Posts Tagged Acquired Brain Injury

[ARTICLE] Visual processing speed in hemianopia patients secondary to acquired brain injury: a new assessment methodology – Full Text

Abstract

Background

There is a clinical need to identify diagnostic parameters that objectively quantify and monitor the effective visual ability of patients with homonymous visual field defects (HVFDs). Visual processing speed (VPS) is an objective measure of visual ability. It is the reaction time (RT) needed to correctly search and/or reach for a visual stimulus. VPS depends on six main brain processing systems: auditory-cognitive, attentional, working memory, visuocognitive, visuomotor, and executive. We designed a new assessment methodology capable of activating these six systems and measuring RTs to determine the VPS of patients with HVFDs.

Methods

New software was designed for assessing subject visual stimulus search and reach times (S-RT and R-RT respectively), measured in seconds. Thirty-two different everyday visual stimuli were divided in four complexity groups that were presented along 8 radial visual field positions at three different eccentricities (10o, 20o, and 30o). Thus, for each HVFD and control subject, 96 S- and R-RT measures related to VPS were registered. Three additional variables were measured to gather objective data on the validity of the test: eye-hand coordination mistakes (ehcM), eye-hand coordination accuracy (ehcA), and degrees of head movement (dHM, measured by a head-tracker system). HVFD patients and healthy controls (30 each) matched by age and gender were included. Each subject was assessed in a single visit. VPS measurements for HFVD patients and control subjects were compared for the complete test, for each stimulus complexity group, and for each eccentricity.

Results

VPS was significantly slower (p < 0.0001) in the HVFD group for the complete test, each stimulus complexity group, and each eccentricity. For the complete test, the VPS of the HVFD patients was 73.0% slower than controls. They also had 335.6% more ehcMs, 41.3% worse ehcA, and 189.0% more dHMs than the controls.

Conclusions

Measurement of VPS by this new assessment methodology could be an effective tool for objectively quantifying the visual ability of HVFD patients. Future research should evaluate the effectiveness of this novel method for measuring the impact that any specific neurovisual rehabilitation program has for these patients.

Background

Vision is the dominant sensory function in humans because visual search and reach tasks are crucial to efficient performance of the main activities of daily life [12]. The term visual processing speed (VPS), an important variable of visual sensory function, is the amount of time needed to make a correct interaction with a visual stimulus [34]. The term correct interaction is the effective realization of a complete executive action of visual search and reach [5], e.g., visualizing a glass of water placed on a table and then grasping it by precise eye-hand coordination (EHC). Accordingly, the VPS variable defines the global reaction time (RT) that is composed of two additive RT sub-variables: search reaction time (S-RT) and reach reaction time (R-RT) [6,7,8]. Furthermore, VPS is mainly interdependent on intrinsic visual cognitive processing mechanisms, the complexity of the determined stimulus to be recognized (defined principally in terms of size, contrast, semantic content, and number of traces or interior angles [910]), the number of distractor stimuli surrounding it, and the distance from the point of fixation to the particular stimulus that the person is tasked to identify (eccentricity) [411,12,13]. Thus, VPS is a quantifiable parameter that objectively reflects a subject’s global visual ability.

Recent findings in the field of visual psychophysics show that having adequate VPS is necessary and dependent upon the proper functioning of six main brain-processing systems: auditory-cognitive, attentional, working-memory, visuocognitive, visuomotor, and executive [14,15,16,17,18]. Consequently, an acquired brain injury (ABI) that affects any of these cerebral processing systems could decrease the VPS.

ABI is one of the most important and disabling public health problems of our era due to the high incidence and prevalence [19]. Following an ABI, between 30 and 85% of patients will experience some type of visual dysfunction [2021], especially homonymous visual field defects (HVFDs) secondary to lesions involving the visual afferent pathways posterior to the chiasm [22]. Eye tracking technology has shown that HVFDs prevent patients from having the appropriate control of their oculomotor systems [23,24,25,26]. This is especially apparent in the saccadic system, because it is interdependent with the covert attention mechanisms associated with peripheral vision [2728]. Thus, patients with HVFDs tend to perform search tasks using unconscious compensatory head movements [252930] and employ longer total search times, more frequent fixations, and shorter saccades than normal controls [2331,32,33,34,35,36,37]. Therefore, these patients experience a significant reduction in their quality of life and functional independence. They complain that the time they have to invest in carrying out their daily activities is much greater than before suffering from HVFDs [3338,39,40]. In this regard, in recent years the scientific community has joined efforts to develop increasingly effective neurovisual rehabilitation training programs (NVRTPs) for these patients [41]. Different forms of NVRTPs have been developed, including compensatory NVRTP (C-NVRTP), restitution NVRTP (R-NVRTP), and substitution NVRTP (S-NVRTP) [41,42,43,44].[…]

 

via Visual processing speed in hemianopia patients secondary to acquired brain injury: a new assessment methodology | SpringerLink

Fig. 2

Fig. 2 Head Tracker System incorporated in the new software to measure the number of degrees of absolute head movements (dHM) performed by the study subjects, along the coordinate axes “X” and “Y”, while they performed the test. It consisted of specific software capable of detecting human faces (a), a fluorescent light (b), and a web camera (c) that registered the specific movement of a green point placed on a human mask positioned on the back of the subject’s head and neck (d.1 and d.2). The subject had to remain seated in front of the digital resistive-touch whiteboard at a distance of 40 cm (15.7 in.) and at 70 cm (27.5 in.) from the webcam

 

, , , , , , , , ,

Leave a comment

[Infographic] More in Common Than You Think

89262911_10158204284568829_5971678492058714112_o

, , , , ,

Leave a comment

[Abstract + References] Do powered over-ground lower limb robotic exoskeletons affect outcomes in the rehabilitation of people with acquired brain injury?

Abstract

Purpose: To assess the effects of lower limb robotic exoskeletons on outcomes in the rehabilitation of people with acquired brain injury.

Materials and methods: A systematic review of seven electronic databases was conducted. The primary outcome of interest was neuromuscular function. Secondary outcomes included quality of life, mood, acceptability and safety. Studies were assessed for methodological quality and recommendations were made using the GRADE system.

Results: Of 2469 identified studies, 13 (n = 322) were included in the review. Five contained data suitable for meta-analysis. When the data were pooled, there were no differences between exoskeleton and control for 6-Minute Walk Test, Timed Up and Go or 10-Meter Walk Test. Berg Balance Scale outcomes were significantly better in controls (MD = 2.74, CI = 1.12–4.36, p = 0.0009). There were no severe adverse events but drop-outs were 11.5% (n = 37). No studies reported the effect of robotic therapy on quality of life or mood. Methodological quality was on average fair (15.6/27 on Downs and Black Scale).

Conclusions: Only small numbers of people with acquired brain injury had data suitable for analysis. The available data suggests no more benefit for gait or balance with robotic therapy than conventional therapy. However, some important outcomes have not been studied and further well-conducted research is needed to determine whether such devices offer benefit over conventional therapy, in particular subgroups of those with acquired brain injury.

  • Implications for Rehabilitation
  • There is adequate evidence to recommend that powered over-ground lower limb robotic exoskeletons should not be used clinically in those with ABI, and that use should be restricted to research.
  • Further research (controlled trials) with dependent ambulators is recommended.
  • Research of other outcomes such as acceptability, spasticity, sitting posture, cardiorespiratory and psychological function, should be considered.

References

Source: https://doi.org/10.1080/17483107.2018.1499137

, , , , ,

Leave a comment

[I/Ep] Strategies to Cope With Behavior Changes After Acquired Brain Injury – Archives of Physical Medicine and Rehabilitation

First page of article

Behavior changes are common after acquired brain injury (ABI) because the brain processes information differently after the injury. About 62% of people with ABI experience behavior changes.1 For some people with ABI, the changes in behavior have a major effect on their daily lives, while for others they may be relatively small. These changes can make daily tasks and social interactions difficult. People with ABI may be more sensitive to stress and fatigue, which can make the behaviors described in this article worse.

Full Text HTML

via Strategies to Cope With Behavior Changes After Acquired Brain Injury – Archives of Physical Medicine and Rehabilitation

, , , , , , , ,

Leave a comment

[Abstract] A systematic review of personal smart technologies used to improve outcomes in adults with acquired brain injuries

This review aimed to determine the effectiveness of personal smart technologies on outcomes in adults with acquired brain injury.

A systematic literature search was conducted on 30 May 2019. Twelve electronic databases, grey literature databases, PROSPERO, reference list and author citations were searched.

Randomised controlled trials were included if personal smart technology was used to improve independence, goal attainment/function, fatigue or quality of life in adults with acquired brain injury. Data were extracted using a bespoke form and the TIDieR checklist. Studies were graded using the PEDro scale to assess quality of reporting. Meta-analysis was conducted across four studies.

Six studies met the inclusion criteria, generating a total of 244 participants. All studies were of high quality (PEDro ⩾ 6). Interventions included personal digital assistant, smartphone app, mobile phone messaging, Neuropage and an iPad. Reporting of intervention tailoring for individual needs was inconsistent. All studies measured goal attainment/function but none measured independence or fatigue. One study (n = 42) reported a significant increase in memory-specific goal attainment (p = 0.0001) and retrospective memory function (p = 0.042) in favour of the intervention. Another study (n = 8) reported a significant increase in social participation in favour of the intervention (p = 0.01). However, our meta-analyses found no significant effect of personal smart technology on goal attainment, cognitive or psychological function.

At present, there is insufficient evidence to support the clinical benefit of personal smart technologies to improve outcomes in acquired brain injury. Researchers need to conduct more randomised studies to evaluate these interventions and measure their potential effects/harms.

 

via A systematic review of personal smart technologies used to improve outcomes in adults with acquired brain injuries – Jade Kettlewell, Roshan das Nair, Kate Radford,

, , , , , ,

Leave a comment

[ARTICLE] Experiences of treadmill walking with non-immersive virtual reality after stroke or acquired brain injury : A qualitative study – Full Text

Abstract

Objectives

It is well known that physical activity levels for persons after stroke or acquired brain injuries do not reach existing recommendations. Walking training is highly important since the ability to walk is considered to be a meaningful occupation for most people, and is often reduced after a brain injury. This suggests a need to innovate stroke rehabilitation, so that forms of walking training that are user-friendly and enjoyable can be provided.

Method

An interview study was carried out with persons after stroke (n = 8), or acquired brain injury (n = 2) at a rehabilitation unit at Sahlgrenska University Hospital. We used a semi-structured interview guide to investigate experiences and thoughts about walking on a treadmill with non-immersive virtual reality feedback. The contents were analyzed through an inductive approach, using qualitative content analysis.

Results

The virtual reality experience was perceived as enjoyable, exciting, and challenging. Participants stressed that the visual and auditory feedback increased their motivation to walk on a treadmill. However, for some participants, the virtual reality experience was too challenging, and extreme tiredness or fatigue were reported after the walking session.

Conclusions

Participants’ thoughts and experiences indicated that the Virtual Reality walking system could serve as a complement to more traditional forms of walking training. Early after a brain injury, virtual reality could be a way to train the ability to handle individually adapted multisensory input while walking. Obvious benefits were that participants perceived it as engaging and exciting.

Introduction

In general, physical activity levels in rehabilitation units are low [] and do not reach the recommendations for persons with stroke or acquired brain injury (ABI) []. There are also indications that the intensity of physiotherapy sessions after stroke is mostly at low levels []. Several barriers may contribute to inactivity, such as neurological deficits, cognitive impairment, environmental factors, and lack of motivation [].

A dose-response effect on exercise outcome after stroke has been shown, and training should be highly repetitive and task oriented []. Walking training is important and considered to be a meaningful occupation for most people. To increase walking exercise intensity, treadmill walking has been proposed as a means of task-oriented training that gives the opportunity for many repetitions, and has shown to promote a more normal walking pattern []. Walking on a moving surface like a treadmill is more demanding than walking on the ground in terms of sensory processing, postural control and movement coordination. From a motivational perspective, treadmill walking may be perceived as boring the long run.

Training of goal-specific activities with a high number of repetitions may be offered using virtual reality (VR) applications, which have been introduced in neurological rehabilitation []. Training using VR has also been suggested to enhance neuroplasticity after stroke [] by means of offering multisensory stimulation at a high intensity. VR comprises computer-based real-time simulation of an environment with user interaction [] visually displayed on a screen or through head-mounted devices. Differences in technology and visual presentations in 2D or 3D enable varying types of feedback, levels of immersion and sense of presence in the virtual environment []. VR feedback can be mediated through vision, hearing, touch, movement, or smell. The technique provides performance feedback–both directly experienced and objectively quantified, and may thereby increase exercise motivation, and improve motor performance [].

Following stroke, VR training has been mostly described for the upper limb but also for the lower limb; balance and walking as well as for perceptual/cognitive skills []. VR has shown a potential for positive effects on walking and balance abilities, although the number of studies are low and the evidence for its superiority to other methods is low [].

Although few adverse events from VR training have been described, some participants have reported headache or dizziness [] and knowledge is lacking regarding how persons affected by brain injuries perceive the exposure of multisensory input, during a complex activity such as treadmill walking with VR. The potential effects on motivation and participant experience of VR are scarcely investigated [] and mostly focused on upper limb activities and games []. Based on this, we wanted to investigate patients’ overall experiences of a VR concept in walking training.

The aim of the present study was to explore the experiences of VR in addition to walking on a treadmill in persons with stroke or acquired brain injuries. Participants’ overall experiences and suggestions for development of the exercise method were areas of interest.[…]

 

Continue —>  Experiences of treadmill walking with non-immersive virtual reality after stroke or acquired brain injury – A qualitative study

, , , , , , ,

Leave a comment

[Abstract] Functional independence after acquired brain injury: Prospective effects of health self-efficacy and cognitive impairment.

Abstract

Objective: To examine how health self-efficacy and cognitive impairment severity relate to functional independence after acquired brain injury (ABI).

Design: Observational. Setting: Outpatient rehabilitation hospital.

Participants: Seventy-five adults with predominately stroke or traumatic brain injury who were beginning a course of occupational therapy.

Main Measures: Health self-efficacy was assessed with the Self-Rated Abilities for Health Practices. Cognitive functioning was assessed via a composite z score of neuropsychological tests. Trait affectivity was assessed with the Positive and Negative Affect Schedule. Functional independence was assessed with the Barthel Index and Lawton Instrumental Activities of Daily Living Scale.

Results: Health self-efficacy correlated moderately with functional independence. A moderation threshold effect was detected that revealed for whom health self-efficacy predicted functional independence. Among participants with normal to mildly impaired cognition (>−2 z cognitive composite), health self-efficacy correlated positively with functional independence, which held after accounting for trait affectivity. In contrast, health self-efficacy was not correlated with functional independence among participants with greater impairment (<−2 z cognitive composite).

Conclusions: Health self-efficacy predicts functional independence and may serve as a protective factor after ABI among individuals with relatively intact cognition. However, health self-efficacy does not predict functional independence among individuals with moderate or severe cognitive impairment, possibly due to limited self-awareness.

This study extends the literature linking health self-efficacy with rehabilitation outcomes and reinforces the need for promoting self-management in ABI. (PsycINFO Database Record (c) 2018 APA, all rights reserved)

via PsycNET Record Display – PsycNET

, , , , ,

Leave a comment

[Review] Evidence based position paper on physical and rehabilitation medicine professional practice for adults with acquired brain injury. The European PRM position (UEMS PRM Section)

INTRODUCTION: Acquired brain injury (ABI) is damage to the brain that occurs after birth caused either by a traumatic or by a nontraumatic injury. The rehabilitation process following ABI should be performed by a multi-professional team, working in an interdisciplinary way, with the aim of organizing a comprehensive and holistic approach to persons with every severity of ABI. This Evidence Based Position Paper represents the official position of the European Union through the UEMS Physical and Rehabilitation Medicine (PRM) Section and designates the professional role of PRM physicians for people with ABI.
AIM: The aim was to formulate recommendations on the PRM physician’s professional practice for persons with ABI in order to promote their functioning and enhance quality of life.
METHODS: This paper has been developed according to the methodology defined by the Professional Practice Committee of the UEMS-PRM SECTION: a systematic literature search has been performed in PubMed and Core Clinical Journals. On the basis of the selected papers, recommendations have been made as a result of five Delphi rounds.
RESULTS: The literature review as well as thirty-one reccomendations are presented.
CONCLUSIONS: The expert consensus is that structured, comprehensive and holistic rehabilitation programme delivered by the multi-professional team, working in an interdisciplinary way, with the leadership and coordination of the PRM physician, is likely to be effective, especially for those with severe disability after brain injury.

Full Text PDF

via Evidence based position paper on physical and rehabilitation medicine professional practice for adults with acquired brain injury. The European PRM position (UEMS PRM Section) – European Journal of Physical and Rehabilitation Medicine 2018 Aug 29 – Minerva Medica – Journals

, , , , ,

Leave a comment

[BLOG POST] The Family Dynamic after Acquired Brain Injury

Brain injury can change nearly everything, not only in the injured person’s life, but also within the lives of his or her family members.

Early after a brain injury, family systems become embroiled in the injury as they address arising issues. Sleep gives way to ICU vigils. Quiet moments give way to prayer. Casual discussions give way to serious conversation. These days are ruled by fear, with small glimmers of hope to serve as momentary relief.

Recovery, to a greater or lesser degree, eventually occurs. Time passes, hospital stays end, and the injured often return home.

Unfortunately, families are all too often solely responsible for redefining a new normal, as our society does not yet effectively provide sustained support. Understanding how to cope with the many changes after brain injury, and a willingness to implement coping mechanisms will make all the difference.

These eight tips are a great place to start:

Counseling
Counseling can ease burdens and facilitate grieving, adjusting, and managing, all without giving up hope. However, not all families can afford such care, and for that reason, there are the other seven tips.

Attitude
Realistic optimism, positivity, and hope offer an opportunity for a brighter and happier new normal. Humor can help keep spirits high. And in spiritually oriented families, solace and confidence come from actively practicing their faith.

Communication
Everyone handles grief and the subsequent changes within their lives differently. However, it is important to remember that each family member, no matter their role in the injured person’s life, is going through these changes together. Communication is a portal to common ground and unity.

Scheduling a regular time to discuss the injured person, and any related issues, can help family members to open up, creating a more approachable and manageable situation.

Individual Focus
Imagine a wagon wheel with a hub and spokes. Families often operate by moving one member or another in and out of the center of the wheel, as his or her issues and needs call for priority. After a brain injury, it can become habitual to keep the injured person in the center of the wheel. It’s important for families to find a way to move others in and out of the circle again.

Self-Care
Taking care of oneself can seem inappropriate, especially for parents. However, if one uses oneself up in the care of others, there will come a time when the person has nothing left to offer others. Take time for yourself, and maintain some semblance of your hobbies and interests.

Socialization
Because of the many demands of brain injury, it can be difficult to find the energy or money to socialize outside of the home. And it can feel wrong to seek pleasure while a family member with brain injury cannot do the same. Yet, socializing can help heal by providing a healthy sense of perspective.

Tell your friends what works, when you need to discuss the injury, and when you need to discuss anything but the injury. Friends and family may need your patience and forgiveness, as they may offer advice that is not useful or feels judgmental. No one knows how to act in these situations, and they are no exception.

When to Feel

There is time for grieving, sadness, and loss. So too, there must be time for hope, joy, and laughter. It is okay to take out the “pity pot” filled with your sorrow, despair, and loss. But then, with deliberation, put the “pity pot” back in the closet for another day. You will use it again and again, just always remember to put it away. In this way, you can avoid becoming mired in grief.

Balancing Acceptance
Some parents fear doing anything that might look or feel like they’ve accepted their child’s level of disability. It’s good to desire further growth and improvement post-injury, but there is a limit, and it is not healthy to be consumed by the drive to wring more recovery out of an injury. It is crucial to balance both acceptance of your new normal and hope for continued improvement.

One day I noticed the fine print on a cereal box, “Contents may settle during shipping.” The advisory served to avert any concern I might develop when opening the cereal to find it only three fourths full. I liken this advisory to balancing acceptance. So too will your “contents” settle as you move through your family’s changed world. One can and should actively explore changes wrought by brain injury in the family because realization of these changes will happen eventually, with or without your consent.

Those who find a way to bring balance back into their world are more apt to successfully take on the ripple effects of brain injury on their family dynamic. And, to be sure, the injured person will also flourish to the best of his or her ability in this normalizing and positive environment.

So, please make the decision to thrive. Be a light for you and your family. Find opportunities each day to laugh, dance, socialize, and communicate deeply. In this way, you can adjust to and manage in your new world.

via The Family Dynamic after Acquired Brain Injury – Neuro Landscape

, ,

Leave a comment

[Editorial] Investigating Brain Activity After Acquired and Traumatic Brain Injury: Applications of Functional MRI

  • 1Stroke, Kessler Foundation, West Orange, NJ, United States
  • 2Neuropsychology and Neuroscience, Kessler Foundation, West Orange, NJ, United States
  • 3Traumatic Brain Injury, Kessler Foundation, West Orange, NJ, United States

Editorial on the Research Topic

Investigating Brain Activity After Acquired and Traumatic Brain Injury: Applications of Functional MRI

Every year, approximately 795,000 people in the United States are affected by stroke and 2.8 million lives are impacted by traumatic brain injury (TBI) (1). Stroke and TBI are also major causes of serious long-term disability, reducing mobility, and impacting thinking, memory, sensation, and emotional functioning. Neuroscience holds great promise in addressing the needs of persons with a history of stroke or TBI by improving the current understanding of brain injury and recovery mechanisms. This is the first step in working to inform and improve the available treatments.

While a great many functional neuroimaging methods exist for studying the healthy brain, such methods have not received widespread acceptance in characterizing patient groups. Several methodological barriers may explain why. First, patient populations can be diverse in terms of injury location and stages of recovery. Accurate measurement and interpretation of functional neuroimaging signal in the damaged brain can also pose a challenge, because stroke and TBI can dramatically alter cerebral blood flow, even in areas that are not affected by a structural lesion (23). Finally, correct interpretation of findings in light of impaired and/or changing behavioral function depends on careful experimental design and precise a priorioperational definitions of the anticipated effects.

Despite these challenges, or, perhaps, because of them, functional neuroimaging is a promising area of investigation in TBI and stroke. This Research Topic is a collection of original research and review articles focused on functional neuroimaging in persons with TBI and stroke. Below, we highlight a few of the most notable findings and ideas from this collection of articles. Readers are encouraged to access the full text articles for more details.

In one of the two review articles, Medaglia provides an overview of fMRI methodology, analyses, and the caveats of applying these analyses to the injured brain. This includes methods, such as seed-based and voxel-based functional connectivity, effective connectivity, including psychophysiological interactions, causal connectivity, and graph analyses. Medaglia discusses the concept of functional re-organization. The term is sometimes used to describe a change in the magnitude of activation or of functional connectivity. It is also used to refer to a re-allocation of function to new brain areas following injury. Medaglia suggests that to improve clarity a precise description of the effect should be provided. Formal tests of re-organization should include a search for areas with activity profile closely resembling that of a damaged area, and with corresponding evidence of recovered behavioral function. Distinguishing different innate recovery mechanisms is especially important in intervention studies, because failing to understand which process may be at work when introducing an intervention, may lead to inadvertent interference with endogenous repair mechanisms.

Nair et al. studied brain activation in acute stroke and healthy older controls participants during a covert verbal fluency task. They controlled for the blood oxygen level dependent (BOLD) response variability across participants using resting state fluctuation amplitude (RSFA) (4). RSFA calibration is thought to eliminate any inter-subject variability due to vascular factors and retain any differences due to neuronal activation factors. They found that after scaling, the BOLD response differences between stroke patients and healthy controls were eliminated. This finding suggests that some of the group differences were due to vascular variables. Additionally, some fine-tuning may be required when scaling with RSFA, perhaps scaling by brain region, rather than across the whole brain.

Bernier et al. applied graph theory to a data set of healthy and TBI subjects with moderate/severe TBI. Their aim was to determine if loss of network differentiation accounts for changes in brain connectivity, specifically hyperconnectivity. This hypothesis was examined within the default mode (DMN) and the task positive network. Supporting other results in the field, they observed hyperconnectivity within the DMN and task positive networks. DMN hyperconnectivity was found to be associated with higher scores on the standardized working memory measure. Thus, the work of these authors demonstrates how fMRI and connectivity analyses can inform the cognitive profile observed following TBI.

The second review in the Research Topics explores a common deficit in TBI. Namely, cognitive control, an executive function that is generally necessary for switching between habitual and goal-directed behavior. In his review, Scheibel talks about functional neuroimaging studies of cognitive control in mild TBI (mTBI). The review draws attention to how the fMRI findings are mixed, with reports of decreased as well as increased brain activation in mTBI, and urges for future studies to aim at recruiting more homogenous samples, as the mixed findings might be explained by the presence of comorbidies in TBI samples.

The original research article by Saleh et al. explored how different approaches to rehabilitation of hand function after stroke can alter brain activity across the sensorimotor brain networks and demonstrates network re-organization discussed in the Medaglia review. Both treatment approaches tested in the study improved hand function. However, only the robot-assisted virtual reality group showed reduction of activity and re-lateralization of activation to ipsilesional cortex, a pattern associated with better arm function in this study and with positive recovery in other studies (5).

A contribution by Möller et al. used arterial spin labeling (ASL) fMRI to examine fatigue in mTBI during psychomotor vigilance task performance. The mTBI participants showed different patterns of brain activation compared to healthy controls, in addition to higher self-reported fatigue and reductions in performance as the task progressed (fatigability). Together with the self-reported fatigue ratings and task performance, the ASL results suggested the engagement of disparate functional networks compared in mTBI.

fMRI research in stroke and TBI poses a unique set of challenges to researchers. The articles assembled in this Research Topic address some of these challenges. Using methods designed to work in patients with brain lesions, using appropriate controls, and applying network neuroscience tools are a few of the promising solutions. This topic is an important frontier in neuroscience research today offering tangible benefits for public health and is a potential area of growth in the coming years

References

1. Centers for Disease Control and Prevention (CDC). U. Centers for Disease con [WWW Document]. (2018). Available from: https://www.cdc.gov/ (Accessed: February 22, 2018).

Google Scholar

2. Brumm KP, Perthen JE, Liu TT, Haist F, Ayalon L, Love T. An arterial spin labeling investigation of cerebral blood flow deficits in chronic stroke survivors. Neuroimage (2010) 51:995–1005. doi:10.1016/j.neuroimage.2010.03.008

PubMed Abstract | CrossRef Full Text | Google Scholar

3. Hillis AE. Magnetic resonance perfusion imaging in the study of language. Brain Lang (2007) 102:165–75. doi:10.1016/j.bandl.2006.04.016

PubMed Abstract | CrossRef Full Text | Google Scholar

4. Kannurpatti SS, Motes MA, Rypma B, Biswal BB. Increasing measurement accuracy of age-related BOLD signal change: minimizing vascular contributions by resting-state-fluctuation-of-amplitude scaling. Hum Brain Mapp (2011) 32:1125–40. doi:10.1002/hbm.21097

PubMed Abstract | CrossRef Full Text | Google Scholar

5. Cramer SC. Repairing the human brain after stroke: I. Mechanisms of spontaneous recovery. Ann Neurol (2008) 63:272–87. doi:10.1002/ana.21393

PubMed Abstract | CrossRef Full Text | Google Scholar

 

via Frontiers | Editorial: Investigating Brain Activity After Acquired and Traumatic Brain Injury: Applications of Functional MRI | Neurology

, , , , ,

Leave a comment

%d bloggers like this: