke. Therefore, the aim of this pilot project was to explore the safety, usability and feasibility of the combined system. For the tDCS treatment, we used a bihemispheric montage with cathodal tDCS stimulation to suppress the unaffected hemisphere in order to promote stroke recovery [34353637]. For the repetitive tracking training therapy, we used a finger tracking task that targets dexterity because 70% of people post-stroke are unable to use their hand with full effectiveness after stroke [38]. Safety was assessed by noting any decline of 2 points or more in the cognitive testing that persists over more than 3 days. We expect day to day variations of 1 digit. Motor decline is defined by a decline of 6 blocks on the Box and Block test due to muscle weakness. This is based on the minimal detectable change (5.5 blocks/min) [10]. The standard error of measurement is at least 2 blocks for the paretic and stronger side. We expect possible variations in muscle tone that could influence the scoring of the test. Usability was assessed through a questionnaire and by observing whether the participant, under remote supervision, could don the apparatus and complete the therapy sessions. Our intent was to set the stage for a future clinical trial to determine the efficacy of this approach.

Methods

Participants

Participants were recruited from a database of people with chronic stroke who had volunteered for previous post-stroke motor therapy research studies at the University of Minnesota. Inclusion criteria were: at least 6 months post-stroke; at least 10 degrees of active flexion and extension motion at the index finger; awareness of tactile sensation on the scalp; and a score of greater than or equal to 24 (normal cognition) on the Mini-Mental State Examination (MMSE) to be cognitively able to understand instructions to don and use the devices [39]. We excluded those who had a seizure within past 2 years, carried implanted medical devices incompatible with tDCS, were pregnant, had non-dental metal in the head or were not able to understand instructions on how to don and use the devices. The study was approved by the University of Minnesota IRB and all enrolled participants consented to be in the study.

Apparatus

tDCS was applied using the StarStim Home Research Kit (NeuroElectrics, Barcelona, Spain). The StarStim system consists of a Neoprene head cap with marked positions for electrode placement, a wireless cap-mounted stimulator and a laptop control computer. Saline-soaked, 5 cm diameter sponge electrodes were used. For electrode placement, we followed a bihemispheric montage [14] involving cathodal stimulation on the unaffected hemisphere with the anode positioned at C3 and the cathode at C4 for participants with left hemisphere stroke, and vice versa for participants with right hemisphere stroke. Stimulation protocols were set by the investigator on a web-based application that communicated with the tDCS control computer. A remote access application (TeamViewer) was also installed on the control computer, as was a video conferencing application (Skype).

The repetitive finger tracking training system was a copy of what we used in our previous stroke studies [789]. The apparatus included an angle sensor mounted to a lightweight brace and aligned with the metacarpophalangeal (MCP) joint of the index finger, a sensor signal conditioning circuit, and a target tracking application loaded on a table computer. Figure 1 shows a participant using the apparatus during a treatment session.

Fig. 1

Fig. 1Participant with right hemiparesis receiving transcranial direct current magnetic stimulation (tDCS) in their home simultaneous while performing the finger movement tracking task on the tracking computer (left). The tDCS computer (right) shows the supervising investigator, located off-site, who communicated with the participant through the video conferencing application, controlled the tDCS stimulator through web-based software, and controlled the tracking protocols. (Permission was obtained from the participant for the publication of this picture)

[…]

 

Continue —>  Home-based transcranial direct current stimulation plus tracking training therapy in people with stroke: an open-label feasibility study | Journal of NeuroEngineering and Rehabilitation | Full Text

, , , , , , , ,

Leave a comment

[BLOG POST] One day at a time. Cognition and Caregiving after a TBI

By Bill Herrin

Thinking comes so naturally that most people take it for granted, but after a traumatic brain injury – many times, thinking can be more of a deliberate action. It takes focus and effort to put a series of thoughts together after TBI, to speak clearly, or to even move. Simply put, the brain (like the body) takes time to heal. Since no two brain injuries are identical, there is no clear path to better cognition. There are, however, certain broad directives that can get you moving in the right direction in most situations. The hardest part of this is to accept your “new normal”. Acceptance, once you come to terms with it, gives you the desire to work toward the goal of better cognition, coordination, memory, anger management, judgement, attention, and other challenges. Once you accept your situation isn’t going to change overnight, you can start the process of healing, along with testing your limitations. Although finding your limitations is difficult, knowing what they are is a huge step towards improvement in areas that need changing. When a person lacks enough cognition to be self-aware or to strive towards improvement, that’s a test for the caregiver’s guidance and patience. Sometimes just being there for your friend, spouse, or loved one is all you can do.

As a caregiver, high expectations from a TBI survivor shouldn’t be overly discouraged, as they can bring progress through their desire to improve. They may not reach the goal they wanted to, but they’ll make strides towards it! That is positivity in its purest form. Nobody wants to be working through such a huge change in their life without encouragement – cheer them onward and upward! Even if they fail, they are trying, and that shows initiative. Their desire to improve should never be underappreciated.

When cognition is in the early stages of improvement, the changes may be noticed more by the family or caregiver than they are by the survivor. Sometimes incremental change is just too subtle for survivors to realize, but pointing out the changes to them is incredibly positive reinforcement. The following tips on cognition are excerpted from Lash & Associates’ tip card titled “Cognition – Compensatory strategies after brain injury”

Cognitive fatigue is one of the most common consequences of brain injury. The survivor’s brain is simply working harder to think and learn. Cognitive rest is just as important – maybe even more important – as physical rest after the brain has been injured. Cognitive fatigue can have a ripple effect. You may have a shorter temper, find it harder to concentrate, make more errors, misplace things or forget appointments. You may feel like you can’t think straight no matter how hard you try. Many survivors describe cognitive fatigue as “hitting the wall”.

Do you…

• Feel tired after mental exertion?

• Have a harder time thinking after working on longer or more complex tasks?

• Need more sleep than usual?

• Find it hard to get through the day without napping?

Tips on compensatory strategies…

• Take breaks.

• Schedule rest periods.

• Stay organized.

• Use a daily planner.

• Use time management strategies.

• Eat nutritious meals on a regular schedule.

• Go to bed at a consistent time.

– Create a weekly exercise routine.

• Request a medical evaluation.

• Discuss medications that may help with a physician specializing in brain injury rehabilitation.

There are a plenty of great suggestions for compensatory strategies for survivors and their caregivers in the tip card referenced above. Here’s a link to it here!

When it comes to cognitive functional rehabilitation – seek professional advice first (of course), but when the TBI survivor is at home with a caregiver, clinician, friend or family member, there are some great approaches to working on communication, social interaction, organization, reading, attention, problem solving, and rebuilding other deficits through consistent application by any or all of the people involved in the care of the TBI survivor.

Referencing the book titled “Cognition Functional Rehabilitation Activities Manual” (Developed by Barbara Messenger, MEd, ABDA and Niki Ziarnek, MS, CCC-SLP/L), I’m sharing an excerpt that provides a glimpse into the workbook’s approach to helping a person with cognitive challenges. Many of the exercises use interaction and documentation to assess where the TBI survivor is at (cognitively speaking) on an ongoing basis. Remember, this is a workbook, and there are plenty of exercises that build activities and responses ongoing. Here is the example of how the manual challenges a TBI survivor with structured and specific activities:

Task: Provide awareness training.

Procedure:

  1. Prompt participant to work on awareness training.
  2. Ask why participant is here receiving rehabilitation.
  3. Ask what skills/activities are harder since the brain injury.
  4. Ask what participant does to compensate for these difficulties and which therapies address them.Ask what participant’s strengths are (what is participant good at?).
  1. Ask the participant how the brain injury and difficulties affect daily activities.
  2. Provide answers and examples when needed.
  3. Provide positive reinforcement for strengths, being receptive to information regarding brain injury, for participating in the task, and for being motivated to participate in rehabilitation.

Staff Reminder: (clinician, caregivers, family, etc.)

Provide a complete description of this activity in the Functional Rehabilitation Documentation Form.

Last words…

By asking specific questions, and recording the corresponding answers, this workbook is a great tool for tracking progress – and the exercises can be done more than once, to check and see how/if the answers have changed. So, what’s the takeaway from this excerpt? It illustrates that structure and consistency of care and treatment by family/caregivers and professionals can overlap and create a solid overview of cognitive deficits, and improvements.

In closing, the main goal of this post is to address the expectations of TBI survivors and their caregivers, to encourage them to strive for progress and to offer resources for compensatory strategies, and cognitive rehabilitation. If all parties work in tandem with the common goal of helping a TBI survivor make it to the next level, they’re all closer to the goal…and the whole team wins. That’s the goal!

 

via cognition-caregiving-tbi

, , , ,

Leave a comment

[WEB SITE] How to keep your brain healthy and avoid cognitive fatigue

The Globe and Mail and Morneau Shepell have created the Employee Recommended Workplace Award to honour companies that put the health and well-being of their employees first. Read about the 2018 winners of the award at tgam.ca/workplaceaward.

Registration is now open for the 2019 Employee Recommended Workplace Awards at www.employeerecommended.com.

Morneau Shepell is hosting a free webinar on Thurs. Sept. 13 from 1 p.m. ET to 2 p.m. ET to discuss seven ways to improve mental health in your workplace. If you would like to participate, click here to register.

Think back to your school days, especially postsecondary school, and how your brain felt after cramming all night for a tough exam. Remember that? When you felt like your brain had been pushed to the limit and was no longer functioning properly? That is called cognitive fatigue.

Cognitive fatigue can be defined as a decrease is one’s cognitive abilities due to prolonged mental demands, brought on by excessive wear and tear on the brain. It’s not simply being sleep-deprived, although sleep is important and necessary for healthy brain functioning.

Sometimes the challenges we take on, such as work-related commitments and education goals, can be stressful, challenging and require a high level of cognitive demand over an extended period of time.

Daniel Goleman reports that cognitive exhaustion can occur due to extended periods of focus, and the brain, like any muscle, can be pushed to the point of exhaustion. When this happens, the brain’s capacity to perform to its full potential can be dramatically decreased.

Understanding cognitive fatigue can help us know the actions we can take to reduce the risk and increase our capacity to manage high-demand mental task when necessary. When we’re not aware that cognitive fatigue is happening, we can be at increased risk for being distracted, anxious and irritable.

This micro skill provides some ideas to mitigate risk for cognitive fatigue. The focus is on people who engage in some form of activity (such as work or school) that requires a high level of concentration over an extended period.

Awareness

People who have suffered a head injury or some form of mental illness can be at increased risk for experiencing cognitive fatigue. Research shows that cognitive fatigue can significantly impair physical performance that could put a person at increased risk for making mistakes.

Common signs of cognitive fatigue include a decrease in motivation, creativity and ability to analyze and think clearly. Someone who’s experiencing any of these symptoms may not be able to process what’s happening, so they need to learn the concept of cognitive fatigue and what actions to take if they’ve reached that point.

Accountability

Sometimes we may order more food at a restaurant than we can eat. The same can happen when we want to achieve something. We focus on the end goal and may not consider the ongoing effort or commitment we’ve made to achieve it.

To reduce the risk for cognitive fatigue, you need to not only be aware of your capacity and the potential for cognitive fatigue, you need to set realistic expectations. For example, you wouldn’t commit to running a marathon unless you trained and worked up to it. The mind needs the same consideration. If you want to do something in your career or education that will be a challenge, it’s helpful to make a commitment to train your brain and rest it like any other muscle. You want to develop it to be as strong as possible.

Action

Here are some actions you can take to reduce your risk for cognitive fatigue.

Prepare for challenges – Accept that for your brain to work to its full potential it needs to be trained and prepared. If you’re taking a course that requires lots of studying over a period of a year or two, develop a capacity-building plan that may involve increasing your daily reading or taking a study strategy program to maximize your study habits.

Create a schedule and stick to it – Schedule periods in your day when you’ll focus, and rest periods above and beyond getting your required sleep. The purpose is to provide times in your day when your mind can rest and enjoy other activities.

Develop a daily resiliency plan – Too much caffeine or alcohol can hurt your brain’s ability to perform while exercise and strong coping skills – the strategies that enable us to solve problems under stress – can help your brain stay strong when its being stressed. A resiliency plan is a minimum commitment to provide the mind and body the most opportunity to have the energy it needs to push through daily challenges as well as to reduce risk for cognitive fatigue. A daily plan may include:

  • Getting seven to nine hours’ sleep
  • Drinking no more than two cups of coffee – and no other sources of caffeine
  • Taking a 10-minute break every 90 minutes
  • Eating three healthy meals, with healthy snacks between them
  • Exercising 30 minutes each day
  • Drinking at least 2.5 litres of water
  • Meditating for 15 minutes first thing in the morning to kick off the day
  • Journaling at the end of the day to process the day’s challenges and acknowledge things to be grateful for
  • Spending a minimum of 30 minutes with your partner to catch up on life

Bill Howatt is the chief research and development officer of work force productivity with Morneau Shepell in Toronto.

You can find all the stories in this series at tgam.ca/workplaceaward

via How to keep your brain healthy and avoid cognitive fatigue – The Globe and Mail

,

Leave a comment

[Abstract] How is sexuality after stroke experienced by stroke survivors and partners of stroke survivors? A systematic review of qualitative studies

To synthesise how post-stroke sexuality is experienced by stroke survivors and partners of stroke survivors.

MEDLINE, PubMed, SCOPUS, CINAHL and PsycINFO were searched from inception to May 2018 using a combination of relevant Medical Subject Headings and Free Text Terms. Only papers published in English reporting original qualitative research were included. Methodological quality was assessed using the Critical Appraisal Skills Programme Qualitative Research Checklist. All text presented as ‘results’ or ‘findings’ in the included studies was extracted and subjected to a thematic analysis and synthesis which was discussed and agreed by the research team.

The initial search yielded 136 unique papers with a further 8 papers identified through reference checking. Following full-text review, 43 papers were included in the final synthesis. Two analytical themes were identified: sexuality is silenced and sexuality is muted and sometimes changed, but not forgotten. These themes were made up of six descriptive themes: struggle to communicate within relationships, health professionals don’t talk about sexuality, sexuality and disability is a taboo topic, changes to pre-stroke relationships, changed relationship with the stroke survivor’s own body and resuming sexual intimacy – adaptation and loss.

Stroke has a profound impact on how sexuality is experienced by both stroke survivors and partners of stroke survivors. Despite this, post-stroke sexuality is rarely discussed openly. Stroke survivors and partners value sexuality and may benefit from strategies to support adjustment to post-stroke sexuality.

via How is sexuality after stroke experienced by stroke survivors and partners of stroke survivors? A systematic review of qualitative studies – Margaret McGrath, Sandra Lever, Annie McCluskey, Emma Power, 2018

, , , , , ,

Leave a comment

[Abstract] Eye Movements Interfere With Limb Motor Control in Stroke Survivors

Background. Humans use voluntary eye movements to actively gather visual information during many activities of daily living, such as driving, walking, and preparing meals. Most stroke survivors have difficulties performing these functional motor tasks, and we recently demonstrated that stroke survivors who require many saccades (rapid eye movements) to plan reaching movements exhibit poor motor performance. However, the nature of this relationship remains unclear.

Objective. Here we investigate if saccades interfere with speed and smoothness of reaching movements in stroke survivors, and if excessive saccades are associated with difficulties performing functional tasks.

Methods. We used a robotic device and eye tracking to examine reaching and saccades in stroke survivors and age-matched controls who performed the Trail Making Test, a visuomotor task that uses organized patterns of saccades to plan reaching movements. We also used the Stroke Impact Scale to examine difficulties performing functional tasks.

Results. Compared with controls, stroke survivors made many saccades during ongoing reaching movements, and most of these saccades closely preceded transient decreases in reaching speed. We also found that the number of saccades that stroke survivors made during ongoing reaching movements was strongly associated with slower reaching speed, decreased reaching smoothness, and greater difficulty performing functional tasks.

Conclusions. Our findings indicate that poststroke interference between eye and limb movements may contribute to difficulties performing functional tasks. This suggests that interventions aimed at treating impaired organization of eye movements may improve functional recovery after stroke.

  

via Eye Movements Interfere With Limb Motor Control in Stroke Survivors – Tarkeshwar Singh, Christopher M. Perry, Stacy L. Fritz, Julius Fridriksson, Troy M. Herter, 2018

, , , , , ,

Leave a comment

[ARTICLE] Identifying and Quantifying Neurological Disability via Smartphone – Full Text

Embedded sensors of the smartphones offer opportunities for granular, patient-autonomous measurements of neurological dysfunctions for disease identification, management, and for drug development. We hypothesized that aggregating data from two simple smartphone tests of fine finger movements with differing contribution of specific neurological domains (i.e., strength & cerebellar functions, vision, and reaction time) will allow establishment of secondary outcomes that reflect domain-specific deficit. This hypothesis was tested by assessing correlations of smartphone-derived outcomes with relevant parts of neurological examination in multiple sclerosis (MS) patients. We developed MS test suite on Android platform, consisting of several simple functional tests. This paper compares cross-sectional and longitudinal performance of Finger tapping and Balloon popping tests by 76 MS patients and 19 healthy volunteers (HV). The primary outcomes of smartphone tests, the average number of taps (per two 10-s intervals) and the average number of pops (per two 26-s intervals) differentiated MS from HV with similar power to traditional, investigator-administered test of fine finger movements, 9-hole peg test (9HPT). Additionally, the secondary outcomes identified patients with predominant cerebellar dysfunction, motor fatigue and poor eye-hand coordination and/or reaction time, as evidenced by significant correlations between these derived outcomes and relevant parts of neurological examination. The intra-individual variance in longitudinal sampling was low. In the time necessary for performing 9HPT, smartphone tests provide much richer and reliable measurements of several distinct neurological functions. These data suggest that combing more creatively-construed smartphone apps may one day recreate the entire neurological examination.

Introduction

Neurological examination measures diverse functions of the central (CNS) and peripheral nervous systems to diagnose neurological diseases and guide treatment decisions. Thorough neurological examination takes between 30 and 60 min to complete and years of training to master. This poses problem both for developing countries, which often lack neurologists, and for developed countries where cost-hikes and administrative requirements severely limit the time clinicians spend examining patients.

Additionally, clinical scales derived from traditional neurological examination are rather insensitive and prone to biases, which limits their utility in drug development. Therefore, non-clinician administered measurements of physical disability such as timed 25-foot walk (25FW) and 9-hole peg test (9HPT) or measurements of cognitive functions exemplified by paced auditory serial addition test (PASAT) and symbol digit modalities test (SDMT), are frequently used in clinical trials of neurological diseases such as multiple sclerosis (MS) (12). Especially combining these “functional scales” with clinician-based disability scales such as Expanded Disability Status Scale (EDSS)(3) into EDSS-plus (4) or Combinatorial weight-adjusted disability scale (CombiWISE) (5) enhances sensitivity of clinical trial outcomes. However, these sensitive combinatorial scales are rarely, if ever acquired in clinical practice due to time and expense constrains.

Measuring neurological functions by patients via smartphones (68) may pose a solution for all aforementioned problems, while additionally empowering patients for greater participation in their neurological care. We have previously found comparable sensitivity and specificity of simple, smartphone-amenable measurements of finger and foot taps to 9HPT and 25FW, respectively (9). In this study, we explored iterative development/optimization of smartphone-based measurements of neurological functions by: 1. Exploring clinical utility of new features that can be extracted from finger tapping; 2. Development of “balloon popping” smartphone test that builds on finger tapping by expanding neurological functions necessary for task completion to eye movements and cognitive skills, and 3. By decoding app-collected raw data into secondary (derived) features that may better reflect deficits in specific neurological functions.

 

Materials and Methods

Developing the Smartphone Apps

Tapping and Balloon popping tests were written using Java in the Android Studio integrated development environment. Both tests went through iterative development and optimization following beta testing with developers and then clinical trial testing with patients and healthy volunteers. Each of the individual tests are standalone applications and can be downloaded individually to the phone using an Android Package (APK) emailed to phones or directly installed through USB connection with Android Studio. Installation and initial testing of applications were completed on a variety of personal Android phones, with no particular specifications. Testing in the clinic with patients and longitudinal testing was completed on Google Pixel XL 2017 phones. Android 8.1 Oreo operating system was used for the most recent version of the application, with the intention of keeping the operating system the app runs on up to date with the most recent version released by Android.

For the purposes of this study, we created a front-end application that can flexibly incorporate a variety of test apps. The front-end prompts for user profiles where a testing ID, birth month and year, gender, and dominant hand may be entered so data collected is associated with the user profile. Through a cloud-based spreadsheet, “prescriptions” of test app configurations are set for each user such that they may have a unique combination of tests tailored to their disability level.

The tapping test goal was similar to previously validated non-smartphone administered tapping tests (9), where users had to tap as quickly as possible over a 10 s duration and the final score is the average of two attempts. The test uses touch recognition over a rectangular area covering the bottom half of a vertically oriented phone screen (Figure 1A). Users can tap anywhere in a marked off gray area. The total number of taps for each of two trials and the calculated average is displayed immediately afterwards on the screen. In addition to total taps over the duration of the test, the app also records the duration, Android system time, and pressure for each tap as background data. Pressure for app recording is interpreted from the size of the touch area on each tap, where larger tap area corresponds to a higher pressure reading. Because the pressure function was added later and therefore the data are missing for the majority of current cohort, this function is not investigated in current study.

FIGURE 1
www.frontiersin.orgFigure 1. Smartphone Apps. (A) Tapping Test where user can tap repeatedly anywhere in the gray rectangle over the bottom half of the screen. (B) Popping Test where the dark blue circle will disappear and simultaneously reappear randomly across the screen as soon as the user touches it.

The balloon popping test was conceptually envisioned as an extension of tapping test that expands neurological functions necessary for test completion from pure motoric, to motoric, visual, and cognitive (attention and reaction time). The primary goal for this test is to touch as many randomly generated dark blue circles (balloons) moving across the screen in succession over the 26-s test duration as possible. During optimization of the app we tested 3 sizes of the target balloon and a 100-pixel balloon was selected as optimal based on preliminary results. The analyses of the other two circle sizes are provided as part of sensitivity analyses (Supplementary Figure 1), as conclusions from these tests support data presented in the main text of the paper. There is only one balloon to pop on the screen at a time (Figure 1B) and as soon as the user touches anywhere on the circle, another circle will appear in a random location. The random generation of balloon locations was created by random number functions in Java for both the x and y coordinates of the center of the circle, with the constraint of the entire balloon having to be visible on the screen. If the user taps on a background location, the current balloon stays in the same location and is only moved to a new random location after accurately tapping on the balloon. Following app completion, the total number of balloons popped and calculated average (from two trials) is displayed on the phone for the user. The x and y coordinates of all balloon and background hits, the system time, duration, and pressure (in the same manner as tap pressure) for each tap are also recorded as background data and stored in cloud-based data system.

Following the completion of a tapping or balloon popping test trial, an intermediate message displayed on the screen asks if the users would like to submit their results or retake the most recent trial (Supplementary Videos 12). If the user selects the retake option the collected data for the trial is discarded locally on the phone and not sent to any cloud-based database. This was implemented to avoid noise associated with test interruptions or other unforeseen circumstances that affected test performance. Following selection of the submit option, the data is uploaded immediately to a cloud-based database if the smartphone is connected to WiFi. If the phone is not connected to WiFi, then the submitted test trial results are stored locally on the phone and uploaded to the database as soon as the phone is connected to WiFi.

The app development process is in continuation given user and clinician feedback in addition to integration of more tests into the front-end. User feedback, user’s ability to perform Apps in a “practice mode”, and training videos for individual tests (Supplementary Videos 12) are integrated into the front-end dashboard that manages different tests.[…]

Continue —->  Frontiers | Identifying and Quantifying Neurological Disability via Smartphone | Neurology

, , , , , , ,

Leave a comment

[Abstract] The effects of robot-assisted gait training using virtual reality and auditory stimulation on balance and gait abilities in persons with stroke

via The effects of robot-assisted gait training using virtual reality and auditory stimulation on balance and gait abilities in persons with stroke – IOS Press

, , , ,

Leave a comment

[BLOG POST] Silent Epidemic: Domestic Violence – H.O.P.E TBI

When we hear traumatic brain injury, we often think of a trauma from say….a vehicle accident, or sports, or falls.

It’s time to continue bringing awareness to this silent epidemic…Domestic Violence.

*Polytrauma and Traumatic Brain Injuries are common with Domestic Violence

  • Women experience about 4.8 million intimate partner-related physical assaults and rapes every year.

*Less than 20 percent of battered women sought medical treatment following an injury. A significant number of crimes are never even reported for reasons that include the victim’s feeling that nothing can/will be done and the personal nature of the incident.

*The cost of experiencing Domestic Violence includes medical care, mental health services, and lost productivity

*Domestic Violence affecting LGBT individuals continues to be grossly underreported; it is as much as a problem within LGBT communities as it is among heterosexual ones.

Domestic violence, also known as intimate partner violence, is a pattern of abusive behavior in any relationship that is used by one partner to gain or maintain power and control over another intimate partner. Domestic violence can be physical, sexual, emotional, economic, or psychological actions or threats of actions that influence another person[1]

Research on abused women shows that between 40 to 92 percent of victims of domestic violence suffer physical injuries to the head; nearly half of these women report that they have experienced strangulation, according to research published in October 2017 in the Journal of Women’s Health.

DID YOU KNOW?

More than 40 per cent of victims of domestic violence are male.

40% of those reporting serious assaults by current or former partners in the past year were men, and most of their attackers were women.

80 per cent increase in reports from male victims between 2012 and 2016.

Women are as likely as men to be agressors.

Men also make up about 30% of intimate homicide victims, not counting confirmed cases of female self-defense.

Female-on-male violence is often assumed to be harmless, given sex differences in size and strength. Yet women may use weapons — including knives, glass, boiling water and various household objects — while men may be held back from defending themselves by cultural taboos against harming woman

Domestic violence against men can take many forms, including emotional, sexual and physical abuse and threats of abuse. It can happen in heterosexual or same-sex relationships.

Abusive relationships always involve an imbalance of power and control. An abuser uses intimidating, hurtful words and behaviors to control his or her partner.

Men who find themselves as victims of domestic violence are often viewed by and made to feel emasculated and weak. We are told to fight back and ridiculed for “accepting” or “allowing” the abuse. Many people don’t know how to approach the conversation for fear of adding insult to literal injury, or because they simply don’t believe a man can be a victim of domestic violence.

Men are expected to be violent and in control, particularly in control of women, while supressing their emotions and sucking it up whenever life doesn’t go their way. When a man steps outside of this box, he is often ridiculed as weak or as not being a “real” man.
This toxic view of masculinity often leads men to become perpetrators of domestic violence, but when they’re victims, it can prevent them from coming forward. The stigma, and the fear of not being believed, can be so strong that men simply don’t report the abuse.

Abused men have faced widespread biases from police, judges and social workers. Equality should include recognizing women’s potential for abusive behavior.

Claims on both sides should be fairly investigated — without political bias, sexist bias, or cultural bias.

Domestic violence service providers. Screen everyone who seeks DV services for TBI. A brief screening tool that was designed to be used by professionals who are not TBI experts is the HELPS.2
HELPS is an acronym for the most important questions to ask:
H = Were you hit in the head?
E = Did you seek emergency room treatment?
L = Did you lose consciousness? (Not everyone who suffers a TBI loses consciousness.)
P = Are you having problems with concentration and memory?
S = Did you experience sickness or other physical problems following the injury?
If you suspect a victim has a brain injury, or she answers “yes” to any of these questions, help her get an evaluation by a medical or neuropsychological professional – especially if she has suffered repeated brain injuries, which may decrease her ability to recover and increase her/his risk of death.

https://www.biav.net/traumatic-brain-injury-domestic-violence/

http://www.opdv.ny.gov/professionals/tbi/dvandtbi_infoguide.html

Printable version of Traumatic Brain Injury and Domestic Violence Quick Guide

http://www.biav.net/wp-content/uploads/2018/05/Domestic-Violence-Fact-Sheet-lb.pdf

https://ncadv.org/statistics

https://now.org/resource/violence-against-women-in-the-united-states-statistic

https://www.everydayhealth.com/neurology/shining-light-on-traumatic-brain-injury-domestic-violence/

https://www.npr.org/sections/health-shots/2018/05/30/613779769/domestic-violence-s-untold-damage-concussion-and-brain-injury

https://www.helpguide.org/articles/abuse/help-for-men-who-are-being-abused.htm

https://melmagazine.com/what-domestic-violence-against-men-looks-like-74ce9500ab8d

https://www.independent.co.uk/voices/domestic-violence-male-victims-shelters-government-funding-stigma-a7626741.html

https://www.mayoclinic.org/healthy-lifestyle/adult-health/in-depth/domestic-violence-against-men/art-20045149

http://www.latimes.com/opinion/op-ed/la-oe-young-sorenson-male-domestic-abuse-20180222-story.html

https://pro.psychcentral.com/exhausted-woman/2018/01/males-can-be-the-victims-of-domestic-violence-too/

via Silent Epidemic: Domestic Violence | H.O.P.E TBI

, , ,

Leave a comment

[WEB PAGE] What are the various treatment options for paralysis?

When there is a loss of muscular functioning in an area or sensory loss on area resulting usually from any damage to central nervous system, there is paralysis. Some of the probable causes of this dangerous condition are polio, stroke, excessive trauma or multiple sclerosis, etc. There may be complete paralysis or partial paralysis. It is mainly of two kinds, namely, paraplegia and quadriplegia. Paralysis is the consequence when the brain fails to send signals to various regions of the body. This may result from a variety of reasons. Stroke accounts for 30% of paralysis cases and is the major cause. However, one can choose paralysis treatment depending on the severity of the condition and the region which is paralyzed.

How is paralysis diagnosed?

On the event of any failure of muscular functioning or sensory loss on certain area, it is important to visit a medical practitioner immediately. To diagnose the condition, he prescribes a series of tests including CT Scan, MRI, X-Ray, Electromyography. If at all it is necessary, the patient may be suggested a neurologist. After paralysis is confirmed, the treatment begins. Certain types of paralysis may be cured and this mainly includes partial paralysis. You can ask the doctor whether the recovery is possible or not. No matter what the cause of the condition, the treatment procedure will be almost the same. Whatever treatment you choose for recovery, the treatment provider will try and restore brain and body connection. This is the only way to bring about recovery.

Some of the basic treatment options for paralysis

Wearable device running on electricity is the most basic treatment for paralysis. This wearable electronic device is also used for stroke treatment. It improves arm functioning and restores motion in the arms. When you wear this device, it delivers electrical current to activate the muscles of arms and legs. This technique of motion restoration is also termed as FES or Functional Electrical Stimulation. It can recover the feet or lower legs from paralysis. The use of FES along with specific exercises can bring about a relief.

Some of the best treatment options for paralysis 

If anyone of your loved one is suffering from paralysis, read the following section to learn how to reduce the symptoms:

  • Surgery can address physical barriers. It may be that there is an object fixed in the brain or spinal cord of the person. It needs to be got rid of. Through the surgery, certain portions of the spinal cord can also be fused together.
  • Some paralysis medication may be used to reduce swelling, inflammation and infection on the area. If there is chronic pain, it may be addressed with medicines.
  • Continuous monitoring of the person is mandatory to ensure that this condition does not get worse
  • Psychotherapy can help a lot. Support groups may teach you how to cope with this critical situation.
  • To restore muscular and nerve functioning, you may be asked to do certain exercises. Occupational therapy can also help a lot. Work on the injuries and practice them as much as possible. Physical therapy may reverse paralysis by rewiring the brain.
  • Some people got great results from alternative treatments like chiropractic care, massage therapy and acupuncture treatment.

If there are breathing difficulties, problem in the bowel movement, take immediate treatment for them. Again, surgery is an effective sleep apnea treatment. Whether it is sleep apnea or paralysis, immediate medical attention is required.

via What are the various treatment options for paralysis?- The New Indian Express

, , , ,

Leave a comment

[WEB SITE] ReWalk Exoskeleton – Rehabilitation Technology – PhysioFunction

Rewalk Exoskeleton

Rewalk

What is the ReWalk?

The ReWalk is a robotic Exoskeleton that can be worn for personal use at home and out in the community.

The robotic device provides hip and knee motion to enable individuals with spinal cord injury to stand upright, walk, turn, climb and descend stairs. The system can be customised to provide optimal fit to ensure safety, function and joint function.

ReWalk allows people to walk independently as the robotic device mimics the natural gait pattern of the legs.

What are the benefits?

The benefits of using the ReWalk include:

  • Ability to walk upright rather than sit in a wheelchair
  • Improve mobility and quality of life measures such as:

  • Improvements in bowel and bladder function

  • Maintenance of bone mass

  • Reduction of some medications for certain ailments

  • Emotional and psychosocial benefits

How can you trial and purchase a ReWalk for home use?

At our Midlands ‘Centre of Excellence Clinic’ in Northampton.

Firstly, we will book you into our clinic for an initial assessment where you will be able to trial the device*.

Providing you are suitable for the device, you will be given the option to purchase your own ReWalk and at the same time we will discuss the rehab package on offer that will help you achieve maximum use of your ReWalk.

If you live outside the Midlands and need accommodation, we can also help find you an accessible place to stay.

*Prior to the assessment we will need to establish your suitability for the device as ReWalk is intended for use by individuals with lower limb disabilities whose hands and shoulders can support crutches or a walker. Your height will need to be between 160cm – 190cm (5’3″ to 6’2″). Weight requirement is up to 100kg (220lbs). Other factors such as bone density and range of motion will be considered and evaluated.

via ReWalk Exoskeleton | Rehabilitation Technology | PhysioFunction

, , ,

Leave a comment

%d bloggers like this: