Posts Tagged Aerobic Exercise

[Abstract] Locomotor Training Intensity After Stroke: Effects of Interval Type and Mode

Abstract

Background and Objectives: High-intensity interval training (HIIT) is a promising strategy for improving gait and fitness after stroke, but optimal parameters remain unknown. We tested the effects of short vs long interval type and over-ground vs treadmill mode on training intensity.

Methods: Using a repeated measures design, 10 participants with chronic hemiparesis performed 12 HIIT sessions over 4 weeks, alternating between short and long-interval HIIT sessions. Both protocols included 10 minutes of over-ground HIIT, 20 minutes of treadmill HIIT and another 10 minutes over-ground. Short-interval HIIT involved 30 second bursts at maximum safe speed and 30-60 second rest periods. Long-interval HIIT involved 4-minute bursts at ~90% of peak heart rate (HRpeak) and 3-minute recovery periods at ~70% HRpeak.

Results: Compared with long-interval HIIT, short-interval HIIT had significantly faster mean overground speeds (0.75 vs 0.67 m/s) and treadmill speeds (0.90 vs 0.51 m/s), with similar mean treadmill HR (82.9 vs 81.8%HRpeak) and session perceived exertion (16.3 vs 16.3), but lower overground HR (78.4 vs 81.1%HRpeak) and session step counts (1481 vs 1672). For short-interval HIIT, training speeds and HR were significantly higher on the treadmill vs. overground. For long-interval HIIT, the treadmill elicited HR similar to overground training at significantly slower speeds.

Conclusions: Both short and long-interval HIIT elicit high intensities but emphasize different dosing parameters. From these preliminary findings and previous studies, we hypothesize that overground and treadmill short-interval HIIT could be optimal for improving gait speed and overground long-interval HIIT could be optimal for improving gait endurance.

via Locomotor Training Intensity After Stroke: Effects of Interval Type and Mode – PubMed

, , , , , ,

Leave a comment

[EDITOR’S NOTE] Harnessing Neuroplasticity for Functional Recovery – Journal of Neurologic Physical Therapy

Neuroplasticity is the capacity of the nervous system to change its chemistry, structure, and function in response to intrinsic or extrinsic stimuli.1 Neuroplastic mechanisms are activated by environmental, behavioral, or neural processes, and by disease; they underpin the motor and cognitive learning associated with physical therapy or exercise. Neuroplasticity can lead to positive or negative changes in function, which are referred to as adaptive and maladaptive neuroplasticity, respectively. In their roles as clinicians and as scientists, physical therapists and other rehabilitation professionals harness neuroplasticity using evidence-based interventions to maintain or enhance functional performance in individuals with neurological disorders. There is still much to learn about the optimal interventions and parameters of dose and intensity necessary to achieve adaptive neuroplastic changes.

Beyond questions related to dose and intensity, more information is needed regarding the degree to which factors such as past experiences, age, sex, genetics, and the presence of a neurological disorder affects capacity for neuroplastic change. In addition, it is likely that these factors interact with each other, making it even harder to understand their influence on neuroplastic change. Improved measures for assessment of neuroplasticity in humans are needed, such as biomarkers (including movement-related biomarkers) for diagnosing disorders, and predicting and monitoring treatment effectiveness. Greater knowledge of effective rehabilitation and exercise interventions that drive adaptive neuroplasticity, and are tailored to each person’s unique characteristics, will improve patient outcomes. The idea for this special issue was born out of a desire to advance understanding of the mechanisms driving functional change.

Two studies in this special issue use a newer neuroimaging method called functional near-infrared spectroscopy to measure cortical activity during dual-task walking.2,3 Impaired dual-task walking is common in neurological populations and can interfere with the ability to perform daily life activities. Hoppes et al2 examine frontal lobe activation patterns in individuals with and without visual vertigo during dual-task walking. The differences in cortical activation patterns identified increase our understanding of possible mechanisms underlying decrements in dual-task performance in individuals with vestibular disorders, and may be useful for diagnosis, and for predicting or determining functional recovery in this population. Stuart and Mancini3 investigate how open and closed-loop tactile cueing influences prefrontal cortex activity during single- and dual-task walking and turning in individuals with Parkinson disease. Tactile cues delivered to the feet in an open-loop (continuous rhythmic stimuli) or closed-loop (intermittent stimuli based on an individual’s movement) mode are associated with improved gait and turning performance, and it is hypothesized that attention arising from the prefrontal cortex may underlie these cueing effects.4 Their findings of unchanged prefrontal cortex activity are unexpected, and raise additional questions regarding the role of the prefrontal cortex during gait.

Rehabilitation approaches such as task-oriented training that emphasize high repetition and challenge have been shown to facilitate recovery of mobility and function in neurological populations, but responses are varied and residual deficits often remain.5,6 There is still much to be learned about how to deliver the best interventions to optimize nervous system adaptive neuroplasticity and learning that ultimately lead to optimal functional recovery. In a proof-of-principle case series article in this special issue, Peters et al7 explore whether deficits in motor planning of stepping can be reduced by physical therapy focused on fast stepping retraining, or by conventional therapy focused on balance and mobility training, in individuals with subacute stroke. Both interventions altered electroencephalogic measures indicative of motor planning duration and amplitude of stepping; furthermore, duration changes for all participants were in the direction of those acquired from healthy adult values. These findings suggest that physical therapy may be able to drive neuroplasticity to improve initiation of stepping in individuals after stroke.

A growing body of human and animal evidence supports thataerobic exercise  promotes neuroplasticity and functional recovery in many neurological disorders.1 Chaves et al8 utilized transcranial magnetic stimulation to examine changes in brain excitability measured in the upper extremity following a 40-minute bout of aerobic exercise (ie, body weight-supported treadmill walking) in individuals with progressive multiple sclerosis requiring devices for walking. Improvements in brain excitability were found following the aerobic exercise, which suggest that the capacity for neuroplasticity exists in this population. Participants’ responses to the exercise were greater in those with higher cardiorespiratory fitness and less body fat. The authors discuss that maintaining an active lifestyle and participating in aerobic exercise may be beneficial for improving brain health and neuroplasticity in people with progressive multiple sclerosis.

Finally, for the first time Vive et al9 translate to the clinical setting the enriched environment model used in laboratory-based animal studies. Evidence from preclinical studies suggests that combinational therapies such as enriched environments, which take advantage of multiple mechanisms underlying neuroplasticity, may promote greater functional recovery than a single therapy.10 The researchers examine the effects of a high-dose enriched task-specific therapy, which combines physical therapy with social and cognitive stimulation on motor recovery in individuals with chronic stroke. Their findings demonstrate that the enriched task-specific therapy intervention is feasible, and suggest that it may be beneficial for repair and recovery long after a stroke.

The articles in this issue provide new insights to improve our understanding of adaptive neuroplastic changes in nervous system activity resulting from neurological disorders or following exercise interventions. Evidence regarding benefits of physical therapy and exercise interventions to promote motor and cognitive function across the lifespan and in the presence of neurological pathology may motivate individuals to adapt and adhere to healthier lifestyles.1 Physical therapists and rehabilitation professionals can use the evolving neuroplasticity research to assist with decision-making regarding individualized therapy goals, and the selection and monitoring of therapeutic interventions to best achieve compliance and goal attainment. Collaborations between rehabilitation clinicians and researchers will enhance and hasten the translation of neuroplasticity research into effective clinical therapies. In the end, these efforts will certainly lead us to improved interventions that help to restore function and health to our patients.

REFERENCES

1. Cramer SC, Sur M, Dobkin BH, et al Harnessing neuroplasticity for clinical applications. Brain. 2011;134(pt 6):1591–1609. doi:10.1093/brain/awr039.

2. Hoppes C, Huppert T, Whitney S, et al Changes in cortical activation during dual-task walking in individuals with and without visual vertigo. J Neurol Phys Ther. 2020;44(2):156–163.

3. Stuart S, Mancini M. Pre-frontal cortical activation with open and closed-loop tactile cueing when walking and turning in Parkinson disease: a pilot study. J Neurol Phys Ther. 2020;44(2):121–131.

4. Maidan I, Bernad-Elazari H, Giladi N, Hausdorff JM, Mirelman A. When is higher level cognitive control needed for locomotor tasks among patients with Parkinson’s disease? Brain Topogr. 2017;30(4):531–538. doi:10.1007/s10548-017-0564-0.

5. Dobkin BH. Motor rehabilitation after stroke, traumatic brain, and spinal cord injury: common denominators within recent clinical trials. Curr Opin Neurol. 2009;22(6):563–569. doi:10.1097/WCO.0b013e3283314b11.

6. Hornby T, Reisman D, Ward I, et al Clinical practice guideline to improve locomotor functional following chronic stroke, incomplete spinal cord injury, and brain injury. J Neurol Phys Ther. 2020;40(1):49–100.

7. Peters S, Ivanova T, Lakhani B, Boyd L, Garland SJ. Neuroplasticity of cortical planning for initiating stepping post-stroke: a case series. J Neurol Phys Ther. 2020;44(2):164–172.

8. Chaves A, Devsahayam A, Kelly L, Pretty R, Ploughman M. Exercise-induced brain excitability changes in progressive multiple sclerosis: a pilot study. J Neurol Phys Ther. 2020;44(2):132–144.

9. Vive S, Geijerstam JL, Kuhn HG, Kall LB. Enriched, task-specific therapy in the chronic phase after stroke. J Neurol Phys Ther. 2020;44(2):145–155.

10. Malá H, Rasmussen CP. The effect of combined therapies on recovery after acquired brain injury: systematic review of preclinical studies combining enriched environment, exercise, or task-specific training with other therapies. Restor Neurol Neurosci. 2017;35(1):25–64. doi:10.3233/RNN-160682.

via Harnessing Neuroplasticity for Functional Recovery : Journal of Neurologic Physical Therapy

, ,

Leave a comment

[WEB PAGE] Aerobic Exercise Aids Post-Stroke Walking, Endurance Improvements

http://www.dreamstime.com/stock-photography-exercise-concept-wall-poster-image49345202

 

Stroke survivors who completed group-based aerobic exercise programs similar in design and duration to cardiac rehabilitation programs significantly improved their aerobic endurance and walking ability, according to a recent study.

The study was published in Journal of the American Heart Association, the Open Access Journal of the American Heart Association/American Stroke Association.

Stroke remains the leading cause of disability in the US, and physical therapy is often prescribed to improve physical impairments after stroke. Most current rehabilitation care following stroke has little to no focus on aerobic fitness, and when continued rehabilitation activity is suggested patients often fail to keep active without any support or guidance, according to an analysis of 19 published studies to assess the impact of aerobic exercise programs on endurance and walking ability after stroke.

“The physical therapy we currently provide to patients after a stroke focuses more on improving the ability to move and move well rather than on increasing how far and long you can move,” says Elizabeth Regan, DPT, study lead author, and PhD candidate in Exercise Science at the University of South Carolina, in a media release from the American Heart Association.

“It doesn’t matter how well you can walk if your endurance level keeps you at home.”

The study included nearly 500 adults (average ages between 54-71) who completed aerobic exercise programs similar in structure to cardiac rehabilitation. Participants attended two to three sessions per week for about three months. Of nearly two dozen different exercise groups, walking was the most common type of activity, followed by stationary cycling and then mixed mode aerobic exercise. Physical abilities were tested before and after the intervention.

Looking at results by activity type, researchers found:

  • Mixed aerobic activity provides the best result (four treatment groups) followed by walking (12 treatment groups).
  • Cycling or recumbent stepping (machine that allows stepping while in seated position) while still significant was the least effective (seven treatment groups).
  • Overall, participants significantly improved their endurance level and walking speed.
  • On average, participants walked almost half the size of a football field farther during a six-minute walking test. Participants with mild movement impairments benefited the most.

“These benefits were realized regardless of how long it had been since their stroke,” Regan comments, in the release. “Our analysis included stroke survivors across a wide range, from less than six months to greater than a year since their stroke, and the benefits were seen whether they started an aerobic exercise program one month or one year after having a stroke.”

“Cardiac rehab programs may be a viable option for patients after a stroke who have health risks and endurance losses similar to traditional cardiac rehab participants,” states Stacy Fritz, PhD, PT, the study’s co-author and associate professor of exercise science in the Physical Therapy Program at the University of South Carolina.

“Almost every hospital has a cardiac rehab program, so it’s an existing platform that could be used for stroke survivors. Funneling patients with stroke into these existing programs may be an easy, cost-effective solution with long-term benefits.”

While this study suggests group-based aerobic exercise programs improve health and endurance in stroke survivors, no control group analysis was performed for results comparison. Limited follow-up data were available to determine whether the health benefits persisted.

[Source(s): American Heart Association, Science Daily]

 

via Aerobic Exercise Aids Post-Stroke Walking, Endurance Improvements – Rehab Managment

, , ,

Leave a comment

[Abstract] Forced, Not Voluntary, Aerobic Exercise Enhances Motor Recovery in Persons With Chronic Stroke

Background. The recovery of motor function following stroke is largely dependent on motor learning–related neuroplasticity. It has been hypothesized that intensive aerobic exercise (AE) training as an antecedent to motor task practice may prime the central nervous system to optimize motor recovery poststroke.

Objective. The objective of this study was to determine the differential effects of forced or voluntary AE combined with upper-extremity repetitive task practice (RTP) on the recovery of motor function in adults with stroke.

Methods. A combined analysis of 2 preliminary randomized clinical trials was conducted in which participants (n = 40) were randomized into 1 of 3 groups: (1) forced exercise and RTP (FE+RTP), (2) voluntary exercise and RTP (VE+RTP), or (3) time-matched stroke-related education and RTP (Edu+RTP). Participants completed 24 training sessions over 8 weeks.

Results. A significant interaction effect was found indicating that improvements in the Fugl-Meyer Assessment (FMA) were greatest for the FE+RTP group (P = .001). All 3 groups improved significantly on the FMA by a mean of 11, 6, and 9 points for the FE+RTP, VE+RTP, and Edu+RTP groups, respectively. No evidence of a treatment-by-time interaction was observed for Wolf Motor Function Test outcomes; however, those in the FE+RTP group did exhibit significant improvement on the total, gross motor, and fine-motor performance times (P ≤ .01 for all observations).

Conclusions. Results indicate that FE administered prior to RTP enhanced motor skill acquisition greater than VE or stroke-related education. AE, FE in particular, should be considered as an effective antecedent to enhance motor recovery poststroke.

via Forced, Not Voluntary, Aerobic Exercise Enhances Motor Recovery in Persons With Chronic Stroke – Susan M. Linder, Anson B. Rosenfeldt, Sara Davidson, Nicole Zimmerman, Amanda Penko, John Lee, Cynthia Clark, Jay L. Alberts, 2019

, , , , , , , , , ,

Leave a comment

[Abstract] Forced, Not Voluntary, Aerobic Exercise Enhances Motor Recovery in Persons With Chronic Stroke

Background. The recovery of motor function following stroke is largely dependent on motor learning–related neuroplasticity. It has been hypothesized that intensive aerobic exercise (AE) training as an antecedent to motor task practice may prime the central nervous system to optimize motor recovery poststroke.

Objective. The objective of this study was to determine the differential effects of forced or voluntary AE combined with upper-extremity repetitive task practice (RTP) on the recovery of motor function in adults with stroke.

Methods. A combined analysis of 2 preliminary randomized clinical trials was conducted in which participants (n = 40) were randomized into 1 of 3 groups: (1) forced exercise and RTP (FE+RTP), (2) voluntary exercise and RTP (VE+RTP), or (3) time-matched stroke-related education and RTP (Edu+RTP). Participants completed 24 training sessions over 8 weeks.

Results. A significant interaction effect was found indicating that improvements in the Fugl-Meyer Assessment (FMA) were greatest for the FE+RTP group (P = .001). All 3 groups improved significantly on the FMA by a mean of 11, 6, and 9 points for the FE+RTP, VE+RTP, and Edu+RTP groups, respectively. No evidence of a treatment-by-time interaction was observed for Wolf Motor Function Test outcomes; however, those in the FE+RTP group did exhibit significant improvement on the total, gross motor, and fine-motor performance times (P ≤ .01 for all observations).

Conclusions. Results indicate that FE administered prior to RTP enhanced motor skill acquisition greater than VE or stroke-related education. AE, FE in particular, should be considered as an effective antecedent to enhance motor recovery poststroke.

via Forced, Not Voluntary, Aerobic Exercise Enhances Motor Recovery in Persons With Chronic Stroke – Susan M. Linder, Anson B. Rosenfeldt, Sara Davidson, Nicole Zimmerman, Amanda Penko, John Lee, Cynthia Clark, Jay L. Alberts,

, , , , , ,

Leave a comment

[Abstract] Physiological Responses and Perceived Exertion During Robot-Assisted and Body Weight–Supported Gait After Stroke

Introduction. Physiological responses are rarely considered during walking after stroke and if considered, only during a short period (3-6 minutes). The aims of this study were to examine physiological responses during 30-minute robot-assisted and body weight–supported treadmill and overground walking and compare intensities with exercise guidelines.

Methods. A total of 14 ambulatory stroke survivors (age: 61 ± 9 years; time after stroke: 2.8 ± 2.8 months) participated in 3 separate randomized walking trials. Patients walked overground, on a treadmill, and in the Lokomat (60% robotic guidance) for 30 minutes at matched speeds (2.0 ± 0.5 km/h) and matched levels of body weight support (BWS; 41% ± 16%). Breath-by-breath gas analysis, heart rate, and perceived exertion were assessed continuously.

Results. Net oxygen consumption, net carbon dioxide production, net heart rate, and net minute ventilation were about half as high during robot-assisted gait as during body weight–supported treadmill and overground walking (P < .05). Net minute ventilation, net breathing frequency, and net perceived exertion significantly increased between 6 and 30 minutes (respectively, 1.8 L/min, 2 breaths/min, and 3.8 units). During Lokomat walking, exercise intensity was significantly below exercise recommendations; during body weight–supported overground and treadmill walking, minimum thresholds were reached (except for percentage of heart rate reserve during treadmill walking).

Conclusion. In ambulatory stroke survivors, the oxygen and cardiorespiratory demand during robot-assisted gait at constant workload are considerably lower than during overground and treadmill walking at matched speeds and levels of body weight support. Future studies should examine how robotic devices can be Future studies should examine how robotic devices can be exploited to induce aerobic exercise.

 

via Physiological Responses and Perceived Exertion During Robot-Assisted and Body Weight–Supported Gait After Stroke – Nina Lefeber, Emma De Keersmaecker, Stieven Henderix, Marc Michielsen, Eric Kerckhofs, Eva Swinnen, 2018

, , , , , , ,

Leave a comment

[Abstract] A randomized controlled trial of a walking training with simultaneous cognitive demand (dual‐task) in chronic stroke

Abstract

Background and purpose

The aim was to evaluate the tolerability of, adherence to and efficacy of a community walking training programme with simultaneous cognitive demand (dual‐task) compared to a control walking training programme without cognitive distraction.

Methods

Adult stroke survivors at least 6 months after stroke with a visibly obvious gait abnormality or reduced 2‐min walk distance were included in a two‐arm parallel randomized controlled trial of complex intervention with blinded assessments. Participants received a 10 week, bi‐weekly, 30 min treadmill programme at an aerobic training intensity (55%–85% heart rate maximum), either with or without simultaneous cognitive demands. Outcome was measured at 0, 11 and 22 weeks. The primary assessment involved 2‐min walk tests with and without cognitive distraction to investigate the dual‐task effect on walking and cognition; secondary results were the Short Form Health Survey 36, EuroQol‐5D‐5L, the Physical Activity Scale for the Elderly (PASE) and step activity.

Results

Fifty stroke patients were included; 43 received allocated training and 45 completed all assessments. The experimental group (n = 26) increased their mean (SD) 2‐min walking distance from 90.7 (8.2) to 103.5 (8.2) m, compared with 86.7 (8.5) to 92.8 (8.6) m in the control group, and their PASE score from 74.3 (9.1) to 89.9 (9.4), compared with 94.7 (9.4) to 77.3 (9.9) in the control group. Statistically, only the change in the PASE differed between the groups (P = 0.029), with the dual‐task group improving more. There were no differences in other measures.

Conclusions

Walking with specific additional cognitive distraction (dual‐task training) might increase activity more over 12 weeks, but the data are not conclusive.

 

via A randomized controlled trial of a walking training with simultaneous cognitive demand (dual‐task) in chronic stroke – Meester – – European Journal of Neurology – Wiley Online Library

, , , , , , ,

Leave a comment

[Abstract] Aerobic Training in Canadian Stroke Rehabilitation Programs

Background and Purpose: Aerobic training (AT) is recommended for people after stroke, yet uptake and operationalization of AT in clinical practice in Canada have not been measured. We surveyed inclusion of structured AT and barriers to implementation in public inpatient/outpatient stroke rehabilitation programs across Canada.

Methods: A Web-based questionnaire was sent to 89 stroke rehabilitation program leads.

Results: Forty-six programs from 7 of 9 eligible Canadian provinces/territories completed the questionnaire. Seventy-eight percent of programs reported including AT, with most (75%) excluding participants with severe physical impairments, and 28% excluding those with coexisting cardiac conditions. A greater proportion of dedicated stroke rehabilitation programs prescribed AT, compared to nondedicated stroke units (68.8% vs 31.3%, P = 0.02). The top 2 challenges for programs that included and did not include AT were “insufficient time within therapy sessions” and “length of stay in rehabilitation.” Programs that did not include AT ranked “not a goal of most patients” and “not an organizational/program priority” as third and fourth, whereas they were ranked eighth and thirteenth by programs with AT. Best practice recommendations were inconsistently followed for conducting preparticipation exercise testing (36.1%) and for monitoring patients from higher-risk populations, specifically people with diabetes at risk for hypoglycemia (78.8%) and hypertension (36.6%). Of programs conducting preparticipation exercise testing, 91% did not monitor electrocardiography.

Discussion and Conclusions: Most stroke rehabilitation programs across Canada include AT. People with severe physical impairment and those with cardiac, metabolic, and hemodynamic comorbidities may be excluded or not appropriately monitored during exercise. More detailed guidelines and training practices are needed to address these challenges.

Video Abstract available for more insights from the authors (see Video, Supplemental Digital Content 1, available at: http://links.lww.com/JNPT/A233).

via Aerobic Training in Canadian Stroke Rehabilitation Programs : Journal of Neurologic Physical Therapy

, , , , , , , , ,

Leave a comment

[ARTICLE] AExaCTT – Aerobic Exercise and Consecutive Task-specific Training for the upper limb after stroke: Protocol for a randomised controlled pilot study – Full Text

Abstract

Motor function may be enhanced if aerobic exercise is paired with motor training. One potential mechanism is that aerobic exercise increases levels of brain-derived neurotrophic factor (BDNF), which is important in neuroplasticity and involved in motor learning and motor memory consolidation. This study will examine the feasibility of a parallel-group assessor-blinded randomised controlled trial investigating whether task-specific training preceded by aerobic exercise improves upper limb function more than task-specific training alone, and determine the effect size of changes in primary outcome measures. People with upper limb motor dysfunction after stroke will be allocated to either task-specific training or aerobic exercise and consecutive task-specific training. Both groups will perform 60 hours of task-specific training over 10 weeks, comprised of 3 × 1 hour sessions per week with a therapist and 3 × 1 hours of home-based self-practice per week. The combined intervention group will also perform 30 minutes of aerobic exercise (70–85%HRmax) immediately prior to the 1 hour of task-specific training with the therapist. Recruitment, adherence, retention, participant acceptability, and adverse events will be recorded. Clinical outcome measures will be performed pre-randomisation at baseline, at completion of the training program, and at 1 and 6 months follow-up. Primary clinical outcome measures will be the Action Research Arm Test (ARAT) and the Wolf Motor Function Test (WMFT). If aerobic exercise prior to task-specific training is acceptable, and a future phase 3 randomised controlled trial seems feasible, it should be pursued to determine the efficacy of this combined intervention for people after stroke.

1. Introduction

1.1. Background

Currently 440,000 persons after stroke live in community settings in Australia [1]. Many with stroke experience chronic disability and although two-thirds receive care each day [1], the majority still have unmet needs [2]. Upper limb dysfunction is a persistent and disabling problem present in 69% of persons after stroke in Australia [3]. Upper limb dysfunction is a major contributor to poor well-being and quality-of-life [4]; [5]; [6] ;  [7]. Unsurprisingly, advancing treatments for upper limb recovery is a top ten research priority for persons after stroke and their carers [8].

In Australia, 87% of persons with stroke-attributable upper limb impairments receive task-specific training [3]. Task-specific training is a progressive training strategy that utilises practice of goal-directed, real-world, context-specific tasks that are intrinsically and/or extrinsically meaningful to the person, to enable them to undertake activities of daily living [9] and may improve upper limb motor function after stroke [9]; [10] ;  [11].

Improvements in motor function coincide with structural and functional reorganisation of the brain [12]; [13]; [14] ;  [15]. The brain’s ability to undergo these changes is denoted as neuroplasticity. Capitalisation and enhancement of neuroplasticity in peri-infarct and non-primary motor regions may promote recovery via an increased response to motor training and other neurorehabilitative interventions [16]; [17] ;  [18].

Many studies show that aerobic exercise (prolonged, rhythmical activity using large muscle groups to increase heart rate) enhances neuroplasticity [19], grey matter volume, white matter integrity [20]; [21] ;  [22] and brain activation [23]; [24] ;  [25]. Furthermore increasing evidence indicates that lower limb aerobic exercise increases upper limb motor function. A single bout of aerobic cycling exercise can improve long-term retention of a motor skill in healthy individuals [26], regardless of whether performed immediately before or after motor training [27].

Aerobic exercise increases BDNF [28]. Improvements in motor skill learning and memory induced by aerobic exercise have been associated with increased peripheral blood concentrations of BDNF [26]. BDNF is involved with neurogenesis [29] and neuroprotection [30] in the human brain [31], thereby playing an important role in stroke recovery, including facilitating functional upper limb motor rehabilitation [32].

In chronic stroke, an 8-week programme of lower extremity endurance cycling enhanced upper extremity fine motor control [33]. Also, a single bout of aerobic treadmill exercise improved grasp function of the hemiparetic hand [34]. As aerobic exercise alone can enhance motor function after stroke, motor learning in stroke rehabilitation may be facilitated if aerobic exercise is paired with motor training [35] ;  [36].

1.2. Aims and objectives

The aims of this study are to 1) assess the feasibility of conducting a randomised controlled trial to compare the effects of task-specific training preceded by aerobic exercise to task-specific training alone on upper limb motor function after stroke; and 2) calculate the effect size of changes in primary clinical outcome measures to evaluate proof-of-concept and inform calculation of sample size for a future phase III trial. This includes investigating potential neural correlates of exercise-induced motor function changes using peripheral blood serum BDNF measurement and multi-modal MRI.

2. Methods

2.1. Study design

This is a parallel-group assessor-blinded randomised controlled pilot study (Fig. 1). One group will undertake task-specific training alone and the other group will undertake 30 minutes of aerobic cycling exercise prior to their task-specific training. The interventions will be delivered by a therapist 3 days per week for 10 weeks. Both groups will be provided with an individually-prescribed task-specific training programme to practice at home for 60 minutes, 3 times per week. Assessments will be conducted at baseline, within 1 week from the end of intervention, and 1 and 6 months following the end of the intervention period. Ethics approval has been obtained from the Hunter New England Human Research Ethics Committee (14/12/10/4.07) and registered with the University of Newcastle Human Research Ethics Committee (H-2015-0105). The study is registered with the Australian and New Zealand Clinical Trials Registry (ACTRN12616000848404).

Continue —>  AExaCTT – Aerobic Exercise and Consecutive Task-specific Training for the upper limb after stroke: Protocol for a randomised controlled pilot study

, , , , , , , ,

Leave a comment

[WEB PAGE] Can A Single Exercise Session Benefit Your Brain? – Neuroscience News

Summary: Researchers document not only the behavioral and cognitive effects of a single exercise session, but also the neurochemical and neurophysiological changes that occur.

Source: IOS Press.

Even a single bout of physical activity can have significant positive effects on people’s mood and cognitive functions, according to a new study inBrain Plasticity.

In a new review of the effects of acute exercise published in Brain Plasticity, researchers not only summarize the behavioral and cognitive effects of a single bout of exercise, but also summarize data from a large number of neurophysiological and neurochemical studies in both humans and animals showing the wide range of brain changes that result from a single session of physical exercise (i.e., acute exercise).

There is currently enormous interest in the beneficial effects of aerobic exercise on a wide range of brain functions including mood, memory, attention, motor/reaction times, and even creativity. Understanding the immediate effects of a single bout of exercise is the first step to understanding how the positive effects of exercise may accrue over time to cause long-lasting changes in select brain circuits.

According to principal investigator Wendy A. Suzuki, PhD, Professor of Neural Science and Psychology in the Center for Neural Science, New York University, “Exercise interventions are currently being used to help address everything from cognitive impairments in normal aging, minimal cognitive impairment (MCI), and Alzheimer’s disease to motor deficits in Parkinson’s disease and mood states in depression. Our review highlights the neural mechanisms and pathways by which exercise might produce these clinically relevant effects.”

The investigators summarized a large and growing body of research examining the changes that occur at the cognitive/behavioral, neurophysiological, and neurochemical levels after a single bout of physical exercise in both humans and animals. They reviewed brain imaging and electrophysiological studies, including electroencephalography (EEG), functional magnetic resonance imaging (fMRI), functional near-infrared spectroscopy (fNIRS), and transcranial magnetic stimulation (TMS). They then turned to neurochemical studies, including lactate, glutamate and glutamine metabolism, effects on the hypothalamic-pituitary-adrenal (HPA) axis through cortisol secretion, and neurotrophins such as brain-derived neurotrophic factor (BDNF), insulin-like growth factor 1 (IGF-1), and vascular endothelial growth factor (VEGF). Neurotransmitter studies of monoamines (dopamine, serotonin, epinephrine and norepinephrine), acetylcholine, glutamate and gamma-aminobutyric acid (GABA) were reviewed, as well as neuromodulators such as endogenous opioids and endocannabinoids.

Image shows a mouse on a wheel and a woman running a race.

What is the relationship between the central neurochemical changes following acute exercise that have mainly been described in rodents and the behavioral changes seen after acute exercise that have mainly been described in humans? NeuroscienceNews.com image is credited to Henriette van Praag and MarathonFoto.

This extensive review resulted in three main observations. First, the most consistent behavioral effects of acute exercise are improved executive function, enhanced mood, and decreased stress levels. Second, neurophysiological and neurochemical changes that have been reported after acute exercise show that widespread brain areas and brain systems are activated. Third, one of the biggest open questions in this area is the relationship between the central neurochemical changes following acute exercise, that have mainly been described in rodents, and the behavioral changes seen after acute exercise reported in humans. Bridging this gap will be an important area of future study.

Co-author Julia C. Basso, PhD, post-doctoral research fellow, Center for Neural Science at New York University, commented, “The studies presented in this review clearly demonstrate that acute exercise has profound effects on brain chemistry and physiology, which has important implications for cognitive enhancements in healthy populations and symptom remediation in clinical populations.”

ABOUT THIS NEUROSCIENCE RESEARCH ARTICLE

Source: Diana Murray – IOS Press
Image Source: NeuroscienceNews.com image is credited to Henriette van Praag and MarathonFoto.
Original Research: Full open access research for “The Effects of Acute Exercise on Mood, Cognition, Neurophysiology, and Neurochemical Pathways: A Review” by Basso, Julia C. and Suzuki, Wendy A. in Brain Plasticity. Published online March 28 2017 doi:10.3233/BPL-160040

Source: Can A Single Exercise Session Benefit Your Brain? – Neuroscience News

, ,

Leave a comment

%d bloggers like this: