Posts Tagged Ankle rehabilitation

[Abstract+References] State-of-the-art robotic devices for ankle rehabilitation: Mechanism and control review

There is an increasing research interest in exploring use of robotic devices for the physical therapy of patients suffering from stroke and spinal cord injuries. Rehabilitation of patients suffering from ankle joint dysfunctions such as drop foot is vital and therefore has called for the development of newer robotic devices. Several robotic orthoses and parallel ankle robots have been developed during the last two decades to augment the conventional ankle physical therapy of patients. A comprehensive review of these robotic ankle rehabilitation devices is presented in this article. Recent developments in the mechanism design, actuation and control are discussed. The study encompasses robotic devices for treadmill and over-ground training as well as platform-based parallel ankle robots. Control strategies for these robotic devices are deliberated in detail with an emphasis on the assist-as-needed training strategies. Experimental evaluations of the mechanism designs and various control strategies of these robotic ankle rehabilitation devices are also presented.

1. De Ridder RWillems TVanrenterghem J, et al. Multi-segment foot landing kinematics in subjects with chronic ankle instability. Clin Biomech 2015; 30: 585592Google Scholar CrossrefMedline
2. Nolan KJYarossi MMcLaughlin PChanges in center of pressure displacement with the use of a foot drop stimulator in individuals with stroke. Clin Biomech 2015; 30: 755761Google Scholar CrossrefMedline
3. Kluding PMDunning KO’Dell MW, et al. Foot drop stimulation versus ankle foot orthosis after stroke: 30-week outcomes. Stroke 2013; 44: 16601669Google Scholar CrossrefMedline
4. Roy AForrester LWMacko RF, et al. Changes in passive ankle stiffness and its effects on gait function in people with chronic stroke. J Rehabil Res Dev 2013; 50: 555571Google Scholar CrossrefMedline
5. Roy AKrebs HIWilliams DJ, et al. Robot-aided neurorehabilitation: a novel robot for ankle rehabilitation. IEEE T Robot 2009; 25: 569582Google Scholar Crossref
6. Jamwal PKXie SQHussain S, et al. An adaptive wearable parallel robot for the treatment of ankle injuries. IEEE/ASME T Mech 2014; 19: 6475Google Scholar Crossref
7. Jamwal PKHussain SXie SQReview on design and control aspects of ankle rehabilitation robots. Disabil Rehabil Assist Technol 2015; 10: 93101Google Scholar CrossrefMedline
8. Gordon KESawicki GSFerris DPMechanical performance of artificial pneumatic muscles to power an ankle-foot orthosis. J Biomech 2006; 39: 18321841Google Scholar CrossrefMedline
9. Blaya JAHerr HAdaptive control of a variable-impedance ankle-foot orthosis to assist drop-foot gait. IEEE T Neur Sys Reh 2004; 12: 2431Google Scholar CrossrefMedline
10. Saglia JATsagarakis NGDai JS, et al. A high-performance redundantly actuated parallel mechanism for ankle rehabilitation. Int J Robot Res 2009; 28: 12161227Google Scholar Link
11. Jamwal PKHussain SXie SQThree-stage design analysis and multicriteria optimization of a parallel ankle rehabilitation robot using genetic algorithm. IEEE T Autom Sci Eng 2015; 12: 14331446Google Scholar Crossref
12. Jamwal PKXie SQAw KCKinematic design optimization of a parallel ankle rehabilitation robot using modified genetic algorithm. Robot Auton Syst 2009; 57: 10181027Google Scholar Crossref
13. Jamwal PKXie SQTsoi YH, et al. Forward kinematics modelling of a parallel ankle rehabilitation robot using modified fuzzy inference. Mech Mach Theory 2010; 45: 15371554Google Scholar Crossref
14. Burdea GCCioi DKale A, et al. Robotics and gaming to improve ankle strength, motor control, and function in children with cerebral palsy—a case study series. IEEE T Neur Sys Reh 2013; 21: 165173Google Scholar CrossrefMedline
15. Girone MBurdea GBouzit M, et al. A Stewart platform-based system for ankle telerehabilitation. Auton Robot 2001; 10: 203212Google Scholar Crossref
16. Bucca GBezzolato ABruni S, et al. A mechatronic device for the rehabilitation of ankle motor function. J Biomech Eng 2009; 131: 125001-1125001-7Google Scholar Crossref
17. Michmizos KPRossi SCastelli E, et al. Robot-aided neurorehabilitation: a pediatric robot for ankle rehabilitation. IEEE T Neur Sys Reh 2015; 23: 10561067Google Scholar CrossrefMedline
18. Xie SQJamwal PKAn iterative fuzzy controller for pneumatic muscle driven rehabilitation robot. Expert Syst Appl 2011; 38: 81288137Google Scholar Crossref
19. Jamwal PKHussain SGhayesh MH, et al. Impedance control of an intrinsically compliant parallel ankle rehabilitation robot. IEEE T Ind Electron 2016; 63: 36383647Google Scholar Crossref
20. Saglia JATsagarakis NGDai JS, et al. Control strategies for patient-assisted training using the ankle rehabilitation robot (ARBOT). IEEE/ASME T Mech 2013; 18: 17991808Google Scholar Crossref
21. Colombo GJoerg MSchreier R, et al. Treadmill training of paraplegic patients using a robotic orthosis. J Rehabil Res Dev 2000; 37: 693700Google Scholar Medline
22. Banala SKKim SHAgrawal SK, et al. Robot assisted gait training with active leg exoskeleton (ALEX). IEEE T Neur Sys Reh 2009; 17: 28Google Scholar CrossrefMedline
23. Melo PLSilva MTMartins JM, et al. Technical developments of functional electrical stimulation to correct drop foot: sensing, actuation and control strategies. Clin Biomech 2015; 30: 101113Google Scholar CrossrefMedline
24. Xu RJiang NMrachacz-Kersting N, et al. A closed-loop brain-computer interface triggering an active ankle-foot orthosis for inducing cortical neural plasticity. IEEE T Biomed Eng 2014; 61: 20922101Google Scholar CrossrefMedline
25. Jamwal PKHussain SMulticriteria design optimization of a parallel ankle rehabilitation robot: fuzzy dominated sorting evolutionary algorithm approach. IEEE T Syst Man Cy: S 2016; 46: 589597Google Scholar Crossref
26. Park YLChen BRPérez-Arancibia NO, et al. Design and control of a bio-inspired soft wearable robotic device for ankle-foot rehabilitation. Bioinspir Biomim 2014; 9: 117Google Scholar Crossref
27. Ferris DPGordon KESawicki GS, et al. An improved powered ankle-foot orthosis using proportional myoelectric control. Gait Posture 2006; 23: 425428Google Scholar CrossrefMedline
28. Veneman JFEkkelenkamp RKruidhof R, et al. A series elastic- and bowden-cable-based actuation system for use as torque actuator in exoskeleton-type robots. Int J Robot Res 2006; 25: 261281Google Scholar Link
29. Kinnaird CRFerris DPMedial gastrocnemius myoelectric control of a robotic ankle exoskeleton. IEEE T Neur Sys Reh 2009; 17: 3137Google Scholar CrossrefMedline
30. Bharadwaj KSugar TGKoeneman JB, et al. Design of a robotic gait trainer using spring over muscle actuators for ankle stroke rehabilitation. J Biomech Eng 2005; 127: 10091013Google Scholar CrossrefMedline
31. Hollander KWIlg RSugar TG, et al. An efficient robotic tendon for gait assistance. J Biomech Eng 2006; 128: 788791Google Scholar CrossrefMedline
32. Ward JSugar TBoehler A, et al. Stroke survivors’ gait adaptations to a powered ankle foot orthosis. Adv Robot 2011; 25: 18791901Google Scholar CrossrefMedline
33. Shorter KAKogler GFLoth E, et al. A portable powered ankle-foot orthosis for rehabilitation. J Rehabil Res Dev 2011; 48: 459472Google Scholar CrossrefMedline
34. Malcolm PDerave WGalle S, et al. A simple exoskeleton that assists plantarflexion can reduce the metabolic cost of human walking. PLoS ONE 2013; 8: 17Google Scholar Crossref
35. Galle SMalcolm PDerave W, et al. Enhancing performance during inclined loaded walking with a powered ankle–foot exoskeleton. Eur J Appl Physiol 2014; 114: 23412351Google Scholar CrossrefMedline
36. Erdogan ACelebi BSatici AC, et al. AssistOn-Ankle: a reconfigurable ankle exoskeleton with series-elastic actuation. Auton Robot 2016; 41: 116Google Scholar
37. Noël MCantin BLambert S, et al. An electrohydraulic actuated ankle foot orthosis to generate force fields and to test proprioceptive reflexes during human walking. IEEE T Neur Sys Reh 2008; 16: 390399Google Scholar CrossrefMedline
38. Borràs JThomas FTorras CNew geometric approaches to the analysis and design of Stewart–Gough platforms. IEEE/ASME T Mech 2014; 19: 445455Google Scholar Crossref
39. Yoon JRyu JLim KBReconfigurable ankle rehabilitation robot for various exercises. J Robotic Syst 2006; 22: S15S33Google Scholar Crossref
40. Karime AAl-Osman HAlja’Am JM, et al. Tele-wobble: a telerehabilitation wobble board for lower extremity therapy. IEEE T Instrum Meas 2012; 61: 18161824Google Scholar Crossref
41. Dai JSZhao TNester CSprained ankle physiotherapy based mechanism synthesis and stiffness analysis of a robotic rehabilitation device. Auton Robot 2004; 16: 207218Google Scholar Crossref
42. Wang CFang YGuo S, et al. Design and kinematical performance analysis of a 3-RUS/RRR redundantly actuated parallel mechanism for ankle rehabilitation. J Mech Robot 2013; 5: 041003-1041003-7Google Scholar Crossref
43. Rakhodaei HSaadat MRastegarpanah A, et al. Path planning of the hybrid parallel robot for ankle rehabilitation. Robotica 2016; 34: 173184Google Scholar Crossref
44. Vallés MCazalilla JValera Á, et al. A 3-PRS parallel manipulator for ankle rehabilitation: towards a low-cost robotic rehabilitation. Robotica 2017; 35: 19391957Google Scholar Crossref
45. Tsoi YHXie SQDesign and control of a parallel robot for ankle rehabilitation. Int J Intell Syst Tech Appl 2010; 8: 100113Google Scholar
46. Lin CCKJu MSChen SM, et al. A specialized robot for ankle rehabilitation and evaluation. J Med Biol Eng 2008; 28: 7986Google Scholar
47. Agrawal ASangwan VBanala SK, et al. Design of a novel two degree-of-freedom ankle-foot orthosis. J Mech Des: T ASME 2007; 129: 11371143Google Scholar Crossref
48. Wolbrecht ETReinkensmeyer DJBobrow JEPneumatic control of robots for rehabilitation. Int J Robot Res 2010; 29: 2338Google Scholar Link
49. Gordon KEFerris DPLearning to walk with a robotic ankle exoskeleton. J Biomech 2007; 40: 26362644Google Scholar CrossrefMedline
50. Forrester LWRoy AKrebs HI, et al. Ankle training with a robotic device improves hemiparetic gait after a stroke. Neurorehabil Neural Repair 2011; 25: 369377Google Scholar Link
51. Forrester LWRoy AGoodman RN, et al. Clinical application of a modular ankle robot for stroke rehabilitation. NeuroRehabilitation 2013; 33: 8597Google Scholar Medline
52. Koller JRJacobs DAFerris DP, et al. Learning to walk with an adaptive gain proportional myoelectric controller for a robotic ankle exoskeleton. J Neuroeng Rehabil 2015; 12: 114Google Scholar CrossrefMedline
53. Gordon KEKinnaird CRFerris DPLocomotor adaptation to a soleus EMG-controlled antagonistic exoskeleton. J Neurophysiol 2013; 109: 18041814Google Scholar CrossrefMedline
54. Shorter KAXia JHsiao-Wecksler ET, et al. Technologies for powered ankle-foot orthotic systems: possibilities and challenges. IEEE/ASME T Mech 2013; 18: 337347Google Scholar Crossref
55. Zanotto DAkiyama YStegall P, et al. Knee joint misalignment in exoskeletons for the lower extremities: effects on user’s gait. IEEE T Robot 2015; 31: 978987Google Scholar Crossref
56. Cempini MDe Rossi SMMLenzi T, et al. Self-alignment mechanisms for assistive wearable robots: a kinetostatic compatibility method. IEEE T Robot 2013; 29: 236250Google Scholar Crossref
57. Stienen AHAHekman EEGvan der Helm FCT, et al. Self-aligning exoskeleton axes through decoupling of joint rotations and translations. IEEE T Robot 2009; 25: 628633Google Scholar Crossref
58. Tsoi YHXie SQOnline estimation algorithm for a biaxial ankle kinematic model with configuration dependent joint axes. J Biomech Eng 2011; 133: 021005-1021005-11Google Scholar Crossref

Source: State-of-the-art robotic devices for ankle rehabilitation: Mechanism and control reviewProceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine – Shahid Hussain, Prashant K Jamwal, Mergen H Ghayesh, 2017

Advertisements

, ,

Leave a comment

[Abstract+References] Impedance Control of a Pneumatic Muscles-Driven Ankle Rehabilitation Robot – Conference paper

Abstract

Pneumatic muscle is a new type of flexible actuator with advantages in terms of light weight, large output power/weight ratio, good security, low price and clean. In this paper, an ankle rehabilitation robot with two degrees of freedom driven by pneumatic muscle is studied. The force control method with an impedance controller in outer loop and a position inner loop is proposed. The demand of rehabilitation torque is ensured through tracking forces of three pneumatic muscle actuators. In the simulation, the constant force and variable force are tracked with error less than 10 N. In the experiment, the force control method also achieved satisfactory results, which provides a good support for the application of the robot in the ankle rehabilitation.

References

  1. 1.
    Bradley, D., et al.: NeXOS-the design, development and evaluation of a rehabilitation system for the lower limbs. Mechatronics 19(2), 247–257 (2009)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Inoue, K.: Rubbertuators and applications for robots. In: Proceedings of the 4th IEEE International Symposium on Robotics Research, Cambridge, pp. 57–63 (1988)Google Scholar
  3. 3.
    Chou, C.P.: Measurement and modeling of McKibben pneumatic artificial muscle. IEEE Trans. Robot. Autom. 12(1), 90–102 (1996)CrossRefGoogle Scholar
  4. 4.
    Gaylord, R.H.: Fluid actuated motor system and stroking device. U.S. Patent 2238058, 22 July (1958) Google Scholar
  5. 5.
    Doumit, M., Fahim, A.: Michael Munro. analytical modeling and experimental validation of the braided pneumatic muscle. IEEE Trans. Robot. 25(6), 1282–1291 (2009)CrossRefGoogle Scholar
  6. 6.
    Wickramatunge, K.C., et al.: Study on mechanical behaviors of pneumatic artificial muscle. Int. J. Eng. Sci. 48(2), 188–198 (2010)CrossRefGoogle Scholar
  7. 7.
    Tu, D.C.T., Ahn, K.K.: Nonlinear PID control to improve the control performance of 2 axes pneumatic artificial muscle manipulator using neural network. Mechatronics 16(9), 577–587 (2006)CrossRefGoogle Scholar
  8. 8.
    Lin, C.J., Lin, C.R.: Hysteresis modeling and tracking control for a dual pneumatic artificial muscle system using Prandtl-Ishlinskii model. Mechatronics 28, 35–45 (2015)CrossRefGoogle Scholar
  9. 9.
    Ganguly, S., Garg, A.: Control of pneumatic artificial muscle system through experimental modeling. Mechatronics 22(8), 1135–1147 (2012)CrossRefGoogle Scholar
  10. 10.
    Perez Ibarra, J.C.: Adaptive impedance control for robot-aided rehabilitation of ankle movements. In: 2014 5th IEEE RAS & EMBS International Conference on Biomedical Robotics and Biomechatronics (BioRob), São Paulo, Brazil (2014) Google Scholar
  11. 11.
    Proietti, T., Crocher, V.: Upper-limb robotic exoskeletons for neurorehabilitation: a review on control strategies. IEEE Rev. Biomed. Eng. 9, 4–14 (2016)CrossRefGoogle Scholar
  12. 12.
    Chen, S.H., Lien, W.M.: Assistive Control System for Upper Limb Rehabilitation Robot. IEEE Transactions on Neural Systems & Rehabilitation Engineering A Publication of the IEEE Engineering in Medicine & Biology Society 24(11), 1199–1209 (2016)CrossRefGoogle Scholar
  13. 13.
    Prashant, K.: Impedance control of an intrinsically compliant parallel ankle rehabilitation robot. IEEE Trans. Industr. Electron. 63(6), 3638–3647 (2016)CrossRefGoogle Scholar
  14. 14.
    Shahid, H., Sheng, Q.: Adaptive impedance control of a robotic orthosis for gait rehabilitation. IEEE Trans. Cybern. 43(3), 1025–1034 (2013)CrossRefGoogle Scholar
  15. 15.
    Meng, W., Liu, Q.: Recent development of mechanisms and control strategies for robot-assisted lower limb rehabilitation. Mechatronics 31, 132–145 (2015)CrossRefGoogle Scholar

Source: Impedance Control of a Pneumatic Muscles-Driven Ankle Rehabilitation Robot | SpringerLink

, , ,

Leave a comment

%d bloggers like this: