Posts Tagged aphasia

[WEB SITE] Life after stroke: Tips for recovering communication skills – Medical News Today

Every year in the United States, more than 795,000 people have a stroke, according to the Centers for Disease Control and Prevention. Furthermore, the United Kingdom’s Stroke Association note that 1 in 3 people will experience communication problems after a stroke.
[stroke]
Stroke can lead to ongoing communication problems, but recovery is often possible.

Unfortunately, we often judge people on how well they communicate. From the outside, a person who has difficulty speaking may appear to have difficulty thinking, too, but this is not necessarily true.

For a person who has had a stroke, the ability to think and communicate depends on the part, or parts, of the brain that have been affected.

Having a stroke can be a frightening and frustrating experience. Not being able to tell people what is going on in the aftermath can extend the trauma.

Friends and family members, for their part, can also find themselves tongue-tied. They may feel embarrassed, lost for words, or they may think that this is no longer the person they once knew.

Post-stroke rehabilitation can help people to regain some or all of their skills. Speech therapists specialize in communication, but nonspecialists can also play a key role.

It is important for friends and relatives to understand that what a person expresses on the outside, after a stroke, is not necessarily what is going on in their head. They should also remember that, although a person faces new challenges after experiencing a stroke, they are still the same person.

This article will offer some tips from people who have “been there” that can give us the necessary skills for helping someone get back to communicating after a stroke.

How does a stroke affect communication?

A stroke is a brain injury that results from bleeding or a blockage in the brain. The effects can be sudden or gradual, and the damage may impact various aspects of mental and physical health.

These include:

  • Motor skills
  • The senses, including reactions to pain
  • Language
  • Thinking and memory
  • Emotions.

A stroke can affect a person’s use of language in a variety of ways.

Not only can the processing of language be impaired, but paralysis or physical weakness in the face, tongue, or throat muscles could make it hard to swallow, control breathing, and form sounds.

The type and extent of communication problems will depend on the form of stroke and what kind of injury has occurred. The damage and resulting levels of ability will also vary.

The Stroke Association describe three conditions that affect communication after a stroke: aphasia, dysarthria, and dyspraxia. A person may experience one or a combination of these.

Aphasia

Aphasia, or dysphasia, results from damage to one of the “language control centers” in the brain. While it influences communication, it does not impact intelligence. It may affect just one type of communication – for example, reading, listening or speaking, or a combination.

Fast facts about stroke

  • Stroke can lead to paralysis or weakness on one side of the body
  • There may be difficulty with thinking, awareness, attention, learning, judgment, and memory
  • It can be hard to understand or form speech
  • Mood and emotions can be affected.

Learn more about stroke

Damage to a part of the brain known as Wernicke’s area can lead to receptive aphasia.

This makes it difficult to understand long and complex sentences, especially if there is background noise, or if more than one person is talking. The person may feel as if others are speaking in a foreign language. Their own speech may also become incoherent.

If there is damage to Broca’s area, expressive aphasia can result.

The person can understand others, but they will be unable to explain themselves. They can think the words, but they cannot speak them or put them together in order to make coherent, grammatically correct sentences.

A person with expressive aphasia may be able to make sounds or say short words or parts of sentences, but they may miss out important words or use the wrong word. They might have the word “on the tip of the tongue,” but not be able to get it out.

It may seem to the speaker that they are talking normally, but to a listener, it can sound like nonsense. Listeners may believe that the speaker is confused when they are not. They just cannot get the ideas across.

Damage that affects multiple areas of the brain can lead to mixed, or global, aphasia with challenges in all aspects of communication. The person may no longer use language to convey thought.

Dysarthria and dyspraxia

Dysarthria and dyspraxia relate to the physical production of speech sounds.

A person with dysarthria can find the words, but they cannot form them because of a physical problem, such as muscular weakness. This may cause the words to come out slurred or in short bursts. This slurring does not necessarily reflect the person’s state of mind. It is likely that only their ability to communicate is limited.

Dyspraxia involves difficulty with movement and coordination, so that the muscles needed for speech sounds may not work properly or in the correct order. This, too, can affect speech.

Other changes

Other changes that can make it hard to contribute to conversations include:

  • A loss of voice tone, normally used to express emotions
  • Fixed facial expression
  • Problems understanding humor
  • Inability to take turns in conversation.

These can make the person appear depressed, even if they are not.

Some people are aware that they are experiencing these changes. If so, letting others know what the problem is can help to combat the issue.

However, a person with anosognosia will be unable to recognize that anything is wrong, due to a lack of insight resulting from damage to the brain. This can hinder recovery.

Further problems

Depending on the damage that has occurred, vision and hearing problems can also affect communication and writing ability.

Tiredness is a common result of stroke. Conversation might also be tiring, because it demands so much effort.

After a stroke, stress and personality changes can occur. Stress can exacerbate communication problems, especially if the person becomes impatient with themselves, or if others become impatient.

Mood changes, due to the stroke’s effect on the brain, can further add to the strain.

What does a speech therapist do?

Speech therapy is a key part of rehabilitation after a stroke.

A speech therapist will help people with swallowing; this can be severely impaired, and it has an impact on language production.

[speech therapy]
Speech therapy can involve practicing forming words.

Language practice activities that speech therapists may use include intensive exercises in:

  • Repeating words
  • Following directions
  • Reading and writing.

Examples of more extensive practice are:

  • Conversational coaching
  • Rehearsing speech
  • Developing prompts to help people remember specific words
  • Working out ways to get around language disabilities, such as using symbols and sign language.

Communication technology has expanded the range of ways to practice and improve communication. An example of this is pressing a key to activate a voice simulator.

Some tips from people with first-hand experience

Medical News Today asked two men, Peter Cline and Geoff, about their experience in regaining communication skills after a stroke. Peter, an engineer, had a stroke at the age of 59 when he was just starting a holiday in Tasmania. Geoff, who ran his own business until his retirement, was living in Spain when he became ill.

Both men have worked hard to regain their communication skills.

We asked what advice they would give people in order to help them communicate with someone following a stroke.

They gave us this list of dos:

[singing group]
Songs help some people to relax and communicate.
  • Do look directly at the person when you are speaking to them
  • Do speak slowly and clearly, but use a normal tone of voice
  • Do use short sentences and stick to one topic at a time
  • Do ensure there is no background noise
  • Do reassure the person that you understand their frustration
  • Do write things down, if it will help
  • Do find out about the person’s employment, interests and passions – now and before the stroke – and try to relate to these
  • Do give people a chance to say what they want to say, without jumping in or correcting them.

They also gave us some don’ts:

  • Don’t finish the person’s sentences for them
  • Don’t speak too fast
  • Don’t push them too much
  • Don’t speak to the person while they are driving, for example, because they cannot concentrate
  • Don’t assume that because the person is having difficulty understanding, they must be stupid
  • Don’t “talk down” to the person, or speak to them as if they are a child
  • Don’t keep “rabbiting.”

Geoff told MNT that he feels his communication skills “go up and down.” It becomes harder for him to communicate when he is tired, and when there are more than two people in the conversation.

Both Geoff and Peter have made remarkable progress in their communication skills, and they each offered some words of encouragement for people who have had a stroke.

Geoff’s advice is:

“Take time to recover, and, when communicating, take time to explain, and don’t let yourself feel rushed.”

Peter says:

  • Persevere and don’t give up. Things will gradually improve but not as quickly as you want them to
  • Expect peaks and troughs in your recovery
  • Enjoy relaxing with something you are familiar with, for example, old films, music, or whatever your “comforter” is.

Peter explains that after a stroke, an individual can feel as if they are inside a bubble. “It helps if you can get someone to understand that,” he says.

Activities that can help

Friends and family can engage in regular practice activities to help someone recover their communication skills after a stroke.

It may be helpful to arrange regular slots for communication practice, at a time when the person will not be tired.

Here are some activities for sharing, depending on individual styles and taste:

[photo album and conversation]
A photo album can be useful for prompting conversation.
  • Songs, especially if the person was a keen singer before. Some people can sing after a stroke, even if they cannot speak, because singing and speaking use different parts of the brain
  • Card games that involve the person saying the name of the card
  • A photo album, to share and discuss the people and events in the pictures
  • A personal file, with information about the person’s life, jobs, and family, in order to provide topics of conversation and nonverbal clues when access to key words is difficult
  • A diary, with records of visits, events, and conversations. Friends and family can be encouraged to write in it, to help the person track their progress
  • News stories to read in advance and discuss during the session.

If an important conversation is coming up – with the insurance company or hospital, for example – these slots can be a good place to prepare.

Other tips for self-help

If a person has difficulty expressing a word or idea, encouraging them to write or draw what they mean can help. Some people can spell a word, even if they cannot say it.

Strategies that people have used to practice alone include:

  • Rehearsing speech sounds, such as vowels and consonants
  • Using children’s books to practicing reading and writing
  • Reciting poems or nursery rhymes
  • Saying the names of famous sports personalities
  • Watching the news, and copying how the newsreader speaks
  • Persevering in conversation with friends or family, however difficult it is

It is important for friends and family to continue to treat the person as an intelligent adult, and to be aware that while their ability to communicate has changed, their identity has not. They are still who they are, with interests, skills, and a past.

In addition, everyone is different, and the effects of stroke vary. For this reason, there will not be a “one-size-fits-all” solution.

Full recovery is not always possible, but patience, help, support, and practice can go a long way in helping people to regain their communication skills after a stroke.

Source: Life after stroke: Tips for recovering communication skills – Medical News Today

, , , , , , , ,

Leave a comment

[WEB SITE] Brain plasticity after injury: an interview with Dr Swathi Kiran

What is brain plasticity and why is it important following a brain injury?

Brain plasticity is the phenomenon by which the brain can rewire and reorganize itself in response to changing stimulus input. Brain plasticity is at play when one is learning new information (at school) or learning a new language and occurs throughout one’s life.

Brain plasticity is particularly important after a brain injury, as the neurons in the brain are damaged after a brain injury, and depending on the type of brain injury, plasticity may either include repair of damaged brain regions or reorganization/rewiring of different parts of the brain.

MRI brain injury

How much is known about the level of injury the brain can recover from? Over what time period does the brain adapt to an injury?

A lot is known about brain plasticity immediately after an injury. Like any other injury to the body, after an initial negative reaction to the injury, the brain goes through a massive healing process, where the brain tries to repair itself after the injury. Research tells us exactly what kinds of repair processes occur hours, days and weeks after the injury.

What is not well understood is how recovery continues to occur in the long term. So, there is a lot research showing that the brain is plastic, and undergoes recovery even months after the brain damage, but what promotes such recovery and what hinders such recovery is not well understood.

It is well understood that some rehabilitative training promotes brain injury and most of the current research is focused on this topic.

What techniques are used to study brain plasticity?

Human brain plasticity has mostly been studied using non-invasive imaging methods, because these techniques allow us to measure the gray matter (neurons), white matter (axons) at a somewhat coarse level. MRI and fMRI techniques provide snapshots and video of the brain in function, and that allows us to capture changes in the brain that are interpreted as plasticity.

Also, more recently, there are invasive stimulation methods such as transcranial direct current stimulation or transcranial magnetic stimulation which allow providing electric current or magnetic current to different parts of the brain and such stimulation causes certain changes in the brain.

How has our understanding advanced over recent years?

One of the biggest shifts in our understanding of brain plasticity is that it is a lifelong phenomenon. We used to previously think that the brain is plastic only during childhood and once you reach adulthood, the brain is hardwired, and no new changes can be made to it.

However, we now know that even the adult brain can be modified and reorganized depending on what new information it is learning. This understanding has a profound impact on recovery from brain injury because it means that with repeated training/instruction, even the damaged brain is plastic and can recover.

What role do you see personalized medicine playing in brain therapy in the future?

One reason why rehabilitation after brain injury is so complex is because no two individuals are alike. Each individual’s education and life experiences have shaped their brain (due to plasticity!) in unique ways, so after a brain injury, we cannot expect that recovery in two individuals will be occur the same way.

Personalized medicine allows the ability to tailor treatment for each individual taking into account their strengths and weaknesses and providing exactly the right kind of therapy for that person. Therefore, one size treatment does not fit all, and individualized treatments prescribed to the exact amount of dosage will become a reality.

Senior couple tablet

What is ‘automedicine’ and do you think this could become a reality?

I am not sure we understand what automedicine can and cannot do just yet, so it’s a little early to comment on the reality. Using data to improve our algorithms to precisely deliver the right amount of rehabilitation/therapy will likely be a reality very soon, but it is not clear that it will eliminate the need for doctors or rehabilitation professionals.

What do you think the future holds for people recovering from strokes and brain injuries and what’s Constant Therapy’s vision?

The future for people recovering from strokes and brain injuries is more optimistic than it has ever been for three important reasons. First, as I pointed above, there is tremendous amount of research showing that the brain is plastic throughout life, and this plasticity can be harnessed after brain injury also.

Second, recent advances in technology allow patients to receive therapy at their homes at their convenience, empowering them to take control of their therapy instead of being passive consumers.

Finally, the data that is collected from individuals who continuously receive therapy provides a rich trove of information about how patients can improve after rehabilitation, what works and what does not work.

Constant Therapy’s vision incorporates all these points and its goal to provide effective, efficient and reasonable rehabilitation to patients recovering from strokes and brain injury.

Where can readers find more information?

About Dr Swathi Kiran

DR SWATHI KIRANSwathi Kiran is Professor in the Department of Speech and Hearing Sciences at Boston University and Assistant in Neurology/Neuroscience at Massachusetts General Hospital. Prior to Boston University, she was at University of Texas at Austin. She received her Ph.D from Northwestern University.

Her research interests focus around lexical semantic treatment for individuals with aphasia, bilingual aphasia and neuroimaging of brain plasticity following a stroke.

She has over 70 publications and her work has appeared in high impact journals across a variety of disciplines including cognitive neuroscience, neuroimaging, rehabilitation, speech language pathology and bilingualism.

She is a fellow of the American Speech Language and Hearing Association and serves on various journal editorial boards and grant review panels including at National Institutes of Health.

Her work has been continually funded by the National Institutes of Health/NIDCD and American Speech Language Hearing Foundation awards including the New Investigator grant, the New Century Scholar’s Grant and the Clinical Research grant. She is the co-founder and scientific advisor for Constant Therapy, a software platform for rehabilitation tools after brain injury.

Source: Brain plasticity after injury: an interview with Dr Swathi Kiran

, , , , , , , , , ,

Leave a comment

[WEB SITE] What Is Brain Plasticity and Why Is It So Important?

The malleable brain. http://www.shutterstock.com

Neuroplasticity – or brain plasticity – is the ability of the brain to modify its connections or re-wire itself. Without this ability, any brain, not just the human brain, would be unable to develop from infancy through to adulthood or recover from brain injury.

What makes the brain special is that, unlike a computer, it processes sensory and motor signals in parallel. It has many neural pathways that can replicate another’s function so that small errors in development or temporary loss of function through damage can be easily corrected by rerouting signals along a different pathway.

The problem becomes severe when errors in development are large, such as the effects of the Zika virus on brain development in the womb, or as a result of damage from a blow to the head or following a stroke. Yet, even in these examples, given the right conditions the brain can overcome adversity so that some function is recovered.

The brain’s anatomy ensures that certain areas of the brain have certain functions. This is something that is predetermined by your genes. For example, there is an area of the brain that is devoted to movement of the right arm. Damage to this part of the brain will impair movement of the right arm. But since a different part of the brain processes sensation from the arm, you can feel the arm but can’t move it. This “modular” arrangement means that a region of the brain unrelated to sensation or motor function is not able to take on a new role. In other words, neuroplasticity is not synonymous with the brain being infinitely malleable.

Free chapter: Neuroplasticity Associated with Treated Aphasia Recovery

Part of the body’s ability to recover following damage to the brain can be explained by the damaged area of the brain getting better, but most is the result of neuroplasticity – forming new neural connections. In a study ofCaenorhabditis elegans, a type of nematode used as a model organism in research, it was found that losing the sense of touch enhanced the sense of smell. This suggests that losing one sense rewires others. It is well known that, in humans, losing one’s sight early in life can heighten other senses, especially hearing.

As in the developing infant, the key to developing new connections is environmental enrichment that relies on sensory (visual, auditory, tactile, smell) and motor stimuli. The more sensory and motor stimulation a person receives, the more likely they will be to recover from brain trauma. For example, some of the types of sensory stimulation used to treat stroke patients includes training in virtual environments, music therapy and mentally practising physical movements.

The basic structure of the brain is established before birth by your genes. But its continued development relies heavily on a process called developmental plasticity, where developmental processes change neurons and synaptic connections. In the immature brain this includes making or losing synapses, the migration of neurons through the developing brain or by the rerouting and sprouting of neurons.

There are very few places in the mature brain where new neurons are formed. The exceptions are the dentate gyrus of the hippocampus (an area involved in memory and emotions) and the sub-ventricular zone of the lateral ventricle, where new neurons are generated and then migrate through to the olfactory bulb (an area involved in processing the sense of smell). Although the formation of new neurons in this way is not considered to be an example of neuroplasticity it might contribute to the way the brain recovers from damage. …

Visit Web Site —> What Is Brain Plasticity and Why Is It So Important? | SciTech Connect

 

, , ,

Leave a comment

[ARTICLE] The complexity of the relationship between neuropsychological deficits and impairment in everyday tasks after stroke – Full Text HTML

Abstract

Background and purpose: A large body of research reports that stroke patients are debilitated in terms of daily independence after dismissal from the hospital unit. Patients struggle with the use of daily objects or performing complex actions. Differences between individual deficits of patients are often associated with the site of the brain damage. However, clinical studies suggest that patients exhibit varied constellations of action-associated difficulties and neuropsychological deficits. There is a lack of conclusive evidence indicating how different neuropsychological symptoms link to the impaired ability to perform activities of daily living (ADL).

Materials and methods: To further address this matter, in this study we compared the behavior of patients with left brain damage (LBD) and right brain damage (RBD) following stroke in two naturalistic task scenarios (tea making and document filing), and compared the committed action errors to the neuropsychological screening results.

Results: We observed mild to severe impairments in both the LBD and RBD groups amounting to 37–55% of failure rate in attainment of action goal. Interestingly, the performance on both tasks was not correlated to each other, suggesting that the tasks involved a different set of higher cognitive functions. Despite similar behavioral manifestations, in the LBD group poor task performance was related to deficits in praxis performance and unilateral tactile and visual extinction. The presence of aphasia did not correlate with task performance, except for a link between low scores in Aachen aphasia test scales and misestimation error in the tea making task. In the RBD group, difficulties with performance were primarily linked to deficit in praxis and unilateral visual extinction.

Conclusions: Despite similar behavior, the underlying mechanisms of the deficits after stroke might be different (in patients with LBD and RBD) and reveal complex interlinks of cognitive networks involved in the ability to carry on everyday tasks.

Full Text HTML —>  The complexity of the relationship between neuropsychological deficits and impairment in everyday tasks after stroke – Bieńkiewicz – 2015 – Brain and Behavior – Wiley Online Library

, , , , , , , , , ,

Leave a comment

[BROSHURE] Post-Stroke Rehabilitation – U.S. DEPARTMENT OF HEALTH AND HUMAN SERVICES

In the United States more than 700,000 people suffer a stroke each year and approximately two-thirds of these individuals survive and require rehabilitation. The goals of rehabilitation are to help survivors become as independent as possible and to attain the best possible quality of life. Even though rehabilitation does not “cure” the effects of stroke in that it does not reverse brain damage, rehabilitation can substantially help people achieve the best possible long-term outcome.

What is post-stroke rehabilitation?

Rehabilitation helps stroke survivors relearn skills that are lost when part of the brain is damaged. For example, these skills can include coordinating leg movements in order to walk or carrying out the steps involved in any complex activity. Rehabilitation also teaches survivors new ways of performing tasks to circumvent or compen sate for any residual disabilities. Individuals may need to learn how to bathe and dress using only one hand, or how to communicate effectively when their ability to use language has been compromised. There is a strong consensus among rehabilitation experts that the most important element in any rehabilitation program is carefully directed, well-focused, repetitive practice—the same kind of practice used by all people when they learn a new skill, such as playing the piano or pitching a baseball.

Get The Broshure

, , , , , ,

Leave a comment

[WEB SITE] Music and Stroke Therapy: 4 Questions

We spoke with Kyle and Lindsey Wilhelm about their innovative techniques of helping stroke survivors regain their speech and movement.

How does music therapy help stroke survivors with aphasia?

Music therapists often work in collaboration with speech-language pathologists to address speech and language skills with stroke survivors. Survivors who suffer from aphasia may have difficulty speaking, but during therapy discover that they can sing an entire song fluently.

This is because the part of the brain affected by the stroke that controls expressive language (known as Broca’s area) is localized in one area of the brain while music production (singing and playing instruments) and processing (receptive listening) activates multiple areas of the brain.

By using music, the therapist can work on skills using the non-damaged areas of the brain to help the survivor relearn how to do what the damaged area of the brain used to do.

How does music therapy help stroke survivors with their physical therapy? 

Music therapists also collaborate with physical therapists to help survivors regain functioning of both their upper and lower extremities as well as fine and gross motor skills. For example, the music therapy technique Rhythmic Auditory Stimulation (RAS) uses a steady, rhythmic pulse to help the survivor with their gait (walking). The survivor will naturally match the strong rhythmic pulse providing the temporal support to regulate individual steps and motivation to keep going.

How often should a stroke survivor meet with a music therapist?

The key to learning or relearning any skill is repetition. A typical frequency is 1-2 times per week, but additional therapy will likely improve physical and motor skills.

The music therapist can show the survivor ways to incorporate music into exercises prescribed by other therapists at home. By making the exercises more enjoyable, the survivor will be more likely to do them regularly, which can positively affect rehabilitation overall.

How to find a music therapist in your local area.

1) Visit the American Music Therapy Association online directory.

2) Ask your speech therapist for a recommendation.

 

via Music and Stroke Therapy: 4 Questions – StrokeSmart.

, , , ,

Leave a comment

[ARTICLE] Effectiveness of an impairment-based individualized rehabilitation program using an iPad-based software platform – Full Text PDF

Abstract

The delivery of tablet-based rehabilitation for individuals with post-stroke aphasia is relatively new, therefore, this study examined the effectiveness of an iPad-based therapy to demonstrate improvement in specific therapy tasks and how the tasks affect overall language and cognitive skills.

Fifty-one individuals with aphasia due to a stroke or traumatic brain injury were recruited to use an iPad-based software platform, Constant Therapy, for a 10 week therapy program. Participants were split into an experimental (N=42) and control (N=9) group. Both experimental and control participants received a one hour clinic session with a clinician once a week, the experimental participants additionally practiced the therapy at home. Participants did not differ in the duration of the therapy and both groups of participants showed improvement over time in the tasks used for the therapy. However, experimental participants used the application more often and showed greater changes in accuracy and latency on the tasks than the control participants; experimental participants’ severity level at baseline as measured by standardized tests of language and cognitive skills were a factor in improvement on the tasks. Subgroups of  task co-improvement appear to occur between different language tasks, between different cognitive tasks, and across both domains.

Finally, experimental participants showed more significant and positive changes due to therapy in their standardized tests than control participants. These results provide preliminary evidence for the usefulness of a tablet-based platform to deliver tailored language and cognitive therapy to individuals with aphasia.

Full Text PDF

, , , , , , , , ,

Leave a comment

[WEB SITE] The Future of Stroke Rehabilitation: recovery of language and vision

…In the second article in the ACNR stroke series, we are delighted to have an article by Alex Leff on recovery of language and vision, key challenges in stroke rehabilitation where new insights into mechanisms have developed rapidly in recent years, with the beginnings of evidence-based treatments. Alex has been a pioneer in these fields, especially in translating new understanding of reading problems after stroke into web-based solutions for both treatment delivery and data collection. In this clear and succinct summary, he outlines the latest advances and challenges for the future…

via The Future of Stroke Rehabilitation: recovery of language and vision | ACNR | Online Neurology Journal.

, , , , , , , , , , , ,

Leave a comment

%d bloggers like this: