Posts Tagged ADAMS

[Abstract + References] Experimental Human Walking and Virtual Simulation of Rehabilitation on Plane and Inclined Treadmill – Conference paper


The paper presents the results of the authors concerning the experimental human walking and numerical simulation of human rehabilitation on a treadmill. Using Biometrics data acquisition system based on electrogoniometers, experimental measurements for ankle, knee and hip joints of right and left legs during walking on plane and inclined treadmill are performed. The human legs motion assistance for rehabilitation is proposed with an attached exoskeleton. The numerical simulation of a virtual mannequin walking with the attached exoskeleton on a plane and inclined treadmill is performed, using ADAMS virtual environment. A comparison between human experimental measurements and numerical simulations of a virtual mannequin with exoskeleton is presented.



  1. 1.
    K. Anama, A.A. Al-Jumaily, Active exoskeleton control systems: state of the art. Procedia Eng. 41, 988–994 (2012)CrossRefGoogle Scholar
  2. 2.
    O. Ashkani, A. Maleki, N. Jamshidi, Design, simulation and modelling of auxiliary exoskeleton to improve human gait cycle. Australas. Phys. Eng. Sci. Med. (2016)Google Scholar
  3. 3.
    D. Tarnita, Wearable sensors used for human gait analysis. Rom. J. Morphol. Embryol. 57(2), 373–382 (2016)Google Scholar
  4. 4.
    I. Díaz, J.J. Gil, E. Sánchez, Lower-limb robotic rehabilitation: literature review and challenges. J. Robot. (2011)Google Scholar
  5. 5.
    D.R. Louie, J.J. Eng, Powered robotic exoskeletons in post-stroke rehabilitation of gait: a scoping review. J. Neuroeng. Rehabil. 13(1), 53 (2016). doi: 10.1186/s12984-016-0162-5CrossRefGoogle Scholar
  6. 6.
    T. Li, M. Ceccarelli, Design and simulated characteristics of a new biped mechanism. Robotica 33(07), 1568–1588 (2015)CrossRefGoogle Scholar
  7. 7.
    I. Geonea, M. Ceccarelli, G. Carbone, Design and Analysis of an Exoskeleton for People with Motor Disabilities. The 14th IFToMM World Congress, Taipei, Taiwan, 2015Google Scholar
  8. 8.
    I. Geonea, C. Alexandru, A. Margine, A. Ungureanu, Design and simulation of a single dof human-like leg mechanism. AMM 332, 491–496 (2013)CrossRefGoogle Scholar
  9. 9.
    W. Tao et al., Gait analysis using wearable sensors. Sensors 12, 2255–2283 (2012)CrossRefGoogle Scholar
  10. 10.
    D. Tarnita et al., Experimental measurement of flexion-extension movement in normal and osteoarthritic human knee. Rom. J. Morphol. Embryol. 54(2), 309–313 (2013)Google Scholar
  11. 11.
    D. Tarnita et al., Experimental characterization of human walking on stairs applied to humanoid dynamics. Adv. Robot Des. Intellig. Control 293–301 (2016)Google Scholar
  12. 12.
    D. Tarnita, D.N. Tarnita, N. Bizdoaca, D. Popa, Contributions on the dynamic simulation of the virtual model of the human knee joint. Materialwissenschaft und Werkstofftechnik 40(1–2), 73–81 (2009)CrossRefGoogle Scholar
  13. 13.
    D. Tarnita, D.N. Tarnita, N. Bizdoaca, Modular adaptive bone plate for humerus bone osteosynthesis. Rom. J. Morphol. Embryol. 50(3), 447–452 (2009)Google Scholar
  14. 14.

via Experimental Human Walking and Virtual Simulation of Rehabilitation on Plane and Inclined Treadmill | SpringerLink

, , , ,

Leave a comment

%d bloggers like this: