Posts Tagged active rehabilitation

[Abstract] sEMG Bias-driven Functional Electrical Stimulation System for Upper Limb Stroke Rehabilitation


It is evident that the dominant therapy of functional electrical stimulation (FES) for stroke rehabilitation suffers from heavy dependency on therapists experience and lack of feedback from patients status, which decrease the patients’ voluntary participation, reducing the rehabilitation efficacy. This paper proposes a closed loop FES system using surface electromyography (sEMG) bias feedback from bilateral arms for enhancing upper-limb stroke rehabilitation. This wireless portable system consists of sEMG data acquisition and FES modules, the former is used to measure and analyze the subject’s bilateral arm motion intention and neuromuscular states in terms of their sEMG, the latter of multi-channel FES output is controlled via the sEMG bias of the bilateral arms. The system has been evaluated with experiments proving that the system can achieve 39.9 dB signal-to-noise ratio (SNR) in the lab environment, outperforming existing similar systems. The results also show that voluntary and active participation can be effectively employed to achieve different FES intensity for FES-assisted hand motions, demonstrating the potential for active stroke rehabilitation.
Published in: IEEE Sensors Journal ( Early Access ) Date of Publication: 18 June 2018

Related Articles

via sEMG Bias-driven Functional Electrical Stimulation System for Upper-Limb Stroke Rehabilitation – IEEE Journals & Magazine

, , , , , , , , , , , , ,

Leave a comment

[ARTICLE] Development and analysis of a gravity-balanced exoskeleton for active rehabilitation training of upper limb


Robot-assisted therapy has become an important technology applied in rehabilitation engineering, allowing patients with motion impairment problems to perform training programs without continuous supervision from physiotherapists. The goal of this paper is to develop a gravity balanced exoskeleton for active rehabilitation training of upper limb. The mechanical structure and kinematics of the exoskeleton are described and optimized to enable natural interaction with user and avoid singular configurations within the desired workspace. The gravity balancing of the human arm and mechanism is achieved through a hybrid strategy making use of auxiliary links and zero-free-length springs to balance the effect of gravity over the range of motion. The balance errors resulting from the variation of anthropometric parameters are analyzed and discussed. Further experiments involving trajectories tracking tasks with and without gravity balancing are conducted to evaluate the improvement of the control performance and energetic efficiency made by the developed balanced mechanism. The experimental results indicate that the proposed balance strategy can achieve a reduction of 34.56% in overall power consumption compared with the cost in unbalanced condition.

Source: Development and analysis of a gravity-balanced exoskeleton for active rehabilitation training of upper limb

, , , , , , , ,

Leave a comment

%d bloggers like this: