Posts Tagged Aging

[OPINION ARTICLE] The Two-Fold Ethical Challenge in the Use of Neural Electrical Modulation – Full Text

  • Centro Universitario Internazionale, Arezzo, Italy

The use of electrical stimulation to influence biological functions and/or pathological processes in the body has been recently termed “electroceuticals.” The most commonly used techniques are “neural electroceuticals,” forms of electrical modulation of the brain that seem to represent the new frontier both to treat neurological and psychiatric diseases, when no other effective treatments are available, and to enhance cognitive functions (Kambouris et al., 2014Reardon, 2014;Miller and Matharu, 2017).

These types of medical interventions have given rise to a wide ethical debate (Pickersgill and Hogle, 2015Lavazza and Colzato, 2018Packer et al., 2018). Here I wish to introduce two new challenges bearing important moral implications, which require the careful consideration of the scientific and philosophical community. These challenges can be co-present and can be placed in the same framework of human augmentation and the willingness to go beyond one’s own physiological limits. However, it is possible to analytically distinguish them according to their initial conditions and their different scopes, as it will be explained.

The first challenge concerns a possible shift from a mainly therapeutic use of electroceuticals to a use aimed at enhancement. This potential shift is due to the fact that technology has now fulfilled a very ancient human aspiration, that of overcoming one’s limits and improving indefinitely. And the effect of this shift could be a segmentation of society between enhanced and non-enhanced individuals, something that goes against the essentially egalitarian project of modern thought (Rawls, 1999Mason, 2006).

The second challenge concerns the aging tendency and the demographic contraction that characterize European countries and Japan, and which may soon affect other economically developed countries (Lutz et al., 2008Długosz, 2011Murray et al., 2018). This trend, over time, will reduce the overall availability of cognitive skills and abilities in those populations, who will have to manage increasingly complex and diversified societies and environments. This mismatch between the needs arising from one’s life context and the available resources could push people to resort to electroceuticals as means of strengthening their cognitive abilities, opening up scenarios in which ethical evaluations will have a role to play. Below, I will address these two challenges, giving more space to the first.

Going Beyond One’s Limits

Ever since the Odyssey, humans have always desired to alter their minds in a controlled manner through a mix of substances and to go beyond the limits established by brain physiology (Koops et al., 2013). In recent decades, important steps have been taken in this direction, both with new molecules able to act on brain chemistry and with instruments capable of electrically modulating brain activity (Dresler et al., 2018). Scientific consensus on the cognitive enhancement potential of the so-called Non-Invasive Brain Stimulation (NIBS) is not yet unanimous (see Horvath et al., 2015 on one side; Price and Hamilton, 2015 on the other side), but it is undeniable that there is a great investment in research. A growing amount of research studies have produced at least some results in the field, even with different effects at an inter- and intra-individual level. For example, Transcranial Direct Current Stimulation (tDCS) is a form of neurostimulation that so far has been used on healthy subjects to enhance mathematical cognition, reading, memory, mood, learning, perception, decision making, creativity motivation, and moral reasoning (Chi and Snyder, 2012Callaway, 2013Meinzer et al., 2013Snowball et al., 2013Parkin et al., 2015). The use of NIBS is very often deemed effective by the public due to wide media coverage and Internet ads (Fitz and Reiner, 2015). However, the road to enhancement is now open and more relevant and consistent results may come both from more in-depth knowledge on the functioning of the nervous system and from more performing devices.

What are the consequences of a greater concentration of medical-scientific skills and resources in the field of cognitive neuroenhancement? Medicine is changing, suggests Harari (2016, ch 9), whose line of reasoning is useful here, even though he does not refer to electroceuticals. Somewhat oversimplifying, it can be said that the vocation of medicine, for most of its history, has been to treat the sick, to restore to a better condition those who saw their health deteriorate or were born with a congenital pathology or deficit. Classical Hippocratic medicine has then recently introduced the idea of disease prevention and the notion of combating the symptoms of aging (Bynum, 2008). This was a conceptual and clinical turning point, which has opened the door to the idea of improving the physical and cognitive status of healthy people, thus fulfilling the human aspiration I mentioned earlier, which had not yet been reflected in medical practice.

From an ethical point of view, caring for the sick—at least in principle—is an egalitarian project, because it envisions a level of health which each person can and should ideally reach, despite the limits of medical knowledge and of material resources. This project goes hand in hand with—and derives from—the social and political idea that Christianity and the Enlightenment have brought onto the Western world, according to which all human beings have equal dignity and rights and deserve the same treatment (despite the many exceptions due to material contingencies and the organization of life in society) (Hunt, 2007).

As Harari emphasizes, enhancing those in good health might instead be an elitist project, because it necessarily ignores universal levels of functioning or performance that are applicable to all (More and Vita-More, 2013). Every individual legitimately seeks to gain an advantage over others by exploiting the means made available by medical research to those who can pay for them. Once a certain level of enhancement has been achieved by the whole—or at least by the majority—of the population, the given technology will be available to everyone in terms of both diffusion and cost, and there will be demand for new and further forms of enhancement. These forms of enhancement will be sought by medical-scientific research within the dynamic that always pushes further the frontier of technical knowledge.

Harari’s prediction is that the poorest people in the next 50 years will have much better healthcare than today, whereas the health inequality measured in functioning and physical-cognitive performance might get much worse. Strong inequalities have always been present in the history of mankind, even when enhancement was not even contemplated as a possibility. However, for reasons related to technical progress, today there may be no shared interest in ensuring healthcare to the entire population according to the best current standards.

In the twentieth century many states had an interest in, and the possibility of, integrating the masses in the social fabric, also by universally extending the benefits of modern medicine. In fact, there was the need to have millions of soldiers in good health and well-looked after when injured, while the industry benefited from millions of workers in good physical conditions and able to work in factories for many consecutive hours. These were the years when mass hygiene facilities and vaccination campaigns were introduced, and several epidemics were eradicated (cf. Pinker, 2018).

New Potential Inequalities

The economic and military dynamics of the twenty-first century might be very different from the past. In the era of drones and remote or self-driving military vehicles, mass armies are no longer needed: what is needed are only a few selected super-experts in war technology (Scharre, 2018). The advent of robotics and the use of big data combined with evolving algorithms also make a large part of human work obsolete, so that production tasks can be performed by machines, leaving human beings in charge of more complex activities such as design and supervision (Ford, 2015).

These trends, of which we can already see some indications, could be accentuated and accelerated by the research on cognitive enhancement: the best performing individuals will be the ones to occupy positions of responsibility, as society will want to entrust the most important tasks to those with the best skills (Santoni de Sio et al., 2014). There are also scenarios that seem to come from a dystopian novel and, to the current state of knowledge, are certainly not realistic: such scenarios involve the emergence of superhumans with exceptional physical, emotional and intellectual abilities, which will stand out from the rest of the non-enhanced or less enhanced individuals, because the differences will become not only quantitative but also qualitative, leading to the creation of different groups distinguished by temperament and interests (Bess, 2015).

In fact, quantitative differences concern the increase of cognitive abilities, for example memory. Those who can access these forms of empowerment become high-performing people, who can succeed in the workplace and then improve their condition outperforming those who are not enhanced. Qualitative differences instead are brought on, for example, by genetic modifications thanks to recent techniques such as CRISPR-Cas9 (Lavazza, 2019a). In that case, genetically modified individuals could be different from non-modified individuals in the same way as adults and children or the most educated people and the illiterate ones are different. And social consequences would be predictably very relevant.

The equality project entailed by the material and moral progress of the world so far—which substantially amounts to defeating hunger, diseases and war—aims to guarantee decent living conditions for everyone, so that all people can equally pursue their own life project. Instead, the new goals aiming at overcoming our mortal and uncertain human condition, mainly thanks to technology, can hardly be within everyone’s reach and, on the contrary, will often be linked to a privileged condition reserved for a few.

There has certainly been an increase in do-it-yourself use of simple transcranial direct current stimulation (tDCS) devices (Fitz and Reiner, 2015). However, dealing with the use of other latest generation electroceuticals and future more sophisticated devices we will have to address the challenge outlined above. Should we consider prohibiting the use of certain forms of enhancement or should we pursue egalitarian policies, allowing everyone to access electroceuticals? (Lavazza, 2019b). A possible (but debatable) solution is to try to enhance the moral abilities of individuals, to ensure the prevalence of pro-social motives and a general growth of the well-being of individuals and of whole society (Persson and Savulescu, 2012). If this was not possible, one could explore a use of cognitive enhancement according to Rawls’s influential view that inequalities are acceptable if they benefit the whole society (Lavazza, 2016). In this sense, cognitively enhancing certain professional figures or public decision-makers will give them a benefit that others will not enjoy but will positively reverberate on the general functioning of society.

Mandatory Enhancement?

The second challenge concerning electroceuticals is intertwined with the first, while it has a different scope. The processes of scientific and technological innovation on a global scale, along with the phenomena of social complexification, are undergoing continuous acceleration, which will require a greater availability of cognitive skills to manage this complexity and the associated problems (for example, those related to climate change and to the reduction of natural resources). According to Rindermann (2018), however, cognitive abilities in the Western world could go down due to demographic trends. In many nations, fewer births and a longer life expectancy result in a decline in memory, processing speed, attention, creativity and, therefore, in the capacity for innovation. Furthermore, the most educated and cognitively most capable people normally make fewer children.

It is difficult to quantify the phenomenon, both because it is new and because it is still little studied. However, it is plausible to assume that general aging will cause a decrease in the overall cognitive abilities of society. First, there will be more people over the age of 65, while people under the age of 65 will decrease in number. And it is established that “the normal aging process is associated with declines in certain cognitive abilities, such as processing speed and some aspects of memory, language, visuospatial function, and executive functions” (Harada et al., 2013; cf. also Reichman et al., 2010Salthouse, 2012Fechner et al., 2019). Secondly, with the number of elderly people increasing, even if the incidence rate remains fixed, the overall percentage of people suffering from diseases that affect cognition will increase. In the United States today there are about 6 million people with dementia; according to some estimates (Alzheimer’s Association, 2019) the number will go up to 14 million in 2050, while the overall population will remain stable or grow slightly.

The idea of making enhancement (and cognitive improvement/rehabilitation for aged people) widespread and perhaps even mandatory also comes from arguments that underline how some emergencies cannot be faced with the cognitive and moral endowments that we have today (Lavazza and Reichlin, 2019). Persson and Savulescu (2012), for example, have stated that humans are ethically unfit to face the challenges of the present age. Their argument rests on the fact that today’s humankind is facing two kind of threats “generated by the existence of modern scientific technology: the threats of weapons of mass destruction, especially in the hands of terrorist groups, and of climate change and environmental degradation” (Persson and Savulescu, 2012: 1). According to the authors, humans are not morally equipped to address such global problems within a democratic system, especially when it comes to environmental problems. Consequently, cognitive enhancement, understood as the basis of moral betterment, could become the object of policies that make it strongly recommended, encouraged, or mandatory.

In this framework, the classic suggestion is to increase the educational programs that allow for the enhancement of cognitive abilities, which constitute human capital. Specifically, reference is often made to cognitive training programs such as the reasoning training proposed by Klauer and Phye (2008). But if neurocognitive enhancement proves to be safe and effective, it promises to be quicker and more easily administrable to a greater percentage of the population compared to traditional programs, since it does not require the conscious and prolonged effort of the subject. In the case of a real decline in the cognitive abilities of a society as a whole, neurocognitive intervention via neural electrical modulation would become one of the viable options in order to improve the condition of the elderly and compensate for the loss of their cognitive skills and to partially rehabilitate people with degenerative diseases.

This would bring about some ethical questions, as well as the pressure to promote and spread forms of enhancement, and improvement for aged people (since they can only regain the previous performance). In this case, those who want to occupy relevant roles in society might be asked or even forced to undergo the enhancement to make up for the general decline in cognitive abilities. Ethical reflection will then be called to clarify the obligations to be enhanced and the rights of those who do not want to alter the functioning of their mind / brain.

This situation does not exclude the tendency linked to the first challenge that I have illustrated. On the one hand, medicine is concentrating on enhancing a lucky few, who could take advantage of the current dynamics to reverse the pursuit of equality that our societies have been implementing for some time (apart from temporary fluctuations in the distribution of income and wealth). On the other hand, demographic decline and aging may require that more people resort to cognitive enhancement, improvement and rehabilitation to compensate for the decrease in the overall capabilities available to address the complex problems we are facing today.

Conclusion

These scenarios find their preconditions in trends that are already in place, but which will not be necessarily realized. However, they seem to deserve attention from all those working in the field of electroceuticals and from public decision-makers, that is, all those who can affect future situations. Philosophers and neuroethicists are entrusted with the task of thinking about these scenarios so as not to be unprepared in case they come true.

In the face of these challenges, however, some lines of intervention can already be hypothesized. Faced with the first challenge—that is, the possible shift from a mainly therapeutic use of electroceuticals to a use aimed at enhancement—a stricter regulation of devices must be promoted (Dubljević, 2015Maslen et al., 2015). Secondly, scientists and clinicians could try to establish guidelines for the use of electroceuticals that should consider not only the safety features but also the possible social consequences of a widespread use of these enhancement techniques. Thirdly, research should be directed primarily at clinical applications, before moving toward the enhancement of healthy subjects.

As for the second challenge, the three recommendations set out above apply as well. More specifically, all operators engaged in medical practices involving electroceuticals should refer to the ethical codes of their respective professions and to international conventions (for example the Oviedo Convention) for the protection of human rights and dignity. All these rules already in force prevent the mandatory administration of medical treatments, except in extraordinary cases that are, or should be, well-specified. It would therefore be important to avoid defining electroceuticals as a non-medical treatment in order to use them only within a legal framework.

Faced with political decisions that could go toward the violation of the rules in force, the scientific community would have the responsibility to highlight the potential risks involved and to actively prevent them as well.

References

[…]

 

Continue —>  Frontiers | The Two-Fold Ethical Challenge in the Use of Neural Electrical Modulation | Neuroscience

, , , , , , ,

Leave a comment

[Abstract] The Impact of Traumatic Brain Injury on Later Life: Effects on Normal Aging and Neurodegenerative Diseases

ABSTRACT

The acute and chronic effects of traumatic brain injury (TBI) have been widely described; however, there is limited knowledge on how a TBI sustained during early adulthood or mid-adulthood will influence aging. Epidemiological studies have explored whether TBI poses a risk for dementia and other neurodegenerative diseases associated with aging. We will discuss the influence of TBI and resulting medical comorbidities such as endocrine, sleep, and inflammatory disturbances on age-related gray and white matter changes and cognitive decline. Post mortem studies examining amyloid, tau, and other proteins will be discussed within the context of neurodegenerative diseases and chronic traumatic encephalopathy. The data support the suggestion that pathological changes triggered by an earlier TBI will have an influence on normal aging processes and will interact with neurodegenerative disease processes rather than the development of a specific disease, such as Alzheimer’s or Parkinson’s. Chronic neurophysiologic change after TBI may have detrimental effects on neurodegenerative disease.

Users who read this article also read

No Access
A Systematic Review of Psychological Interventions for Sleep and Fatigue after Mild Traumatic Brain Injury

Karen A. SullivanHannah BlaineSherrie-Anne KayeAlice TheadomCatherine HadenSimon S. Smith

Journal of Neurotrauma. November 2017, ahead of print.

Abstract | Full Text PDF or HTML | Reprints/Permissions

No Access
Prefrontal Cortical Thickening after Mild Traumatic Brain Injury: A One-Year Magnetic Resonance Imaging Study

Patrizia Dall’AcquaSönke JohannesLadislav MicaHans-Peter SimmenRichard GlaabJavier FandinoMarkus SchwendingerChristoph MeierErika Jasmin UlbrichAndreas MüllerLutz JänckeJürgen Hänggi

Journal of Neurotrauma. Dec 2017: 3270-3279.

Abstract | Full Text PDF or HTML | Supplementary Material | Reprints | Permissions

No Access
Risk Factors for Mild Traumatic Brain Injury and Subsequent Post-Traumatic Stress Disorder and Mental Health Disorders among United States Army Soldiers

Dennis E. ScofieldSusan P. ProctorJoseph R. KardouniOwen T. HillCraig J. McKinnon

Journal of Neurotrauma. Dec 2017: 3249-3255.

Abstract | Full Text PDF or HTML | Reprints | Permissions

No Access
Age at First Exposure to Repetitive Head Impacts Is Associated with Smaller Thalamic Volumes in Former Professional American Football Players

Vivian SchultzRobert A. SternYorghos TripodisJulie StammPawel WrobelChristian LepageIsabelle WeirJeffrey P. GuenetteAlicia ChuaMichael L. AloscoChristine M. BaughNathan G. FrittsBrett M. MartinChristine E. ChaissonMichael J. ColemanAlexander P. LinOfer PasternakMartha E. ShentonInga K. Koerte

Journal of Neurotrauma. November 2017, ahead of print.

Abstract | Full Text PDF or HTML | Reprints/Permissions

No Access
The Default Mode Network as a Biomarker of Persistent Complaints after Mild Traumatic Brain Injury: A Longitudinal Functional Magnetic Resonance Imaging Study

Harm J. van der HornMyrthe E. ScheenenMyrthe E. de KoningEdith J. LiemburgJacoba M. SpikmanJoukje van der Naalt

Journal of Neurotrauma. Dec 2017: 3262-3269.

Abstract | Full Text PDF or HTML | Supplementary Material | Reprints | Permissions

No Access
The Invisibility of Mild Traumatic Brain Injury: Impaired Cognitive Performance as a Silent Symptom

Leore R. HeimMiaad BaderShahaf EdutLital RachmanyRenana Baratz-GoldsteinRan LinAviya ElpazDoaa QubtyLior BikovskiVardit RubovitchShaul SchreiberChaim G. Pick

Journal of Neurotrauma. Sep 2017: 2518-2528.

Abstract | Full Text PDF or HTML | Supplementary Material | Reprints | Permissions

via The Impact of Traumatic Brain Injury on Later Life: Effects on Normal Aging and Neurodegenerative Diseases | Abstract

, , , , ,

Leave a comment

[Dissertation Abstract] Investigation of Neural Mechanisms of Grip Relaxation” by Binal Motawar

Abstract

Neural mechanisms for grip relaxation are relatively unknown and understudied, as compared to mechanisms for grip initiation. Yet, termination of motor activity is as important as initiation in daily function. This knowledge gap presents incomplete understanding of neural control of hand function and its impairment with aging and neurologic disorders.

The purpose of this dissertation was to identify and examine neural mechanisms of grip relaxation in healthy young adults, with aging, and in chronic stroke survivors. A series of experiments in healthy young adults showed that the relaxation from a maximum power grip was mediated by increase in the short-interval intracortical inhibition (SICI). The role of spinal motor excitability modulation for grip relaxation was refuted, in contrast to previous literature for the leg muscle. These data from healthy young adults suggest that the grip relaxation time is a cortically mediated active process. Additionally, these studies also showed that the neural mechanism of grip relaxation is comparable for the dominant and the nondominant hand in healthy young adults. The next step was to identify any delays in relaxing from a grip in healthy older adults.

Assessment of the effects of aging on the role of SICI showed that the delayed grip relaxation time in older adults was accompanied by reduced modulation of SICI for grip relaxation. The cortical silent period and H reflex did not explain delays in grip relaxation observed in older adults.

Another series of experiments showed that the chronic stroke survivors and age-matched control adults demonstrated comparable modulations of SICI, cortical silent period, corticomotor excitability, and H reflex. Yet, the paretic hand of the stroke survivors was significantly delayed in relaxing from a grip.

Correlation and regression analysis showed that the stroke-related delayed grip relaxation time may be explained by increased spasticity, reduced somatosensation, paretic grip weakness relative to the nonparetic, strength of the corticospinal connections and interhemispheric inhibition. An intervention aimed to modulate cortical excitability and interhemispheric inhibition, Active Passive Bilateral Therapy, was employed but was found to be not effective in modulating grip relaxation time and interhemispheric inhibition after a one-time 20-minute session, warranting a longer treatment time.

In summary, this dissertation investigated neural mechanisms of grip relaxation and contributes to the general body of knowledge regarding neural control of hand movements.

, , , , , , , , , , ,

Leave a comment

[WEB SITE] AES Annual Meeting takes our understanding of epilepsy to next level

Epilepsy remains one of the most common neurological conditions, affecting one in 26 Americans in their lifetime, with one-third having a form of the condition that resists treatment or effective management. With those statistics in mind, more than 5,200 neurologists, scientists, nurses and health professionals came to Philadelphia December 4-8 for the 2015 American Epilepsy Society (AES) Annual Meeting to discuss new discoveries and emerging technologies that can lead to more effective treatment.

“AES hosts its Annual Meeting with one goal in mind — to provide our broad community of epilepsy professionals with world-class education in order to take our understanding of epilepsy to the next level,” said AES Executive Director Eileen Murray. “Thanks to our board, planning committee, members, speakers, exhibitors, attendees, and staff, we accomplished our goal.”

This meeting marked the largest ever in its 69-year history, drawing attendees from all 50 states and more than 60 countries. During the four-day event, AES organized more than 100 symposia, lectures, and platform sessions and more than 1,200 research abstracts were presented. The meeting also featured a sold-out exhibit hall with nearly 200 exhibitors from major therapeutic and research companies and not-for-profit organizations. Popular topics at the Annual Meeting included:

Pharmaceutical CBD (cannabidiol) for severe epilepsy — Global interest is growing in using CBD for children with severe epilepsy, and three studies presented at the meeting looked at safety and efficacy in the largest trial of CBD to date.

Personal monitoring devices – Three personal monitoring devices unveiled at the meeting offer biometric recording technology that could allow patients to monitor clinical and subclinical seizure activity in the everyday home environment and get advance warning before a seizure strikes.

Personalized medicine reveal new targets for epilepsy – Technological advances ranging from gene editing to next-generation sequencing offer unprecedented access to the human genome and promise to reshape the diagnosis and treatment of epilepsy.

Better management options for status epilepticus in children — A medical emergency with a high mortality rate, status epilepticus requires prompt treatment, but what constitutes the appropriate care is an area of intense debate.

Interplay between epilepsy and aging – The largest and fastest-growing segment of people with epilepsy are those age 60 and older. People with epilepsy face a number of related health challenges, including cognitive, physical and psychological disorders. But new research suggests other, less expected consequences on the aging process, providing insights that shed light on the long-term implications of life with epilepsy.

A highlight of the Annual Meeting was the Judith Hoyer Lecture, sponsored by the National Institute of Neurological Disorders and Stroke. Jacqueline French, M.D., spoke on “Obstacles in Epilepsy Diagnosis: If You Don’t Ask, They Won’t Tell.” The lecture is meant for both professionals and members of the public, to raise awareness of epilepsy and stimulate thinking about future advances.

Source: AES Annual Meeting takes our understanding of epilepsy to next level

, , , , , ,

Leave a comment

[REVIEW] Sleep and Motor Learning: Implications for Physical Rehabilitation After Stroke – Full Text HTML

Sleep is essential for healthy brain function and plasticity underlying learning and memory. In the context of physical impairment such as following a stroke, sleep may be particularly important for supporting critical recovery of motor function through similar processes of reorganization in the brain. Despite a link between stroke and poor sleep, current approaches to rehabilitative care often neglect the importance of sleep in clinical assessment and treatment. This review assimilates current evidence on the role of sleep in motor learning, with a focus on the implications for physical rehabilitation after stroke. We further outline practical considerations for integrating sleep assessment as a vital part of clinical care.

Introduction

The adult brain is highly adaptable, even after injury it often exhibits an impressive capacity for reorganization. Activity in the brain during sleep is thought to be critically involved in supporting these processes of plasticity. Briefly, sleep can be thought of as a state of consciousness, or alternations in consciousness, which oscillates between states of reduced awareness of external real-world stimuli to a complete loss of consciousness (1). While the precise mechanisms have yet to be clearly defined, sleep has been associated with many important functions, including those of the immune and memory systems (2–5). In memory, sleep is consistently attributed a particularly prominent role in supporting time-sensitive processes associated with the consolidation of memories. Consolidation here refers to dynamic processes in the brain that occur after initial (“on-line”) memory encoding takes place, such as when we practice a new skill. Subsequent (“off-line”) mechanisms of consolidation serve to further process these new memory traces, for instance, to enable the integration of knowledge and long-term memory storage.

One reason memory consolidation may be particularly important in a clinical context is because of how it applies to neurological rehabilitation, such as motor recovery after lesion to the brain. Here, the primary aim of physical rehabilitation is to facilitate recovery of functional motor capacity after initial impairment. Another way to look at physical rehabilitation, therefore, is as a form of motor learning, or relearning, which in turn may tap into some of the same processes of memory formation and consolidation as other forms of procedural memory (6, 7). Consequently, experimental insights into processes in the brain that support motor memory are likely to have more wide-ranging application that may benefit understanding and development of useful strategies for improving long-term rehabilitative outcomes in the clinic. The primary objective of this review is to provide an assimilation of current evidence on the role of sleep in motor learning and to identify specific factors of learning and consolidation that may have important implications for rehabilitation. For the purposes of this review, we will focus primarily on sleep-dependent motor memory with relevance to physical rehabilitation after stroke, although many of the discussion points included here will likely apply more broadly to other types of memory and rehabilitation. Meanwhile, what is some of the evidence linking sleep, in particular, to motor memory?

Continue —> Frontiers | Sleep and Motor Learning: Implications for Physical Rehabilitation After Stroke | Sleep and Chronobiology

 

Figure 1. Motor learning and sleep-dependent consolidation. After a period of consolidation following training on an explicit motor sequence-learning task performed on a standard keyboard or button box, young, healthy adults consistently demonstrate marked performance improvements after sleep, whereas an equivalent period awake during the day does not provide significant off-line gains. Adapted from Gudberg et al. (13).

 

, , , , , , ,

Leave a comment

[ARTICLE] Efficacy and Feasibility of Functional Upper Extremity Task-Specific Training for Older Adults With and Without Cognitive Impairment

Abstract

Background. Although functional task-specific training is a viable approach for upper extremity neurorehabilitation, its appropriateness for older populations is unclear. If task-specific training is to be prescribed to older adults, it must be efficacious and feasible, even in patients with cognitive decline due to advancing age.

Objective. This cross-sectional study tested the efficacy and feasibility of upper extremity task-specific training in older adults, including those with lower cognitive scores.

Methods. Fifty older adults (age 65-89 years) without any confounding neuromuscular impairment were randomly assigned to a training group or no-training group. The training group completed 3 days (dosage = 2250 repetitions) of a functional upper extremity motor task (simulated feeding) with their nondominant hand; the no-training group completed no form of training at all. Both groups’ task performance (measured as trial time) was tested at pre- and posttest, and the training group was retested 1 month later. Efficacy was determined by rate, amount, and retention of training-related improvement, and compared across levels of cognitive status. Feasibility was determined by participants’ tolerance of the prescribed training dose.

Results. The training group was able to complete the training dose without adverse responses and showed a significant rate, amount, and retention of improvement compared with the no-training group. Cognitive status did not alter results, although participants with lower scores on the Montreal Cognitive Assessment were slower overall.

Conclusions. Task-specific training may be appropriate for improving upper extremity function in older adults, yet future work in older patients with specific neurological conditions is needed.

via Efficacy and Feasibility of Functional Upper Extremity Task-Specific Training for Older Adults With and Without Cognitive Impairment.

, , , , , , ,

Leave a comment

[WEB SITE] Our Amazingly Plastic Brains

By NORMAN DOIDGE

Feb. 6, 2015 5:34 p.m. ET

As people reach middle age, exercising the brain and the body to which it is attached—keeping both active—becomes more important.Can the brain heal and preserve itself—or even improve its functioning—as we get older? For some time, many scientists have tended to think of our brains as machines, most commonly as computers, destined to break down over time under the strain of age and use. In recent years, however, research in neuroscience has begun to show the inadequacy of this metaphor for describing the physiology of the brain. It turns out that our brains, like our bodies in general, are far more likely to waste away from underuse than to wear down from overuse.

As people reach middle age, exercising the brain and the body to which it is attached—keeping both active—becomes more important. It is one of the few reliable ways to offset the natural wasting process and the damaging influence of our unnaturally sedentary modern lives. It also points to new possibilities for the brain to heal itself in the face of disease and trauma.

For decades, physicians and scientists generally believed that the prognosis for most brain problems was grim. The standard view was that the brain had evolved to be so complex and specialized that we had to pay a price for its sophistication: It couldn’t repair or restore itself with replacement parts, as was possible with other organs, such as the skin, liver and blood.

That view fit with, and partly stemmed from, an image that had prevailed since the days of the great French philosopher and scientist René Descartes, who described the brain as a glorious machine with discrete parts. Descartes’s heirs argued that each of these parts performed a single mental function in a single location. If a part was damaged—by a genetic fault, or stroke, or injury or disease—it was assumed that the body had no resources of its own to deal with the problem: After all, machines cannot repair themselves or spontaneously grow new parts.

Once the electrical nature of the brain was delineated in the 19th century, scientists began speaking of it as a grander sort of machine, an electrical one, with “circuits”—a metaphor still very much with us. They came to see its circuits as analogous to those of electronic gadgets—unchangeable or “hard-wired.”

As the machine metaphor evolved, neuroscientists took to describing the brain as a computer. This “master analogy,” as computer scientist David Gelernter calls it (in criticizing this view), encourages us to see thought as “software” and the brain’s structure as “hardware.”

The unhappy practical implication of this view, for anyone wishing to maintain his or her brain, is clear: Hardware inevitably degenerates with time and use. The rule for a machine is, “Use it and lose it.” Many clinicians under the sway of this analogy saw patients’ attempts to resist their brains’ decline through activity and mental exercise as a harmless waste of time.

Fortunately, a growing body of research suggests that this older view is wrong. It seems that a more accurate rule for our brains is “Use it or lose it.”

Continue –>  Our Amazingly Plastic Brains – WSJ.

,

2 Comments

ARTICLE: Timing of motor cortical stimulation during planar robotic training differentially impacts neuroplasticity in older adults – Full Text

Highlights

– Altering the timing of stimulation during a reaching intervention changes the direction and extent of plasticity

– Non-invasive brain stimulation may be a catalyst to promote plasticity in older adults.

– Robotic reaching plus stimulation facilitated a rapid plastic response that was maintained during the intervention and for a short time period following the intervention.

via Timing of motor cortical stimulation during planar robotic training differentially impacts neuroplasticity in older adults.

, , , , , , , ,

Leave a comment

%d bloggers like this: