Posts Tagged Activities of daily living

[ARTICLE] Effectiveness of a multimodal exercise rehabilitation program on walking capacity and functionality after a stroke – Full Text

Abstract

The aim of this study was to determine the effectiveness of a 12-week multimodal exercise rehabilitation program on walking speed, walking ability and activities of daily living (ADLs) among people who had suffered a stroke. Thirty-one stroke survivors who had completed a conventional rehabilitation program voluntarily participated in the study. Twenty-six participants completed the multimodal exercise rehabilitation program (2 days/wk, 1 hr/session). Physical outcome measures were: walking speed (10-m walking test), walking ability (6-min walking test and functional ambulation classification) and ADLs (Barthel Index). The program consisted on: aerobic exercise; task oriented exercises; balance and postural tonic activities; and stretching. Participants also followed a program of progressive ambulation at home. They were evaluated at baseline, postintervention and at the end of a 6-month follow-up period. After the intervention there were significant improvements in all outcomes measures that were maintained 6 months later. Comfortable and fast walking speed increased an average of 0.16 and 0.40 m/sec, respectively. The walking distance in the 6-min walking test increased an average of 59.8 m. At the end of the intervention, participants had achieved independent ambulation both indoors and outdoors. In ADLs, 40% were independent at baseline vs. 64% at the end of the intervention. Our study demonstrates that a multimodal exercise rehabilitation program adapted to stroke survivors has benefits on walking speed, walking ability and independence in ADLs.
Keywords: Exercise, Physical activity, Stroke rehabilitation, Walking speed, Activities of daily living

INTRODUCTION

As life expectancy increases, a larger number of persons may suffer from stroke. Stroke mortality rates have decreased, but the burden of stroke is increasing in terms of stroke survivors per year, correlated deaths and disability-adjusted life-years lost. These deficiencies are further highlighted by a trend towards more strokes in younger people (Feigin et al., 2014). Stroke not only causes permanent neurological deficits, but also a profound degradation of physical condition, which worsens disability and increases cardiovascular risk. Stroke survivors are likely to suffer functional decline due to reduction of aerobic capacity. This may involve further secondary complications such as progressive muscular atrophy, osteoporosis, peripheral circulation worsening and increased cardiovascular risk (Ivey et al., 2006). All these factors cause increased dependency, need of assistance from third parties in activities of daily living (ADLs) and a restriction on participation that can have a profound psychosocial impact (Carod-Artal and Egido, 2009). Gait capacity is one of the main priorities of persons who have suffered a stroke, but is often limited due to the high energy demands of hemiplegic gait and the poor physical condition of these persons (Ivey et al., 2006). Gait speed is a commonly used measure in patients who have suffered a stroke to differentiate the functional capacity to walk indoors or outdoors. Gait speed has been classified as: allowing indoor ambulation (<0.4 m/sec), limited outdoor ambulation (0.4–0.8 m/sec), and outdoor functional ambulation (>0.8 m/sec) (Perry et al., 1995). Gait speed can also help to establish the functional prognosis of the patient. It has been stated that improvements in walking speed correlate with improved function and quality of life (QoL) (Schmid et al., 2007). It is essential to achieve a proper gait speed for outdoors functional ambulation.
Falls are common among stroke survivors and are associated with a worsening of disability and QoL. Balance is a complex process that involves the reception and integration of afferent inputs and the planning and execution of movement. Stroke can impact on different systems involved in postural control. Multifactorial falls risk assessment and management, combined with fitness programs, are effective in reducing risk of falls and fear of falling (Stroke Foundation of New Zealand and New Zealand Guidelines Group, 2010). Falls often occur when getting in and out of a chair (Brunt et al., 2002). The 2013 Cochrane review (Saunders et al., 2013) recommends the repetitive practice of sit-to-stand in order to promote an ergonomic and automatic pattern of this movement. Recent studies demonstrate that exercises that improve trunk stability and balance provide a solid base for body and leg movements that entail an improved gait in people affected by stroke (Sharma and Kaur, 2017). Conventional rehabilitation programs after stroke focus on the subacute period. The aim is to recover basic ADLs, but they do not provide maintenance exercises to provide long-term health gains. Cardiac monitoring demonstrates that conventional physiotherapy exercises do not regularly provide adequate exercise intensity to modify the physical deconditioning, nor sufficient exercise repetition to improve motor learning (Ivey et al., 2006). Therapeutic physical exercise to optimize function, physical condition and cardiovascular health after a stroke is an emerging field within neurorehabilitation (Teasell et al., 2009). The wide range of difficulties experienced by stroke survivors justify the need to explore rehabilitation programs designed to promote an overall improvement and to maintain the gains obtained after rehabilitation programs. Numerous studies have demonstrated the efficacy of aerobic exercise (Saunders et al., 2016), but there are few data on the long term effects of multimodal programs that incorporate aerobic exercise, complemented by task-oriented training and balance exercises. Consequently, the aim of this study is to analyse the impact of a multimodal exercise rehabilitation program tailored to stroke survivors on walking speed, walking ability and ADLs. […]

Continue —> Effectiveness of a multimodal exercise rehabilitation program on walking capacity and functionality after a stroke

Advertisements

, , , ,

Leave a comment

[ARTICLE] The Efficacy of the proprioceptive neuromuscular facilitation (PNF) approach in stroke rehabilitation to improve basic activities of daily living and quality of life: a systematic review and meta-analysis protocol – Full Text

Abstract

Introduction Proprioceptive neuromuscular facilitation (PNF) is a widely used rehabilitation concept, although its efficacy has not yet been demonstrated in stroke survivors. The aim of this systematic review is to identify, assess and synthesise the potential benefits of using PNF to improve the activities of daily living (ADL) and quality of life (QoL) of individuals with stroke.

Methods and analysis A systematic electronic search will be conducted in MEDLINE, Embase, CENTRAL and PEDro. We will include randomised or quasi-randomised controlled trials of PNF interventions conducted in stroke survivors up to April 2017. Two review authors will independently select relevant studies and will extract data using the Cochrane handbook for systematic reviews of interventions approach and the Preferred Reporting Items for Systematic Review and Meta-Analysis Protocols (PRISMA-P). The methodological quality will be assessed by using the PEDro scale. Finally, with the permitted numeric data, we will carry out a meta-analysis.

Ethics and dissemination Ethical considerations will not be required. Results will be disseminated in a peer-review journal. This systematic review aims to examine the effects of PNF (neurophysiological approach) in order to clarify its efficacy in improving ADL and QoL in the rehabilitation process of stroke survivors.

 

Strengths and limitations of this study

  • To our knowledge this study is the first systematic review focused on the proprioceptive neuromuscular facilitation (PNF) approach for stroke survivors.

  • This systematic review has an open eligibility criteria to clarify the efficacy of the PNF method for different clinical situations in stroke patients.

  • The electronic search will only include randomised controlled and quasi-randomised controlled trials published in English, Spanish, French and Portuguese that could limit the inclusion of studies.

 

Introduction

Every year, stroke survivors, related deaths, and disability-adjusted life-years are increasing, although the mortality rates for stroke have decreased in the last two decades.1 Motor and sensory impairments due to stroke often affect the patients’ mobility, limiting their activities of daily living (ADL) and their social participation, and hindering their chances of resuming their professional life. Motor function among other factors (such as social or personal factors) could contribute to a low overall quality of life (QoL).2

Throughout the years, a number of conceptualisations have been used to describe QoL in stroke survivors.3–5 The lack of an agreed definition on QoL means that most QoL outcomes have been assessed using standardised questionnaires. However, these questionnaires do not reveal important domains of patients’ QoL and sometimes scores may be difficult to interpret.5

Dijkers4 separated the QoL term into three categories: (1) QoL as subjective well-being (SWB); (2) QoL as achievement; and (3) QoL as utility. QoL as SWB has been defined as the sum total of the cognitive and emotional reactions that people experience when they compare what they have and do in life with their aspirations, needs, and other expectations. QoL as achievement refers to people’s possessions, relationships and accomplishments, among others, using metrics defined by an outsider’s point of view. Within the medical rehabilitation field, QoL measurements commonly involve health status or are qualified by the term “health-related”. Health-related QoL (HRQoL) is defined by the value assigned to the duration of life when modified by impairment, functional state, perception and social factors that are influenced by disease, injury, treatment or policy.6 According to Dijkers4some researchers base themselves on the WHO’s encompassing definition of health, and may add to this different social health indicators such as interactions with others and social role functioning. Finally, in QoL as utility, achievements and statuses are judged in terms of societal norms and standards that quantify the value of a life.

An optimal rehabilitation effectively addresses components, as coded by the International Classification of Functioning (ICF), such as impairment, activity limitations and participation restrictions, and contextual and personal factors, with the goal of a satisfactory QoL as perceived by the individual. The relationship between the three domains of the ICF is clear: impairments impact activities and activities have an impact on participation. Functionality and ADL take a specific role in influencing QoL in stroke survivors positively. During the recovery process and according to the degree of disability, it is important to impact on those variables at any time throughout the rehabilitation treatment, taking into account that they are variables that change over time.7 Much of the focus of stroke rehabilitation is on the recovery of impaired movement and the associated functions. According to Jørgensen8there seems to be a correlation between motor impairments and activity limitations; for example, lower-limb strength (impairment) has been correlated with independence in walking (activity level). In order to improve the neuromuscular system’s effectiveness in coordinating movement and function, there are different physical rehabilitation approaches used for enhancing recovery in post stroke patients, but neither method was more (or less) effective in terms of improving independence in ADL or motor function.9Proprioceptive neuromuscular facilitation (PNF) is widely used in rehabilitation practice.10

The PNF approach has existed since the late 1930s and ’40s when the physician and neurologist Herman Kabat, and the physiotherapist Margaret Knott, began using proprioceptive techniques on younger individuals with cerebral palsy and other neurological conditions. The main goal of this intervention method is to help patients achieve their highest function level. PNF uses the body’s proprioceptive system to facilitate or inhibit muscle contraction. The definition of PNF encompasses the terms proprioceptive (which has to do with any of the sensory receptors that provide information concerning movement and position of the body); neuromuscular (involving the nerves and muscles); and facilitation (making it easier).11

Recently, various systematic reviews 12–17 and an evidence-based clinical practice guideline18 have evaluated the efficacy of stroke rehabilitation interventions, including PNF techniques. However, none were specifically focused on PNF, and only one narrative review assessed PNF as the principal topic.10 Furthermore, the most frequent objectives to assess the efficacy of this intervention method were motor function and mobility. It is necessary that therapists base their clinical decisions on the most reliable scientific evidence available; hence, this systematic review aims to determine the efficacy of PNF techniques in improving ADL and QoL in stroke survivors.

Objectives

The primary purpose of this systematic review is to examine the efficacy of PNF in improving ADL and QoL in individuals with stroke. Secondary specific aims are to determine the efficacy of the PNF techniques in postural control, gait, upper limb function and muscle strength.[…]

 

Continue —> The Efficacy of the proprioceptive neuromuscular facilitation (PNF) approach in stroke rehabilitation to improve basic activities of daily living and quality of life: a systematic review and meta-analysis protocol | BMJ Open

, , , , , ,

Leave a comment

[ARTICLE] Design and Preliminary Feasibility Study of a Soft Robotic Glove for Hand Function Assistance in Stroke Survivors – Full Text

Various robotic exoskeletons have been proposed for hand function assistance during activities of daily living (ADL) of stroke survivors. However, traditional exoskeletons involve the use of complex rigid systems that impede the natural movement of joints, and thus reduce the wearability and cause discomfort to the user. The objective of this paper is to design and evaluate a soft robotic glove that is able to provide hand function assistance using fabric-reinforced soft pneumatic actuators. These actuators are made of silicone rubber which has an elastic modulus similar to human tissues. Thus, they are intrinsically soft and compliant. Upon air pressurization, they are able to support finger range of motion (ROM) and generate the desired actuation of the finger joints. In this work, the soft actuators were characterized in terms of their blocked tip force, normal and frictional grip force outputs. Combining the soft actuators and flexible textile materials, a soft robotic glove was developed for grasping assistance during ADL for stroke survivors. The glove was evaluated on five healthy participants for its assisted ROM and grip strength. Pilot test was performed in two stroke survivors to evaluate the efficacy of the glove in assisting functional grasping activities. Our results demonstrated that the actuators designed in this study could generate desired force output at a low air pressure. The glove had a high kinematic transparency and did not affect the active ROM of the finger joints when it was being worn by the participants. With the assistance of the glove, the participants were able to perform grasping actions with sufficient assisted ROM and grip strength, without any voluntary effort. Additionally, pilot test on stroke survivors demonstrated that the patient’s grasping performance improved with the presence and assistance of the glove. Patient feedback questionnaires also showed high level of patient satisfaction and comfort. In conclusion, this paper has demonstrated the possibility of using soft wearable exoskeletons that are more wearable, lightweight, and suitable to be used on a daily basis for hand function assistance of stroke survivors during activities of daily living.

Introduction

The ability to perform basic activities of daily living (ADL) impacts a person’s quality of life and independence (Katz, 1983Andersen et al., 2004). However, an individual’s independence to perform ADLs is jeopardized due to hand motor impairments, which can be observed in patients with neurological disorders such as stroke. In order to improve hand motor functions in terms of strength and range of motion (ROM) (Kutner et al., 2010), stroke survivors undergo rehabilitation programs comprising repetitive practice of simulated ADL tasks (Michaelsen et al., 2006). Normally, patients undergo rehabilitation exercises in a specialized rehabilitation center under the guidance of physiotherapists or occupational therapists. However, due to increasing patient population, it is foreseen that there will be a shortage of physiotherapists to assist in the rehabilitative process. Thus, there will be comparatively less therapy time, which will eventually lead to a slower recovery process for the patients. Over the past decade, technological developments in robotics have facilitated the rehabilitative process and have shown potential to assist patients in their daily life (Maciejasz et al., 2014). One example of such a device is the hand exoskeleton, which is secured around the hand to guide and assist the movement of the encompassed joints. However, due to the complexity of the hand, designing a hand exoskeleton remains a challenging task.

Traditional hand exoskeletons involve the use of rigid linkage-based mechanisms. In this kind of mechanism, rigid components, such as linear actuators, rotary motors, racks, and pinions as well as rigid linkages are normally involved (Worsnopp et al., 2007Rotella et al., 2009Martinez et al., 2010). To assist hand movements that have high degrees of freedom (DOFs), traditional exoskeletons can be incorporated with a substantial number of actuators to achieve the requirement. However, this means that their application is limited due to the increasing bulkiness for higher DOFs. Therefore, these devices are normally restricted in clinical settings and not suitable for performing home therapy. Additionally, their rigidity, weight and constraint on the non-actuated DOFs of the joints pose complications. As a result, the level of comfort and safety of patients is reduced. In view of this, there is an apparent need for the development of exoskeletons that may be used in both clinical and home settings. A lightweight and wearable exoskeleton may allow patients to bring back home to continue daily therapy or to serve as an assistive device for the ADLs.

The development of wearable robotic exoskeletons serves to provide an alternative approach toward addressing this need. Instead of using rigid linkage as an interface between the hand and the actuators, wearable exoskeletons typically utilize flexible materials such as fabric (Sasaki et al., 2004Yap et al., 2016a) and polymer (Kang et al., 2016), driven by compliant actuators such as cables (Sangwook et al., 2014Xiloyannis et al., 2016) and soft inflatable actuators (Polygerinos et al., 2015dYap et al., 2016c). Therefore, they are more compliant and lightweight compared to the rigid linkage-based mechanism. Cable-driven based exoskeletons involve the use of cables that are connected to actuators in the form of electrical motors situated away from the hand (Nilsson et al., 2012Ying and Agrawal, 2012Sangwook et al., 2014Varalta et al., 2014). By providing actuations on both dorsal and palmar sides of the hand, bi-directional cable-driven movements are possible (Kang et al., 2016). These cables mimic the capability of the tendons of the human hand and they are able to transmit the required pulling force to induce finger flexion and extension. However, the friction of the cable, derailment of the tendon, and inaccurate routing of the cable due to different hand dimensions can affect the efficiency of force transmission in the system.

On the other hand, examples of the soft inflatable actuators are McKibben type muscles (Feifei et al., 2006Tadano et al., 2010), sheet-like rubber muscles (Sasaki et al., 2004Kadowaki et al., 2011), and soft elastomeric actuators (Polygerinos et al., 2015b,cYap et al., 2015); amongst which, soft elastomeric actuators have drawn increasing research interest due to their high compliance (Martinez et al., 2013). This approach typically embeds pneumatic chamber networks in elastomeric constructs to achieve different desired motions with pressurized air or water (Martinez et al., 2012). Soft elastomeric actuators are highly customizable. They are able to achieve multiple DOFs and complex motions with a single input, such as fluid pressurization. The design of a wearable hand exoskeleton that utilizes soft elastomeric actuators is usually simple and does not require precise routing for actuation, compared to the cable-driven mechanism. Thus, the design reduces the possibility of misalignment and the setup time. These properties allow the development of hand exoskeletons that are more compliant and wearable, with the ability to provide safe human-robot interaction. Additionally, several studies have demonstrated that compactness and ease of use of an assistive device critically affect its user acceptance (Scherer et al., 20052007). Thus, these exoskeletons provide a greater chance of user acceptance.

Table 1 summarizes the-state-of-art of soft robotic assistive glove driven by inflatable actuators. Several pioneer studies on inflatable assistive glove have been conducted by Sasaki et al. (2004)Kadowaki et al. (2011) and Polygerinos et al. (2015a,b,c). Sasaki et al. have developed a pneumatically actuated power assist glove that utilizes sheet-like curved rubber muscle for hand grasping applications. Polygerinos et al. have designed a hydraulically actuated grip glove that utilizes fiber-reinforced elastomeric actuators that can be mechanically programmed to generate complex motion paths similar to the kinematics of the human finger and thumb. Fiber reinforcement has been proved to be an effective method to constrain the undesired radial expansion of the actuators that does not contribute to effective motion during pressurization. However, this method limits the bending capability of the actuators (Figure S1); as a result, higher pressure is needed to achieve desired bending.

Table 1. Hand assistive exoskeletons driven by inflatable actuators.

Continue —> Frontiers | Design and Preliminary Feasibility Study of a Soft Robotic Glove for Hand Function Assistance in Stroke Survivors | Neuroscience

Figure 1. (A) A fabric-reinforced soft actuators with a corrugated fabric layer and an elastic fabric later [Actuator thickness, T = 12 mm, and length, L = 160 mm (Thumb), 170 mm (Little Finger), 180 mm (Index & Ring Fingers), 185 mm (Middle Finger)]. (B) Upon air pressurization, the corrugated fabric layer unfolds and expands due to the inflation of the embedded pneumatic chamber. Radial budging is constrained when the corrugated fabric layer unfolds fully. The elastic fabric elongates during air pressurization and stores elastic energy. The actuator achieves bending and extending motions at the same time. (C) A bending motion is preferred at the finger joints (II, IV, VI). An extending motion is preferred over the bending motion at the finger segments (I, III, V) and the opisthenar (VII).

, , , ,

Leave a comment

[ARTICLE] Transcranial direct current stimulation (tDCS) for improving capacity in activities and arm function after stroke: a network meta-analysis of randomised controlled trials – Full Text

Abstract

Background

Transcranial Direct Current Stimulation (tDCS) is an emerging approach for improving capacity in activities of daily living (ADL) and upper limb function after stroke. However, it remains unclear what type of tDCS stimulation is most effective. Our aim was to give an overview of the evidence network regarding the efficacy and safety of tDCS and to estimate the effectiveness of the different stimulation types.

Methods

We performed a systematic review of randomised trials using network meta-analysis (NMA), searching the following databases until 5 July 2016: Cochrane Central Register of Controlled Trials (CENTRAL), MEDLINE, EMBASE, CINAHL, AMED, Web of Science, and four other databases. We included studies with adult people with stroke. We compared any kind of active tDCS (anodal, cathodal, or dual, that is applying anodal and cathodal tDCS concurrently) regarding improvement of our primary outcome of ADL capacity, versus control, after stroke. PROSPERO ID: CRD42016042055.

Results

We included 26 studies with 754 participants. Our NMA showed evidence of an effect of cathodal tDCS in improving our primary outcome, that of ADL capacity (standardized mean difference, SMD = 0.42; 95% CI 0.14 to 0.70). tDCS did not improve our secondary outcome, that of arm function, measured by the Fugl-Meyer upper extremity assessment (FM-UE). There was no difference in safety between tDCS and its control interventions, measured by the number of dropouts and adverse events.

Conclusion

Comparing different forms of tDCS shows that cathodal tDCS is the most promising treatment option to improve ADL capacity in people with stroke.

Background

An emerging approach for enhancing neural plasticity and hence rehabilitation outcomes after stroke is non-invasive brain stimulation (NIBS). Several stimulation procedures are available, such as repetitive transcranial magnetic stimulation (rTMS) [1], transcranial direct current stimulation (tDCS) [234], transcranial alternating current stimulation (tACS) [5], and transcranial pulsed ultrasound (TPU) [6]. In recent years a considerable evidence base for NIBS has emerged, especially for rTMS and tDCS.

tDCS is relatively inexpensive, easy to administer and portable, hence constituting an ideal adjuvant therapy during stroke rehabilitation. It works by applying a weak and constant direct current to the brain and has the ability to either enhance or suppress cortical excitability, with effect lasting up to several hours after the stimulation [789]. Hypothetically, this technique makes tDCS a potentially useful tool to modulate neuronal inhibitory and excitatory networks of the affected and the non-affected hemisphere post stroke to enhance, for example, upper limb motor recovery [1011]. Three different stimulation types can be distinguished.

  • In anodal stimulation, the anodal electrode (+) usually is placed over the lesioned brain area and the reference electrode over the contralateral orbit [12]. This leads to subthreshold depolarization, hence promoting neural excitation [3].

  • In cathodal stimulation, the cathode (−) usually is placed over the non-lesioned brain area and the reference electrode over the contralateral orbit [12], leading to subthreshold polarization and hence inhibiting neural activity [3].

  • Dual tDCS means the simultaneous application of anodal and cathodal stimulation [13].

However, the literature does not provide clear guidelines, not only regarding the tDCS type, but also regarding the electrode configuration [14], the amount of current applied and the duration of tDCS, or the question if tDCS should be applied as a standalone therapy or in combination with other treatments, like robot-assisted therapy [15].

Rationale

There is so far conflicting evidence from systematic reviews of randomised controlled trials on the effectiveness of different tDCS approaches after stroke. For example, over the past two decades more than 30 randomised clinical trials have investigated the effects of different tDCS stimulation techniques for stroke, and there are 55 ongoing trials [16]. However, the resulting network of evidence from randomised controlled trials (RCTs) investigating different types of tDCS (i.e., anodal, cathodal or dual) as well as their comparators like sham tDCS, physical rehabilitation or pharmacological agents has not yet been analyzed in a systematic review so far.

A network meta-analysis (NMA), also known as multiple treatment comparison meta-analysis or mixed treatment comparison analysis, allows for a quantitative synthesis of the evidence network. This is made possible by combining direct evidence from head-to-head comparisons of three or more interventions within randomised trials with indirect evidence across randomised trials on the basis of a common comparator [17181920]. Network meta-analysis has many advantages over traditional pairwise meta-analysis, such as visualizing and facilitating the interpretation of the wider picture of the evidence and improving understanding of the relative merits of these different types of neuromodulation when compared to sham tDCS and/or another comparator such as exercise therapy and/or pharmacological agents [2122]. By borrowing strength from indirect evidence to gain certainty about all treatment comparisons, network meta-analysis allows comparative effects that have not been investigated directly in randomised clinical trials to be estimated and ranked [2223].

Objective

The aim of our systematic review with NMA was to give an overview of the evidence network of randomised controlled trials of tDCS (anodal, cathodal, or dual) for improving capacity in activities of daily living (ADL) and upper limb function after stroke, as well as its safety, and to estimate and rank the relative effectiveness of the different stimulation types, while taking into account potentially important treatment effect modifiers.

Continue —>  Transcranial direct current stimulation (tDCS) for improving capacity in activities and arm function after stroke: a network meta-analysis of randomised controlled trials | Journal of NeuroEngineering and Rehabilitation | Full Text

 

Fig. 1 Study flow diagram

, , , , , ,

Leave a comment

[Abstract] Repetitive peripheral magnetic stimulation for activities of daily living and functional ability in people after stroke (Cochrane review) [with consumer summary] – PEDro

BACKGROUND: Repetitive peripheral magnetic stimulation (rPMS) is a form of therapy that creates painless stimulation of deep muscle structures to improve motor function in people with physical impairment from brain or nerve disorders. Use of rPMS for people after stroke has been identified as a feasible approach to improve activities of daily living and functional ability. However, no systematic reviews have assessed the findings of available trials. The effect and safety of this intervention for people after stroke currently remain uncertain.

OBJECTIVES: To assess the effect of rPMS for improving activities of daily living and functional ability in people after stroke. SEARCH METHODS: We searched the Cochrane Stroke Group Trials Register (August 2016), the Cochrane Central Register of Controlled Trials (CENTRAL; 2016, issue 8) in the Cochrane Library (August 2016), Medline OVID (November 2016), Embase OVID (August 2016), the Cumulative Index to Nursing and Allied Health Literature (CINAHL) in Ebsco (August 2016), PsycINFO OVID (August 2016), the Allied and Complementary Medicine Database (AMED) OVID (August 2016), Occupational Therapy Systematic Evaluation of Evidence (OTseeker) (August 2016), the Physiotherapy Evidence Database (PEDro) (October 2016), and ICHUSHI Web (October 2016). We also searched five ongoing trial registries, screened reference lists, and contacted experts in the field. We placed no restrictions on the language or date of publication when searching the electronic databases.

SELECTION CRITERIA: We included randomised controlled trials (RCTs) conducted to assess the therapeutic effect of rPMS for people after stroke. Comparisons eligible for inclusion were (1) active rPMS only compared with ‘sham’ rPMS (a very weak form of stimulation or a sound only); (2) active rPMS only compared with no intervention; (3) active rPMS plus rehabilitation compared with sham rPMS plus rehabilitation; and (4) active rPMS plus rehabilitation compared with rehabilitation only.

DATA COLLECTION AND ANALYSIS: Two review authors independently assessed studies for inclusion. The same review authors assessed methods and risk of bias and extracted data. We contacted trial authors to ask for unpublished information if necessary. We resolved all disagreements through discussion.

MAIN RESULTS: We included three trials (two RCTs and one cross-over trial) involving 121 participants. Blinding of participants and physicians was well reported in all trials, and overall risk of bias was low. We found no clear effect of rPMS on activities of daily living at the end of treatment (mean difference (MD) -3.00, 95% confidence interval (CI) -16.35 to 10.35; low-quality evidence) and at the end of follow-up (MD -2.00, 95% CI -14.86 to 10.86; low-quality evidence). Investigators in one study with 63 participants observed no statistical difference in improvement of upper limb function at the end of treatment (MD 2.00, 95% CI -4.91 to 8.91) and at the end of follow-up (MD 4.00, 95% CI -2.92 to 10.92). One trial with 18 participants showed that rPMS treatment was not associated with improved muscle strength at the end of treatment (MD 3.00, 95% CI -2.44 to 8.44). Another study reported a significant decrease in spasticity of the elbow at the end of follow-up (MD -0.48, 95% CI -0.93 to -0.03). No studies provided information on lower limb function and death. Based on the GRADE approach, we judged the certainty of evidence related to the primary outcome as low owing to the small sample size of one study.

AUTHORS’ CONCLUSIONS: Available trials provided inadequate evidence to permit any conclusions about routine use of rPMS for people after stroke. Additional trials with large sample sizes are needed to determine an appropriate rPMS protocol as well as long-term effects. We identified three ongoing trials and will include these trials in the next review update.

Full text (sometimes free) may be available at these link(s):      help

Source: PEDro – Search Detailed Search Results

, , , ,

Leave a comment

[ARTICLE] Effect of upper extremity coordination exercise during standing on the paretic side on balance, gait ability and activities of daily living in persons with stroke – Full Text PDF

Objective: The purpose of this study was to determine the effect of upper extremity coordination exercise (UECE) during standing on the paretic side on balance, gait ability and activities of daily living (ADL) in persons with stroke.
Design: A randomized controlled trial.
Methods: A total of 27 patients with hemiplegic diagnosis after stroke were divided into two groups. Fourteen patients were in the study group and 13 patients were in the control group. The study group received conventional physical therapy and UECE during standing on the paretic side. The control group received conventional physical therapy and simple upper extremity exercise (SUEE). Subjects in both groups were given upper extremity training for 30 minutes per day, five times a week for 4 weeks. Initial evaluation was performed before treatment and reevaluated 4 weeks later to compare the changes of balance, gait ability and ADL (Korean version of modified Barthel index, K-MBI).
Results: Both groups showed a significant effect for balance, gait ability and ADL (p<0.05). In the Independent t-test, between both groups showed a significant effect for balance and gait ability except ADL (p<0.05).
Conclusions: In this paper, we investigated the changes in balance, walking, and ADL through UECE. We found significant changes in the study group and the control group. Results of the present study indicated that UECE during standing on the paretic side for 4 weeks had an effect on balance, gait ability and ADL (K-MBI) in persons with hemiplegia after stroke.

Download Full Text PDF

 

, , , , , , , , , , ,

Leave a comment

[ARTICLE] Exercising daily living activities in robot-mediated therapy – Full Text PDF

Abstract

[Purpose] Investigation of the efficacy of robot-mediated therapy of the upper limb in patients with chronic stroke, in task-oriented training activities of daily living in real environment.

[Subjects and Methods] 20 patients, each more than one year post-stroke (13–71 months) received 20 sessions of upper limb robot-mediated therapy. No other treatment was given. Each therapy session consisted of a passive motion and an active task therapy. During the active therapy, subjects exercised 5 activities of daily living. Assessments of the subjects were blind, and conducted one month prior to, at the start, at the end, and three months after the therapy course. The following outcome measures were recorded: Fugl-Meyer Scale—upper extremity subsection, Modified Ashworth Scale, Action Research Arm Test, Functional Independence Measure, Barthel Index.

[Results] Significant improvements were observed between the start and the end of the therapy, except for Modified Ashworth Scale and Barthel Index. Results still held up at the follow-up visit three months later.

[Conclusion] Practicing activities of daily living in real environment with robot-mediated physical therapy can improve the motor and functional ability of patients, even with relatively good initial functions, and even years post-stroke.

Full Text Pdf

, , , , , , ,

Leave a comment

[Conference paper] Upper-Limb Kinematics During Feeding and Drinking – Abstract+References

Abstract

Feeding and drinking are Activities of Daily Living which can be used to assess the motor control and functional ability of the upper limb. This paper presents the upper-limb kinematics during the execution of feeding and drinking activities, such analysis consisted in the measurement of angles of flexion for trunk and arm. Eight healthy subjects performed these activities in a simulated-environment while they were video recorded. Markers on anatomical landmarks were used to analyze the kinematics of the upper limb in the sagittal plane. Additionally an electro-hydraulic sensor was attached to each upper limb to assess the vertical position of the wrist relative to the shoulder. Results showed a difference on the angles of the elbow and trunk. The electro-hydraulic sensor showed to be an efficient way to record the vertical position of wrist.

References

Source: Upper-Limb Kinematics During Feeding and Drinking | SpringerLink

, , , , , , ,

Leave a comment

[ARTICLE] Perceived ability to perform daily hand activities after stroke and associated factors: a cross-sectional study – Full Text

Abstract

Background

Despite that disability of the upper extremity is common after stroke, there is limited knowledge how it influences self-perceived ability to perform daily hand activities. The aim of this study was to describe which daily hand activities that persons with mild to moderate impairments of the upper extremity after stroke perceive difficult to perform and to evaluate how several potential factors are associated with the self-perceived performance.

Methods

Seventy-five persons (72 % male) with mild to moderate impairments of the upper extremity after stroke (4 to 116 months) participated. Self-perceived ability to perform daily hand activities was rated with the ABILHAND Questionnaire. The perceived ability to perform daily hand activities and the potentially associated factors (age, gender, social and vocational situation, affected hand, upper extremity pain, spasticity, grip strength, somatosensation of the hand, manual dexterity, perceived participation and life satisfaction) were evaluated by linear regression models.

Results

The activities that were perceived difficult or impossible for a majority of the participants were bimanual tasks that required fine manual dexterity of the more affected hand. The factor that had the strongest association with perceived ability to perform daily hand activities was dexterity (p < 0.001), which together with perceived participation (p = 0.002) explained 48 % of the variance in the final multivariate model.

Conclusion

Persons with mild to moderate impairments of the upper extremity after stroke perceive that bimanual activities requiring fine manual dexterity are the most difficult to perform. Dexterity and perceived participation are factors specifically important to consider in the rehabilitation of the upper extremity after stroke in order to improve the ability to use the hands in daily life.

Background

Disability of the upper extremity is common after stroke and almost 50 % of those affected have remaining impairments more than three months post-stroke [1, 2]. The impairments often lead to difficulties in performing daily hand activities [3], especially those that require the use of both hands, i.e., bimanual activities [4]. The ability to perform bimanual activities is therefore an important goal in stroke rehabilitation, regardless of which hand that is affected [5].

The ability to perform daily activities can be objectively assessed by observations of different tasks in a standardized environment or by patient-reported questionnaires. The advantage of using questionnaires is that they often provide a better understanding of an individual’s self-reported everyday difficulties and thereby enable clinicians to design more individually targeted rehabilitation interventions [6]. One questionnaire that is recommended for persons with disability of the upper extremity after stroke is the ABILHAND Questionnaire [4, 7, 8]. It assesses self-perceived ability to perform daily bimanual activities. Previous studies have focused on evaluating the psychometric properties of the ABILHAND [4, 8], but no study has thoroughly described which activities persons in a stable phase post stroke perceive difficult to perform.

In order to improve functioning of the upper extremity after stroke, it is important to understand which factors affect self-perceived ability to perform daily hand activities. Previous studies have shown that single factors, such as motor function, muscle strength, spasticity, somatosensation, dexterity, perceived participation and life satisfaction are moderately to strongly associated with the perceived ability [4, 9, 10, 11, 12, 13, 14, 15, 16, 17]. However, as several factors simultaneously may influence the ability to perform daily hand activities there is a need to understand how these factors are associated with the performance. To the best of our knowledge, only one study [14] has evaluated this association in persons in a stable phase after stroke. In that study by Harris and Eng [14], muscle strength, spasticity, somatosensation and pain were included in multivariate analyses and the authors found that muscle strength in the upper extremity and spasticity were the strongest contributing factors to the perceived ability to use the hands in daily activities. However, dexterity was omitted as a potentially associated factor in the analysis, which was addressed as a limitation of the study. In other studies, gender, dominance of the affected upper extremity, and social and vocational situations have been shown to be important factors for overall functioning after stroke [18, 19, 20, 21]. However, it is unclear how these factors are associated with the self-perceived ability.

Taken together, despite that disability of the upper extremity is common after stroke there is limited knowledge of which daily activities that are perceived difficult to perform and which factors that affect the self-perceived performance. The majority of previous studies have evaluated how single or few factors are associated with perceived daily hand activities. Thus, there is a need for more studies that take several factors into account simultaneously.

The aim of this study was to evaluate a) which daily activities persons with mild to moderate impairments of the upper extremity after stroke perceive difficult to perform and b) how several factors (age, gender, social and vocational situation, affected hand, upper extremity pain, spasticity, grip strength, somatosensation, manual dexterity, perceived participation and life satisfaction) are associated with the self-perceived performance.

Source: Perceived ability to perform daily hand activities after stroke and associated factors: a cross-sectional study | BMC Neurology | Full Text

Fig. 1 Study flowchart

, , , , , , , , ,

Leave a comment

%d bloggers like this: