Posts Tagged Acquired Brain Injury

[ARTICLE] Cognitive and functional outcomes following inpatient rehabilitation in patients with acquired brain injury: A prospective follow-up study – Full Text

Abstract

Objectives: To study the effects of cognitive retraining and inpatient rehabilitation to study the effects of cognitive retraining and inpatient rehabilitation in patients with acquired brain injury (ABI).

Design and Setting: This was a prospective follow-up study in a neurological rehabilitation department of quaternary research hospital.

Patients and Methods: Thirty patients with ABI, mean age 36.43 years (standard deviation [SD] 12.6, range 18–60), mean duration of illness 77.87 days (SD 91.78, range 21–300 days) with cognitive, physical, and motor-sensory deficits underwent inpatient rehabilitation for minimum of 14 sessions over a period of 3 weeks. Nineteen patients (63%) reported in the follow-up of minimum 3 months after discharge. Type of ABI, cognitive status (using Montreal Cognitive assessment scale [MoCA] and cognitive Functional Independence Measure [Cog FIM]®), and functional status (motor FIM®) were noted at admission, discharge, and follow-up and scores were compared.

Results: Patients received inpatient rehabilitation addressing cognitive and functional impairments. Baseline MoCA, motor FIM, and Cog FIM scores were 15.27 (SD = 7.2, range 3–30), 31.57 (SD = 15.6, range 12–63), and 23.47 (SD = 9.7, range 5–35), respectively. All the parameters improved significantly at the time of discharge (MoCA = 19.6 ± 7.4 range 3–30, motor FIM® = 61.33 ± 18.7 range 12–89, Cog FIM® =27.23 ± 8.10 range 9–35). Patients were discharged with home-based programs. Nineteen patients reported in follow-up and observed to have maintained cognition on MoCA (18.8 ± 6.8 range 6–27), significantly improved (P < 0.01) on Cog FIM® (28.0 ± 7.7 range 14–35) and motor FIM® =72.89 ± 16.2 range 40–96) as compare to discharge scores.

Conclusions: Cognitive and functional outcomes improve significantly with dedicated and specialized inpatient rehabilitation in ABI patients, which is sustainable over a period.

 Introduction

Acquired brain injury (ABI) is defined as “damage to the brain, which occurs after birth and is not related to a congenital or a degenerative disease.” “These impairments may be temporary or permanent and cause physical, functional disability, or psychosocial maladjustment.”[1],[2] By this definition, ABI encompasses a wide variety of disorders of varying etiologies such as vascular, hypoxic, malignant, and traumatic. There are often long-lasting effects on domains of cognition, motor, behavior, and personality in affected individuals.[3] Cognitive impairment is common sequelae and important marker for prediction of rehabilitation outcomes, and cognitive outcome can be modified through targeted interventions.[4]

Studies suggest that traumatic brain injury (TBI) and stroke are the two main causes of ABI and regarded as important public health problem.[5] The incidence of TBI from 23 reports was found to vary greatly among European countries. Most rates were in the range 150–300/100,000 people per year.[6] The prevalence of stroke In western developed world ranges from 500 to 600/100,000. Rates per 100,000 from developing countries are also variable and range from 58 in India and 76 in the United Republic of Tanzania to 620 in China and 690 in Thailand.[7] Between 1.5 and 2 million persons are injured and 1 million die every year in India following TBI.[8] Cardiovascular diseases including stroke caused 19% of deaths in India between 2001 and 2003 and this is estimated to rise to 36% by 2030.[9] According to disease burden in India report September 2005, central nervous system malignancies (included in ABI) comprise 2% of the total cancer burden.[10] Other causes of ABI such as meningoencephalitis and stroke mimics also contribute to this pool of patients.

The majority of ABI survivors continue to live with disabilities without access to comprehensive rehabilitation services and remain a burden on caregivers and society.[11],[12] Physical and cognitive deficits are most commonly observed in these patients but are not adequately addressed due to lack of approachable rehabilitation services and awareness.[13],[14] Many of these patients opt for complementary and alternative medicine, which are popular in India but demonstrate questionable benefits.[15]

It is evident, both clinically and scientifically, that the improvement in motor control after ABI is training dependent, responding best to repetitive task training with continuous modification of the program to keep training tasks challenging to the patients (activity-based recovery and neural plasticity).[16],[17] Single or multiple domains of cognition can be affected in these patients depending on the site (s) and severity of injury. Disturbances in memory, attention, and/or executive functions are commonly involved. Deficits in language and speech, learning, abstract thinking, and orientation occur in severe cases. It is well established that cognitive deficits interfere with rehabilitation efforts and also result in a greater negative impact on quality of life.[18] Cognitive rehabilitation (CR) is a specialized treatment procedure designed to improve the cognition affected by internal or external injury to the brain. There are two types of CR: restorative and compensatory rehabilitation.[19],[20],[21] Restorative rehabilitation enables the patient to develop lost functions through specialized computerized and manual cognitive exercises. Compensatory rehabilitation helps the patient to train and use aids and tools to overcome the impairment. The objective of the present study was to rehabilitate ABI patients in all affected domains including cognitive, physical, sensory-motor, and behavior with customized inpatient programs. Another objective was to observe the effect of inpatient rehabilitation in improving cognition and functionality of the patients (by comparing admission and discharge scores). We also tried to observe whether the benefits of inpatient rehabilitation are sustainable by assessing the patients in follow-up examination a minimum of 3 months after discharge.[…]

Continue —>  Cognitive and functional outcomes following inpatient rehabilitation in patients with acquired brain injury: A prospective follow-up study Patil M, Gupta A, Khanna M, Taly AB, Soni A, Kumar J K, Thennarasu K – J Neurosci Rural Pract

, , , , ,

Leave a comment

[BLOG POST] Combating Struggles with Acquired Brain Injury

The physical, neurological and emotional challenges that may arise from an acquired brain injury (ABI) are vast. Different causes and injuries create consequences that vary among individuals. Therapists need to be perceptive in order to both address struggles and provide avenues for constructive thinking.

One of the largest hurdles therapists encounter in rehabilitation with individuals who have suffered an ABI is the patient often lacks insight into their own deficits. Their injured brain signals they are fine and can successfully perform activities they used to do before injury, when in fact they may be struggling with anything from orientation and memory to executive function. This is challenging for family members and caregivers and is also is a barrier for treatment if the patient does not come to terms with these new deficits. Although insight typically improves to some degree as the patient progresses, giving the right level and amount of explanation about what has happened and future planning is helpful.

A thorough evaluation should be completed early on to identify cognitive deficits. Once strengths and deficits are identified, treatment can begin. Include tasks to promote gains in deficit areas such as memory and attention, such as deductive and/or abstract reasoning tasks, working memory tasks or word-retrieval activities. Also think about how strengths can be utilized to assist in this processIf a patient’s reading comprehension is better than auditory comprehension, printed information should be used to improve their ability to comprehend spoken information.

Combat common struggles by demonstrating compensatory strategies that aid the individual in participating in life activities. For patients experiencing memory and organization deficits, be prepared with a list of smart phone apps and functions they can use to set alerts for appointments, manage tasks, make lists, etc.

Fatigue is common in individuals recovering from a brain injury. Their brain is working “overtime” to make sense of things, and performing tasks successfully may take a great deal of conscious thought and effort. Assist patients in creating a schedule to work on their cognitive exercises and/or stay active in doing their daily activities, and include rest to help the brain recover. Once the brain begins to fatigue, there is a decrease in function. The patient will notice activities and tasks become harder, and head pain may also occur. This should signal the patient that it’s time to rest.

Lastly, there are things the brain injury survivor can focus on that will help their recovery, including:

  • Accepting their new persona
  • Allowing themselves to make mistakes
  • Striving to keep a positive attitude
  • Remembering they can continue to improve

Continued improvements may be the most important point in keeping your patient motivated. In years past, it was commonly accepted that after a window of about three years, the brain would not have any further recovery. It is now known that neuroplasticity allows for continued recovery over time with focused effort. Different parts of the brain can establish neuropathways and take over functions lost through damage to other parts of the brain.

Area Manager Jean Herauf, SLP has 30+ years’ experience, more than 20 of them with RehabVisions. Jean is active in her clinic’s local brain injury support group and has attended numerous courses over the years, and read a good deal on ABI.

Source: Combating Struggles with Acquired Brain Injury – RehabVisions

, , , , ,

Leave a comment

[Abstract] The feasibility and impact of a yoga pilot programme on the quality-of-life of adults with acquired brain injury – CNS

Abstract

OBJECTIVE: This pilot study measured the feasibility and impact of an 8-week yoga programme on the quality-of-life of adults with acquired brain injury (ABI).

METHODS: Thirty-one adults with ABI were allocated to yoga (n = 16) or control (n = 15) groups. Participants completed the Quality of Life After Brain Injury (QOLIBRI) measure pre- and post-intervention; individuals in the yoga group also rated programme satisfaction. Mann-Whitney/Wilcoxon and the Wilcoxon Signed Rank tests were used to evaluate between- and within-group differences for the total and sub-scale QOLIBRI scores, respectively.

RESULTS: No significant differences emerged between groups on the QOLIBRI pre- or post-intervention. However, there were significant improvements on overall quality-of-life and on Emotions and Feeling sub-scales for the intervention group only. The overall QOLIBRI score improved from 1.93 (SD = 0.27) to 2.15 (SD = 0.34, p = 0.01). The mean Emotions sub-scale increased from 1.69 (SD = 0.40) to 2.01 (SD = 0.52, p = 0.01), and the mean Feeling sub-scale from 2.1 (SD = 0.34) to 2.42 (SD = 0.39, p = 0.01).

CONCLUSION: Adults with ABI experienced improvements in overall quality-of-life following an 8-week yoga programme. Specific improvements in self-perception and negative emotions also emerged. High attendance and satisfaction ratings support the feasibility of this type of intervention for people with brain injury.

Source: Traumatic Brain Injury Resource Guide – Research Reports – The feasibility and impact of a yoga pilot programme on the quality-of-life of adults with acquired brain injury

, , , ,

Leave a comment

[Poster] Relationship Between Positive Personality Traits and Rehabilitation Outcomes Following Acquired Brain Injury Several Years Post-Injury

The study investigated the relationship between positive personality traits of hope and optimism and rehabilitation outcomes of participation and quality of life in individuals with Acquired Brain Injury (ABI), living in the community. Self-awareness to injury related deficits was also examined.

Source: Relationship Between Positive Personality Traits and Rehabilitation Outcomes Following Acquired Brain Injury Several Years Post-Injury – Archives of Physical Medicine and Rehabilitation

, , , , , ,

Leave a comment

[Abstract] Pilot study of intensive exercise on endurance, advanced mobility and gait speed in adults with chronic severe acquired brain injury – CNS

Brain Inj. 2016 Jul 28:1-7. [Epub ahead of print]

BACKGROUND AND PURPOSE: Effects of high-intensity exercise on endurance, mobility and gait speed of adults with chronic moderate-to-severe acquired brain injury (ABI) were investigated. It was hypothesized that intensive exercise would be associated with improvements in impairment and activity limitation measures.

PARTICIPANTS: Fourteen adults with chronic ABI in supported independent living who could stand with minimal or no assist and walk with or without ambulation device were studied. Eight presented with low ambulatory status.

METHODS: This was a single group pre- and post-intervention study. Participants received a 6-week exercise intervention for 60-90 minutes, 3 days/week assisted by personal trainers under physical therapist supervision. Measures (6MWT, HiMAT and 10MWT) were collected at baseline, post-intervention and 6 weeks later. Repeated measures T-test and Wilcoxon Signed Ranks test were used.

RESULTS: Post-intervention improvements were achieved on average on all three measures, greater than minimal detectable change (MDC) for this population. Three participants transitioned from low-to-high ambulatory status and maintained the change 6 weeks later.

DISCUSSION AND CONCLUSION: People with chronic ABI can improve endurance, demonstrate the ability to do advanced gait and improve ambulatory status with 6 weeks of intensive exercise. Challenges to sustainability of exercise programmes for this population remain.

Source: Traumatic Brain Injury Resource Guide – Research Reports – Pilot study of intensive exercise on endurance, advanced mobility and gait speed in adults with chronic severe acquired brain injury

, , , , , , ,

Leave a comment

[BOOK] Effective Learning after Acquired Brain Injury: A practical guide to support adults with neurological conditions – Google Books

Front Cover[BOOK] Effective Learning after Acquired Brain Injury: A practical guide to support adults with neurological conditions

G Lowings, B Wicks – 2016 – books.google.com
Effective Learning After Acquired Brain Injury provides clear guidance on delivering productive educational programmes for adolescents and adults with acquired brain injury (ABI). Written for the non-specialist, the book provides an accessible overview of the

Source: Lowings: Effective Learning after Acquired Brain… – Google Scholar

, , ,

Leave a comment

[WEB SITE] Combating Struggles with Acquired Brain Injury – RehabVisions

Posted: 6/10/15
RehabVisions

The physical, neurological and emotional challenges that may arise from an acquired brain injury (ABI) are vast. Different causes and injuries create consequences that vary among individuals. Therapists need to be perceptive in order to both address struggles and provide avenues for constructive thinking.

One of the largest hurdles therapists encounter in rehabilitation with individuals who have suffered an ABI is the patient often lacks insight into their own deficits. Their injured brain signals they are fine and can successfully perform activities they used to do before injury, when in fact they may be struggling with anything from orientation and memory to executive function. This is challenging for family members and caregivers and is also is a barrier for treatment if the patient does not come to terms with these new deficits. Although insight typically improves to some degree as the patient progresses, giving the right level and amount of explanation about what has happened and future planning is helpful.

A thorough evaluation should be completed early on to identify cognitive deficits. Once strengths and deficits are identified, treatment can begin. Include tasks to promote gains in deficit areas such as memory and attention, such as deductive and/or abstract reasoning tasks, working memory tasks or word-retrieval activities. Also think about how strengths can be utilized to assist in this process. If a patient’s reading comprehension is better than auditory comprehension, printed information should be used to improve their ability to comprehend spoken information.

Combat common struggles by demonstrating compensatory strategies that aid the individual in participating in life activities. For patients experiencing memory and organization deficits, be prepared with a list of smart phone apps and functions they can use to set alerts for appointments, manage tasks, make lists, etc.

Fatigue is common in individuals recovering from a brain injury. Their brain is working “overtime” to make sense of things, and performing tasks successfully may take a great deal of conscious thought and effort. Assist patients in creating a schedule to work on their cognitive exercises and/or stay active in doing their daily activities, and include rest to help the brain recover. Once the brain begins to fatigue, there is a decrease in function. The patient will notice activities and tasks become harder, and head pain may also occur. This should signal the patient that it’s time to rest.

Lastly, there are things the brain injury survivor can focus on that will help their recovery, including:

  • Accepting their new persona
  • Allowing themselves to make mistakes
  • Striving to keep a positive attitude
  • Remembering they can continue to improve

Continued improvements may be the most important point in keeping your patient motivated. In years past, it was commonly accepted that after a window of about three years, the brain would not have any further recovery. It is now known that neuroplasticity allows for continued recovery over time with focused effort. Different parts of the brain can establish neuropathways and take over functions lost through damage to other parts of the brain.

Area Manager Jean Herauf, SLP has 30+ years’ experience, more than 20 of them with RehabVisions. Jean is active in her clinic’s local brain injury support group and has attended numerous courses over the years, and read a good deal on ABI.

Source: Combating Struggles with Acquired Brain Injury – RehabVisions

, , , ,

Leave a comment

[Abstract] Multi-disciplinary rehabilitation for acquired brain injury in adults of working age (Cochrane review) [with consumer summary]

Turner-Stokes L, Pick A, Nair A, Disler PB, Wade DT

Cochrane Database of Systematic Reviews 2015;Issue 12

systematic review

BACKGROUND: Evidence from systematic reviews demonstrates that multi-disciplinary rehabilitation is effective in the stroke population, in which older adults predominate. However, the evidence base for the effectiveness of rehabilitation following acquired brain injury (ABI) in younger adults has not been established, perhaps because this scenario presents different methodological challenges in research.

OBJECTIVES: To assess the effects of multi-disciplinary rehabilitation following ABI in adults 16 to 65 years of age.

SEARCH METHODS: We ran the most recent search on 14 September 2015. We searched the Cochrane Injuries Group Specialised Register, The Cochrane Library, OVID MEDLINE, OVID MEDLINE In-Process and Other Non-Indexed Citations, OVID MEDLINE Daily and OVID OLDMEDLINE, Embase Classic+Embase (OVIDSP), Web of Science (ISI WOS) databases, clinical trials registers, and we screened reference lists.

SELECTION CRITERIA: Randomised controlled trials (RCTs) comparing multi-disciplinary rehabilitation versus routinely available local services or lower levels of intervention; or trials comparing an intervention in different settings, of different intensities or of different timing of onset. Controlled clinical trials were included, provided they met pre-defined methodological criteria.

DATA COLLECTION AND ANALYSIS: Three review authors independently selected trials and rated their methodological quality. A fourth review author would have arbitrated if consensus could not be reached by discussion, but in fact, this did not occur. As in previous versions of this review, we used the method described by van Tulder 1997 to rate the quality of trials and to perform a ‘best evidence’ synthesis by attributing levels of evidence on the basis of methodological quality. Risk of bias assessments were performed in parallel using standard Cochrane methodology. However, the van Tulder system provided a more discriminative evaluation of rehabilitation trials, so we have continued to use it for our primary synthesis of evidence. We subdivided trials in terms of severity of brain injury, setting and type and timing of rehabilitation offered.

MAIN RESULTS: We identified a total of 19 studies involving 3,480 people. Twelve studies were of good methodological quality and seven were of lower quality, according to the van Tulder scoring system. Within the subgroup of predominantly mild brain injury, ‘strong evidence’ suggested that most individuals made a good recovery when appropriate information was provided, without the need for additional specific interventions. For moderate to severe injury, ‘strong evidence’ showed benefit from formal intervention, and ‘limited evidence’ indicated that commencing rehabilitation early after injury results in better outcomes. For participants with moderate to severe ABI already in rehabilitation, ‘strong evidence’ revealed that more intensive programmes are associated with earlier functional gains, and ‘moderate evidence’ suggested that continued outpatient therapy could help to sustain gains made in early post-acute rehabilitation. The context of multi-disciplinary rehabilitation appears to influence outcomes. ‘Strong evidence’ supports the use of a milieu-oriented model for patients with severe brain injury, in which comprehensive cognitive rehabilitation takes place in a therapeutic environment and involves a peer group of patients. ‘Limited evidence’ shows that specialist in-patient rehabilitation and specialist multi-disciplinary community rehabilitation may provide additional functional gains, but studies serve to highlight the particular practical and ethical restraints imposed on randomisation of severely affected individuals for whom no realistic alternatives to specialist intervention are available.

AUTHORS’ CONCLUSIONS: Problems following ABI vary. Consequently, different interventions and combinations of interventions are required to meet the needs of patients with different problems. Patients who present acutely to hospital with mild brain injury benefit from follow-up and appropriate information and advice. Those with moderate to severe brain injury benefit from routine follow-up so their needs for rehabilitation can be assessed. Intensive intervention appears to lead to earlier gains, and earlier intervention whilst still in emergency and acute care has been supported by limited evidence. The balance between intensity and cost-effectiveness has yet to be determined. Patients discharged from in-patient rehabilitation benefit from access to out-patient or community-based services appropriate to their needs. Group-based rehabilitation in a therapeutic milieu (where patients undergo neuropsychological rehabilitation in a therapeutic environment with a peer group of individuals facing similar challenges) represents an effective approach for patients requiring neuropsychological rehabilitation following severe brain injury. Not all questions in rehabilitation can be addressed by randomised controlled trials or other experimental approaches. For example, trial-based literature does not tell us which treatments work best for which patients over the long term, and which models of service represent value for money in the context of life-long care. In the future, such questions will need to be considered alongside practice-based evidence gathered from large systematic longitudinal cohort studies conducted in the context of routine clinical practice.

Full text (sometimes free) may be available at these link(s):      help

Source: PEDro – Search Detailed Search Results

, , , ,

Leave a comment

[ARTICLE] Fitness to drive after acquired brain damage: Who should be assessed, and how?

Acquired brain damage such as stroke, traumatic brain injury (TBI), brain anoxia or encephalitis may impair fitness to drive in no less than 300,000 adults every year in France. Identifying peoples at risk and addressing the assessment methods were priority concerns in context of the guidelines developed on behalf of the French Rehabilitation Medicine Society SOFMER, the French Higher Health Authority (HHA) and other groups of interest.

Objective

To draw from the literature guidelines regarding who should benefit from an assessment of fitness to drive, and how this assessment should be conducted.

Method

Two hundred and nine studies were analyzed among 326 references from the literature and discussed by a multidisciplinary work group. A preliminary draft was drawn, then submitted to a reviewing group and improved according to recommendations. Then guidelines were submitted to HHA.

Results

Peoples with mild TBI are advised not to drive again within 24 hours after their TBI.Three processes were defined:

– process A: medical examination aiming at detecting mild motor and/or cognitive impairments (Montreal Cognitive Assessment was recommended), and ensuring visual acuity and visual field;

– process B: comprehensive fitness to drive assessment including medical examination, cognitive tests (attention, visual scanning, memory and executive functions) and a standardized on road assessment (a least 45 minutes, with different driving situations);

– process C: medical advice from a designed general practitioner before a revalidation of the driving license by authorities.Peoples with transient ischemic attack or mild impairment after stroke, brain anoxia or encephalitis: 2 weeks delay before driving again and process A + C. Peoples with moderate to severe TBI, stroke, brain anoxia or encephalitis with significant impairments needing rehabilitation: process B + C. Peoples with persistent neglect are urged to refrain from driving. Seizures and/or hemianopia are legal exclusions from driving.

Discussion-conclusion

The committee emphasized the need for forthcoming studies providing French validated versions of international assessment battery such as: Stroke Driver Screening Assessment, as well as further information about driving simulators.

Source: Fitness to drive after acquired brain damage: Who should be assessed, and how?

, , , ,

Leave a comment

[ARTICLE] Resonance: An Interactive Tabletop Artwork for Co-located Group Rehabilitation and Play

Abstract

In this paper we describe the design and development of Resonance, an interactive tabletop artwork that targets upper-limb movement rehabilitation for patients with an acquired brain injury. The artwork consists of several interactive game environments, which enable artistic expression, exploration and play. Each environment aims to encourage collaborative, cooperative, and competitive modes of interaction for small groups (2-4) of co-located participants.

We discuss how participants can perform movement tasks face-to-face with others using tangible user interfaces in creative and engaging activities. We pay particular attention to design elements that support multiple users and discuss preliminary user evaluation of the system.

Our research indicates that group based rehabilitation using Resonance has the potential to stimulate a high level of interest and enjoyment in patients; facilitates social interaction, complements conventional therapy; and is intrinsically motivating.

via Resonance: An Interactive Tabletop Artwork for Co-located Group Rehabilitation and Play – Springer.

, , , , , , , ,

Leave a comment

%d bloggers like this: