Posts Tagged arm function

[Abstract + References] Multimodal Head-Mounted Virtual-Reality Brain-Computer Interface for Stroke Rehabilitation – Conference paper

Abstract

Rehabilitation after stroke requires the exploitation of active movement by the patient in order to efficiently re-train the affected side. Individuals with severe stroke cannot benefit from many training solutions since they have paresis and/or spasticity, limiting volitional movement. Nonetheless, research has shown that individuals with severe stroke may have modest benefits from action observation, virtual reality, and neurofeedback from brain-computer interfaces (BCIs). In this study, we combined the principles of action observation in VR together with BCI neurofeedback for stroke rehabilitation to try to elicit optimal rehabilitation gains. Here, we illustrate the development of the REINVENT platform, which takes post-stroke brain signals indicating an attempt to move and drives a virtual avatar arm, providing patient-driven action observation in head-mounted VR. We also present a longitudinal case study with a single individual to demonstrate the feasibility and potentially efficacy of the REINVENT system.

References

  1. 1.
    Mozaffarian, D., et al.: American heart association statistics committee and stroke statistics subcommittee: heart disease and stroke statistics–2015 update: a report from the American heart association. Circulation 131, e29–e322 (2015)Google Scholar
  2. 2.
    Miller, E.L., et al.: American heart association council on cardiovascular nursing and the stroke council: comprehensive overview of nursing and interdisciplinary rehabilitation care of the stroke patient: a scientific statement from the American heart association. Stroke 41, 2402–2448 (2010)CrossRefGoogle Scholar
  3. 3.
    Celnik, P., Webster, B., Glasser, D., Cohen, L.: Effects of action observation on physical training after stroke. Stroke J. Cereb. Circ. 39, 1814–1820 (2008)CrossRefGoogle Scholar
  4. 4.
    Ertelt, D., et al.: Action observation has a positive impact on rehabilitation of motor deficits after stroke. NeuroImage 36(Suppl 2), T164–T173 (2007)CrossRefGoogle Scholar
  5. 5.
    Garrison, K.A., Aziz-Zadeh, L., Wong, S.W., Liew, S.-L., Winstein, C.J.: Modulating the motor system by action observation after stroke. Stroke 44, 2247–2253 (2013)CrossRefGoogle Scholar
  6. 6.
    Ballester, B.R., et al.: The visual amplification of goal-oriented movements counteracts acquired non-use in hemiparetic stroke patients. J. Neuroeng. Rehabil. 12, 50 (2015)CrossRefGoogle Scholar
  7. 7.
    Vourvopoulos, A., Bermúdez i Badia, S.: Motor priming in virtual reality can augment motor-imagery training efficacy in restorative brain-computer interaction: a within-subject analysis. J. Neuroeng. Rehabil. 13, 69 (2016)CrossRefGoogle Scholar
  8. 8.
    Maclean, N., Pound, P., Wolfe, C., Rudd, A.: Qualitative analysis of stroke patients’ motivation for rehabilitation. BMJ 321, 1051–1054 (2000)CrossRefGoogle Scholar
  9. 9.
    Paraskevopoulos, I., Tsekleves, E., Warland, A., Kilbride, C.: Virtual reality-based holistic framework: a tool for participatory development of customised playful therapy sessions for motor rehabilitation. In: 2016 8th International Conference on Games and Virtual Worlds for Serious Applications (VS-Games), September (2016)Google Scholar
  10. 10.
    Wolpaw, J.R.: Brain-Computer Interfaces: Principles and Practice. Oxford University Press, Oxford (2012)CrossRefGoogle Scholar
  11. 11.
    Vourvopoulos, A., Bermudez i Badia, S.: Usability and cost-effectiveness in brain-computer interaction: is it user throughput or technology related? In: Proceedings of the 7th Augmented Human International Conference. ACM, Geneva, Switzerland (2016)Google Scholar
  12. 12.
    Schomer, D.L., Lopes da Silva, F.H.: Niedermeyer’s Electroencephalography: Basic Principles, Clinical Applications, and Related Fields. Lippincott Williams & Wilkins, Philadelphia (2011)Google Scholar
  13. 13.
    Kropotov, J.D.: Chapter 2.2 – Alpha rhythms. In: Kropotov, J.D. (ed.) Functional Neuromarkers for Psychiatry, pp. 89–105. Academic Press, San Diego (2016)CrossRefGoogle Scholar
  14. 14.
    Pfurtscheller, G., Lopes da Silva, F.H.: Event-related EEG/MEG synchronization and desynchronization: basic principles. Clin. Neurophysiol. Off. J. Int. Fed. Clin. Neurophysiol. 110, 1842–1857 (1999)CrossRefGoogle Scholar
  15. 15.
    Wu, J., et al.: Connectivity measures are robust biomarkers of cortical function and plasticity after stroke. Brain 138, 2359–2369 (2015)CrossRefGoogle Scholar
  16. 16.
    Zhou, R.J., et al.: Predicting gains with visuospatial training after stroke using an EEG measure of frontoparietal circuit function. Front. Neurol. 9, 597 (2018)CrossRefGoogle Scholar
  17. 17.
    Soekadar, S.R., Birbaumer, N., Slutzky, M.W., Cohen, L.G.: Brain–machine interfaces in neurorehabilitation of stroke. Neurobiol. Dis. 83, 172–179 (2015)CrossRefGoogle Scholar
  18. 18.
    Friedman, D.: Brain-computer interfacing and virtual reality. In: Nakatsu, R., Rauterberg, M., Ciancarini, P. (eds.) Handbook of Digital Games and Entertainment Technologies, pp. 151–171. Springer, Singapore (2017).  https://doi.org/10.1007/978-981-4560-50-4_2CrossRefGoogle Scholar
  19. 19.
    Vourvopoulos, A., Ferreira, A., Bermúdez i Badia, S.: NeuRow: an immersive VR environment for motor-imagery training with the use of brain-computer interfaces and vibrotactile feedback. In: 3rd International Conference on Physiological Computing Systems, Lisbon (2016)Google Scholar
  20. 20.
    Slater, M.: Place illusion and plausibility can lead to realistic behaviour in immersive virtual environments. Philos. Trans. R. Soc. B Biol. Sci. 364, 3549–3557 (2009)CrossRefGoogle Scholar
  21. 21.
    Spicer, R., Anglin, J., Krum, D.M., Liew, S.L.: REINVENT: a low-cost, virtual reality brain-computer interface for severe stroke upper limb motor recovery. In: 2017 IEEE Virtual Reality (VR), pp. 385–386 (2017)Google Scholar
  22. 22.
    Klem, G.H., Luders, H.O., Jasper, H.H., Elger, C.: The ten-twenty electrode system of the international federation. Electroencephalogr. Clin. Neurophysiol. 52, 3–6 (1999). The International Federation of Clinical NeurophysiologyGoogle Scholar
  23. 23.
    Kothe, C.: Lab streaming layer (LSL). https://github.com/sccn/labstreaminglayer. Accessed 26 Oct 2015 (2014)
  24. 24.
    Fugl-Meyer, A.R., Jääskö, L., Leyman, I., Olsson, S., Steglind, S.: The post-stroke hemiplegic patient. 1. a method for evaluation of physical performance. Scand. J. Rehabil. Med. 7, 13–31 (1975)Google Scholar
  25. 25.
    Duncan, P.W., Wallace, D., Lai, S.M., Johnson, D., Embretson, S., Laster, L.J.: The stroke impact scale version 2.0: evaluation of reliability, validity, and sensitivity to change. Stroke 30, 2131–2140 (1999)CrossRefGoogle Scholar
  26. 26.
    Kennedy, R.S., Lane, N.E., Berbaum, K.S., Lilienthal, M.G.: Simulator sickness questionnaire: an enhanced method for quantifying simulator sickness. Int. J. Aviat. Psychol. 3, 203–220 (1993)CrossRefGoogle Scholar
  27. 27.
    Bailey, J.O., Bailenson, J.N., Casasanto, D.: When does virtual embodiment change our minds? Presence Teleoperators Virtual Environ. 25, 222–233 (2016)CrossRefGoogle Scholar
  28. 28.
    Witmer, B.G., Singer, M.J.: Measuring presence in virtual environments: a presence questionnaire. Presence Teleoperator Virtual Environ. 7, 225–240 (1998)CrossRefGoogle Scholar
  29. 29.
    Bouchard, S., Robillard, G., Renaud, P., Bernier, F.: Exploring new dimensions in the assessment of virtual reality induced side effects. J. Comput. Inf. Technol. 1, 20–32 (2011)Google Scholar
  30. 30.
    Delorme, A., Makeig, S.: EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. J. Neurosci. Methods 134, 9–21 (2004)CrossRefGoogle Scholar
  31. 31.
    Makeig, S.: Auditory event-related dynamics of the EEG spectrum and effects of exposure to tones. Electroencephalogr. Clin. Neurophysiol. 86, 283–293 (1993)CrossRefGoogle Scholar
  32. 32.
    Neuper, C., Wörtz, M., Pfurtscheller, G.: ERD/ERS patterns reflecting sensorimotor activation and deactivation. Prog. Brain Res. 159, 211–222 (2006)CrossRefGoogle Scholar
  33. 33.
    Pfurtscheller, G., Aranibar, A.: Evaluation of event-related desynchronization (ERD) preceding and following voluntary self-paced movement. Electroencephalogr. Clin. Neurophysiol. 46, 138–146 (1979)CrossRefGoogle Scholar
  34. 34.
    Pfurtscheller, G., Brunner, C., Schlögl, A., Lopes da Silva, F.H.: Mu rhythm (de)synchronization and EEG single-trial classification of different motor imagery tasks. NeuroImage 31, 153–159 (2006)CrossRefGoogle Scholar
  35. 35.
    Liew, S.-L., et al.: Laterality of poststroke cortical motor activity during action observation is related to hemispheric dominance. Neural Plast. 2018, 14 (2018)CrossRefGoogle Scholar
  36. 36.
    Ritter, P., Moosmann, M., Villringer, A.: Rolandic alpha and beta EEG rhythms’ strengths are inversely related to fMRI-BOLD signal in primary somatosensory and motor cortex. Hum. Brain Mapp. 30, 1168–1187 (2009)CrossRefGoogle Scholar
  37. 37.
    Westlake, K.P., et al.: Resting state alpha-band functional connectivity and recovery after stroke. Exp. Neurol. 237, 160–169 (2012)CrossRefGoogle Scholar
  38. 38.
    Dubovik, S., et al.: EEG alpha band synchrony predicts cognitive and motor performance in patients with ischemic stroke. https://www.hindawi.com/journals/bn/2013/109764/abs/

via Multimodal Head-Mounted Virtual-Reality Brain-Computer Interface for Stroke Rehabilitation | SpringerLink

, , , , , , , , , , , , ,

Leave a comment

[Abstract] Action observation therapy for improving arm function, walking ability, and daily activity performance after stroke: a systematic review and meta-analysis

This study was to investigate the effectiveness of action observation therapy on arm and hand motor function, walking ability, gait performance, and activities of daily living in stroke patients.

Systematic review and meta-analysis of randomized controlled trials.

Searches were completed in January 2019 from electronic databases, including PubMed, Scopus, the Cochrane Library, and OTseeker.

Two independent reviewers performed data extraction and evaluated the study quality by the PEDro scale. The pooled effect sizes on different aspects of outcome measures were calculated. Subgroup analyses were performed to examine the impact of stroke phases on treatment efficacy.

Included were 17 articles with 600 patients. Compared with control treatments, the action observation therapy had a moderate effect size on arm and hand motor outcomes (Hedge’s g = 0.564; P < 0.001), a moderate to large effect size on walking outcomes (Hedge’s g = 0.779; P < 0.001), a large effect size on gait velocity (Hedge’s g = 0.990; P < 0.001), and a moderate to large effect size on activities of daily function (Hedge’s g = 0. 728; P = 0.004). Based on subgroup analyses, the action observation therapy showed moderate to large effect sizes in the studies of patients with acute/subacute stroke or those with chronic stroke (Hedge’s g = 0.661 and 0.783).

This review suggests that action observation therapy is an effective approach for stroke patients to improve arm and hand motor function, walking ability, gait velocity, and daily activity performance.

via Action observation therapy for improving arm function, walking ability, and daily activity performance after stroke: a systematic review and meta-analysis – Tzu-Hsuan Peng, Jun-Ding Zhu, Chih-Chi Chen, Ruei-Yi Tai, Chia-Yi Lee, Yu-Wei Hsieh, 2019

, , , , , , , , , , ,

Leave a comment

[WEB SITE] 17 Ways To Help Stroke Survivors Recover Faster – Saebo

If you or a loved one has suffered from a stroke, there are many difficulties that can develop as a result. Primarily, these effects are physical, emotional, and cognitive.

Below, we provide tips on how to overcome these common post-stroke conditions. Keep in mind that dealing with the aftermath of a stroke can be frustrating, but with patience and consistent effort, considerable progress can be made.

 

 

Tip 1. Recognize Symptoms of Stroke

One of the most important ways to successfully recover from stroke, is by taking preventative measures such as knowing and recognizing the symptoms of a stroke because immediate treatment can be life saving and greatly affects the chances for a full recovery. Unfortunately the chances of a second stroke occurring increases in stroke survivors. According to The National Stroke Association, about 25% of stroke survivors will experience a second stroke. Within the first 5 years after the first stroke, risk of a second stroke is about 40% higher. Fortunately it is estimated that of all secondary strokes, about 80% of them are preventable with lifestyle changes and medical intervention. Read more about recognizing the symptoms of stroke in men and in women to better prepare you to act FAST.

 

Tip 2. Walking Again and Foot Drop

Foot drop is the difficulty or inability to lift the front part of the foot because of fatigue or damage affecting the muscles and nerves that aid in its movement. To combat this, using a brace or Ankle-foot Orthoses (AFO) has proven to be a major aid in rehabilitation. These devices prevent the front of the foot from dipping down and disrupting walking movements.

Leg exercises described in this supplementary post after experiencing a stroke are crucial for recovery. While each patient should have a custom exercise routine, personalized for you, there are several exercises that should be included in most every stroke survivor’s regimen. These low-impact strength and stretching leg exercises for stroke recovery are a good complement to use in conjunction with the Saebo MyoTrac Infiniti biofeedback system.

Richard Sealy, director of The Rehab Practice, a private neuro-therapy rehabilitation program in the United Kingdom, regularly works with individuals, families, and caregivers to establish custom exercise routines to aid in recovery from long-term neurological problems, like the damage caused by stroke. While he acknowledges that each patient should have a custom exercise routine specific and personal to their struggles, he recommends a series of exercises for anyone working to strengthen their legs and improve range of motion during stroke recovery.

Rehabilitation of the legs and feet can occur at a faster rate with a combination of the aforementioned exercises and orthopedic aids such as the SaeboStep.The SaeboStep is a unique foot drop brace worn on the outside of the shoe that assists with lifting the toes when walking. It is made to eliminate cumbersome, unreliable splints and braces placed within the shoe.

 

Tip 3. Dealing with Curled Toes

Often referred to as “curled toes” or “claw toe,” this symptom is caused by a miscommunication between the brain and muscles within the foot. This misfiring of signals causes an issue with controlling muscular movements, leading to over-contracting of the toes and spasticity, a condition where there is a miscommunication between the brain and the muscles in the toes, causing them to over contract.

The best way to regain strength and movement while dealing with this condition is to create a routine with a variety of exercises—toe taps, floor grips, finger squeezes, and toe-extensor strengthening. With effort and repetition, these workouts can make a huge difference in recovery.

 

Tip 4. Lack of Arm Function

One of the most common deficiencies following a stroke is the impairment of the arm and hand. This typically results in decreased strength, coordination, and range of motion. Those affected are often unable to support their own arms in order to perform rehabilitation exercises. When this occurs it is crucial that you include additional arm support during rehabilitation to avoid the arms becoming weaker due to learned non-use.

Learned non-use occurs when a stroke survivor prefers to use their strong arm because it is easier to move. This tendency makes it even more difficult for a stroke survivor to recover, because challenging the weakened arm with these exercises plays a crucial role in regaining arm function. Often physical therapists and occupational therapists use a technique known as Constraint-Induced Movement Therapy (or CIMT) to challenge a weakened shoulder and make further exercises and drills possible. Mobile arm supports such as the SaeboMAS and SaeboMAS mini help support the weight of the arm, allowing the user to do a much wider range of exercises. For more information about the SaeboMAS and how it can aid in stroke recovery click here.

As with rehabilitating any part of the body with reduced function after a stroke, it is important to consistently repeat the exercises and stretches to strengthen the brain-muscle connections. It is also important to stay positive and try to have fun with your rehab. Here are 35 fun rehab activities for stroke patients to help keep you motivated.

 

Tip 5. Hand Paralysis

Paralysis is the inability of a muscle to move voluntarily. The National Stroke Association sites as many as 9 out of 10 stroke survivors have some degree of paralysis following a stroke. Rehabilitation and therapy can help to regain voluntary movement, even several years after the stroke takes place.

The primary symptoms of hand paralysis are spasticity (stiff muscles), weakness, and lack of coordination. Fortunately, there are several methods of treatment in addition to therapy to help manage and recover from spasticity. Additional treatments include medications to relax muscles, botox injections (relaxes muscles temporarily), stretching exercises, anti-spasticity orthotics, and functional orthoses. Surgery is another option in the most severe cases.

The least invasive and most permanent treatment for hand paralysis is therapy to rehabilitate the connection between your brain and muscles using neuroplasticity. To make these exercises even more effective and to increase your rate of recovery, it is important to repeat your hand exercises often. By performing exercises repeatedly, you are strengthening that brain-muscle connection.

 

Tip 6. Difficulty Speaking and Communicating

Another common side effect of stroke is aphasia, which is the inability to speak or understand speech. This is one of the most frustrating side effects for survivors to deal with. It’s estimated that 25 to 40 percent of people who suffer from a stroke develop aphasia, though this condition is not limited to stroke survivors. Aphasia occurs when there is damage to the brain, specifically the left side that deals with language. There are two primary forms of aphasia: receptive aphasia and expressive aphasia. Receptive aphasia is when the individual has trouble understanding what is being said to them. Expressive aphasia is when the individual is having difficulty expressing what they want to say.

When communicating with someone with receptive aphasia, try not to use long complex sentences. When communicating with someone with expressive aphasia, it is important to be patient and remember that the person’s intelligence has not been affected by the stroke, just their ability to speak.

For those with aphasia, the most important thing you can do to improve your communication is to take a deep breath and try to relax. If you can remain relaxed and focus on what you are trying to say you will have much greater success. It is easy to get flustered or feel self conscious, but you shouldn’t. Create tools that you can use to make communication easier such as a book of words, pictures, phrases, or symbols that can help you get your message across. If you are going out and know you will not be around friends or family, it may also be helpful to carry a card or piece of paper that indicates that you have aphasia and explains what it is, just in case you find yourself needing to explain your condition.

Once these tools are set in place, seeking the help of a speech-language pathologist (SLP) can greatly increase one’s ability to regain normal speech behavior. SLPs can assist in rehabilitating all types of physical speech behavior and offer support and proper guidance for you or a loved one. Read more about aphasia and recovery here.

 

Tip 7: Coping with PTSD After Stroke

Following a stroke, it is fairly common for a survivor to experience PTSD, or Post-Traumatic Stress Disorder. This condition is usually associated with combat veterans and sexual-assault survivors; however, according to a study published in the journal PLoS One, almost a quarter of stroke survivors experience some form of PTSD.

Common symptoms of PTSD include the victim experiencing the traumatic event over and over in their head or in the form of nightmares. This replaying of the event is typically accompanied by the individual’s unyielding anxiety and feelings of self doubt or misplaced guilt over their condition. Some experience a state of hyperarousal or feelings of being overly alert.

The two main treatments for PTSD include medications such as antidepressants, anti-anxiety medications or psychotherapy. If you are experiencing PTSD, it is important that you communicate how you feel with your doctor, family, and friends, as a strong support system can help you find the relief from psychological pain that you deserve.

 

Tip 8: Understanding Fatigue

Feeling tired is a normal part of life for everyone, but for stroke survivor, fatigue is a very common symptom that can be frustrating to deal with. About 40 to 70 percent of stroke survivors experience fatigue, which can make recovering feel even more difficult. Post-stroke fatigue is draining both physically and emotionally/mentally, and rest may not be the only solution.

It is important to discuss the fatigue with a doctor so they can rule out potential medical causes or determine if fatigue might stem from current medications. By speaking with the proper medical professionals and taking time to squeeze in a nap or rest as often as possible—and by maintaining a positive mindset—you can help yourself or a loved one combat the constant drowsiness of fatigue and work on returning to pre-stroke energy levels. The key thing to realize is that some level of post-stroke fatigue is normal and that survivors need to be proactive about treating and working around it.

 

Tip 9: Counteract Learned Non-Use

If the limbs weakened after stroke are not consistently exercised over time, muscles have the potential to atrophy—waste away due to cell degeneration. This often occurs when the person tries to compensate for their weak limb by using their stronger limb more often. Daily attempts to move the affected limbs are necessary to maintain and improve functionality.One method is the use of Constraint-Induced Movement Therapy (CIMT). CIMT is a form of therapy that prevents the unaffected limbs from moving while trying to exercise the affected ones.

 

Tip 10: Reduce Inflammation and Stress

Inflammation in the body can cause other issues to arise, which is why it’s important to stay stress free whenever possible. When stress does begin to take hold, a hormone called cortisol floods the body, causing pH levels to become imbalanced with acidity. High acidity levels—after an extended period of time—can kill good bacteria in the body while giving rise to bad bacteria, ultimately weakening the immune system.

With that in mind, a natural probiotic like yogurt is a great way to boost good bacteria in the body. Supplemental drinks can also improve the immune system significantly. In addition to pH balance, adopting stress management exercises such as yoga, deep breathing, tai chi, qi gong, and meditation, can limit one’s cortisol levels, promoting overall health.

 

Tip 11: Coping with Emotional Effects

Experiencing a stroke is not only a major hardship to overcome physically; it can also take a huge toll on a survivor’s emotions in many ways.

If the area of your brain that controls personality or emotion is affected, you may be susceptible to changes in your emotional response or everyday behavior. Strokes may also cause emotional distress due to the suddenness of their occurrence. As with any traumatic life experience, it may take time for you or your loved one to accept and adapt to the emotional trauma of having experienced a stroke.

Some common emotional changes strokes may cause are PseudoBulbar Affect, depression, and anxiety. Thankfully, there are several methods for treating the emotional changes associated with a stroke, with the first step being to discuss how you or your loved one is feeling with a doctor. Treatment may consist of one, or a combination, of the following: one-on-one counseling, group counseling, medication, diet, and exercise. The most effective treatment is different for everyone, so it is important to discuss and explore which combination works best for your or your loved one.

 

PseudoBulbar Affect

Sometimes referred to as “reflex crying,” “emotional lability,” or “labile mood,” PseudoBulbar Affect (PBA) is a symptom of damage to the area of the brain that controls expression of emotions, and it is one of the most frequently reported post-stroke behaviors. Characteristics of the disorder include rapid changes in mood, such as suddenly bursting into tears and stopping just as suddenly or even beginning to laugh at inappropriate times.

 

Depression

Survivors have a one in four chance of developing serious depression as a side effect of stroke. If you are feeling sad, hopeless, or helpless after having suffered a stroke, you may be experiencing this. Other symptoms of depression may include irritability or changes to your eating and sleeping habits. Talk to your doctor if you are experiencing any of these symptoms, as it may be necessary to treat with prescription antidepressants or therapy to avoid it becoming a road block to your recovery.

Along with medication and therapy, a lot of research shows that a few simple lifestyle changes help relieve the symptoms of depression. If you or a loved one is having a difficult time coping with the emotional repercussions of a stroke, here are tips on how to implement positivity and resilience:

  • Attend a support group. Talking about your struggles with people in the same situation makes you feel less lonely and can offer helpful insight or different approaches to dealing with difficulties.
  • Eat healthy food. A good diet is important for your general health and your recovery from stroke and can also improve your mental health.
  • Remain socially active. Although you may not be able to do as much as you used to, it’s crucial to stay in touch with family and friends and take part in social activities.
  • Be as independent as possible. Humans need to feel independent and competent. Stroke recovery may require the help of caregivers, but if there are things that you can safely do by yourself, insist on it.
  • Exercise regularly. Physical activity, especially a low-impact one like walking, is proven to boost mental health and will also contribute to your recovery.

 

 

Tip 12: Set Recovery Goals with Your Therapist

Setting specific and meaningful goals can help keep one focused and motivated once they are achieved, and these goals can range from simple tasks to long-term accomplishments. By establishing a list consisting of difficulties and goals, overcoming obstacles can be put within reach.

When setting these goals, working with a therapist, doctor, or close friend can be a good way to find encouragement, as well as assistance in creating a list that places goals into an appropriate timeframe. Overall, a therapist will be familiar with your case, understanding the issues and complications, and will be able to offer sound advice in all aspects of recovery.

 

Tip 13: Stay Motivated

Since apathy is common during stroke recovery, staying motivated can be a challenge. Combining one’s interests with a solid rehabilitation regimen can effectively eradicate feelings of lethargy and depression. The best thing to do is to focus on a reason for recovery and to associate it with your plan of action. This can be done by implementing sentimental items into daily routines, thus giving you personal and motivational support at all times. For example, if one of your routines is to write a list of things to do for the day, try writing it on the back of a special photo. That way, as you’re checking things off, you’ll have a little reminder to keep you motivated.

 

Tip 14: Watch Out For The Recovery Plateau Stage

The recovery plateau stage refers to the point at which a stroke survivor begins to see a slow down or stop in the progression in their recovery. Some of the most significant improvements often occur in the subacute phase, which is usually the first three to six months after the stroke  (though there is anecdotal evidence of people making significant stroke recovery progress outside of that zone.)

Seeing improvement in the early days of a survivor’s recovery can make it a lot easier for them to stay motivated and continue working hard in therapy. Research shows that further recovery is still very possible after the plateau stage though, which is why it is so important to have a strong support system to encourage you to continue with therapy and working on recovery.

 

Tip 15: Working After Stroke

Since the brain is a major organ affected when it comes to strokes, chances are that some of its functions may have trouble performing like they did before. After a stroke, learning new things, or even just recalling information can be a challenge, and working through thoughts may suddenly be difficult.

After rehabilitation, many stroke survivors do find themselves able to return to work, but preparing for this transition can come with a lot of questions. Are you physically going to be able to perform your job? Will your disability benefits lapse? What do you need to communicate with your employer? These can be tough questions, but they do have answers. Some may not ever be able to go back to the same work, but for others, just a little assistance is needed.

When you are ready to return to work, it is important to know your rights and what your employer is, and is not, legally required to provide to employees with disabilities. Keep in mind that if you are unable to perform the essential functions of your job even with reasonable accommodation, your employer is not obligated to offer you a different position or create a new role for you. They might be willing to anyway, but it is not a requirement.

 

Tip 16: Understand and Combat Memory Loss

Not only is it common for stroke survivors to experience, but memory loss can affect a wide range of people through multiple factors. Age, physical trauma, and emotional stress have the potential to cause memory decline, but rebuilding memory’s strength is highly possible and can be fun.

Specifically, incorporating technology into daily rehabilitation exercises is a great way to show quick improvements. There are numerous apps for smartphones and tablets that use different techniques to significantly improve memory, and they have the ability to set reminders, schedule appointments, and oversee other illnesses.

 

Tip 17: Be Aware of Vascular Dementia

A common problem among stroke survivors, this symptom disrupts cognitive functions, which can make it challenging for one to sort out information.

Due to the damage of blood vessels from a stroke, blood pressure, cholesterol, and blood sugar must be maintained at healthy levels to ensure good blood flow throughout the body. If you are diabetic, it is crucial that you are paying careful attention to your blood sugar and insulin levels. Studies have shown that by managing these three components, vascular dementia can be decreased or prevented.

Helping Stroke Survivors Help Themselves

The process of stroke recovery is long and full of ups, downs, twists, and turns. It takes hard work and dedication to regain mental and physical function after a stroke. The information and tips above will help you to identify and overcome the many challenges that come with recovery.

To read our answers to the most common stroke recovery questions, click here. And remember, at the end of the day, there are dozens of approaches you can take to improve the speed of stroke recovery.


All content provided on this blog is for informational purposes only and is not intended to be a substitute for professional medical advice, diagnosis, or treatment. Always seek the advice of your physician or other qualified health provider with any questions you may have regarding a medical condition. If you think you may have a medical emergency, call your doctor or 911 immediately. Reliance on any information provided by the Saebo website is solely at your own risk.

via 17 Ways To Help Stroke Survivors Recover Faster | Saebo

, , , , , , , , , , ,

Leave a comment

[ARTICLE] Prediction of Walking and Arm Recovery after Stroke: A Critical Review – Full Text HTML

Abstract

Clinicians often base their predictions of walking and arm recovery on multiple predictors. Multivariate prediction models may assist clinicians to make accurate predictions. Several reviews have been published on the prediction of motor recovery after stroke, but none have critically appraised development and validation studies of models for predicting walking and arm recovery. In this review, we highlight some common methodological limitations of models that have been developed and validated. Notable models include the proportional recovery model and the PREP algorithm. We also identify five other models based on clinical predictors that might be ready for further validation. It has been suggested that neurophysiological and neuroimaging data may be used to predict arm recovery. Current evidence suggests, but does not show conclusively, that the addition of neurophysiological and neuroimaging data to models containing clinical predictors yields clinically important increases in predictive accuracy.

1. Introduction

It would be useful to be able to predict recovery of walking and arm after stroke. Accurate predictions are needed so that clinicians can provide patients with prognoses, set goals, select therapies and plan discharge [1,2,3,4]. For example, if it was possible to predict with some certainty that a particular patient would be unable to walk independently at six months, the clinicians providing that patient with acute and subacute care might work toward a discharge goal of safe transfers. Therapy might involve carer training and equipment prescription rather than intensive gait training. The ability to make accurate predictions could reduce the length of stay in hospitals and enable efficient utilization of stroke care resources [4,5].
Several systematic reviews have identified strong predictors of walking and arm recovery after stroke [2,3,6]. In one systematic review of prognostic studies on walking, clinical variables such as age, severity of paresis and leg power were found to be strong predictors of walking after stroke (based on five studies, each of between 197 and 804 patients) [2]. In another systematic review of prognostic studies on arm recovery, clinical, neurophysiological and neuroimaging data were found to be strong predictors of arm recovery after stroke (based on 58 studies of 9–1197 patients) [3]. These clinical, neurophysiological and neuroimaging data included measures of upper limb impairment, upper limb function, lower limb impairment, motor and somatosensory evoked potentials, and measures obtained with diffusion tensor imaging [3].
In practice, clinicians base their predictions about clinical outcomes on multiple variables [7,8,9]. If multiple predictors are to be used to make prognoses, there needs to be a proper accounting of the independent (incremental) predictive value of each predictor variable. Therefore the most useful information about prognosis is likely to come from multivariate prediction models [7,8,9].
The research which underpins establishment of clinically useful multivariate prediction models involves several steps. First ‘development studies’ are conducted to build the multivariate prediction models [7]. Subsequently the predictive accuracy of the models is tested on new cohorts [7,10]. These studies are known as ‘validation studies’ [7]. It is recommended that prediction models should not be used in clinical practice until both development and validation studies have been conducted [7,10]. Once development and validation studies have been conducted, impact studies may be conducted, although the reality is that few reports of impact studies are published. Impact studies resemble clinical trials; they test the efficacy of use of prediction models on patient outcomes, clinician behaviour and cost-effectiveness of care [7,11]. Recent narrative reviews have provided updates on the prediction of motor recovery after stroke [5,12] but these reviews have not focused on development and validation studies of models for predicting walking and arm recovery.
This review provides a critical review of prediction models of walking and arm recovery after stroke. Studies were identified using the search strategy and inclusion criteria in the Appendix. The review begins in the second section with the definitions and measurements of walking and arm recovery. The third section provides a detailed description of the recommended process for developing and validating a prediction model because this process provides a benchmark against which prediction modelling studies of walking and arm recovery can be evaluated. The fourth section critically appraises development and validation studies of walking and arm recovery with the aim of identifying multivariate models that could potentially be implemented in clinical practice. Much has been written about the role of neurophysiological and neuroimaging data in predicting arm recovery. The fifth section considers whether neurophysiological and neuroimaging data provide additional predictive value over clinical data alone in predicting arm recovery. We conclude with a summary and recommendations for future prediction modelling studies.

Continue —> Brain Sciences | Free Full-Text | Prediction of Walking and Arm Recovery after Stroke: A Critical Review | HTML

, , , , , , ,

Leave a comment

[ARTICLE] Prediction of Walking and Arm Recovery after Stroke: A Critical Review – Full Text HTML

Abstract

Clinicians often base their predictions of walking and arm recovery on multiple predictors. Multivariate prediction models may assist clinicians to make accurate predictions. Several reviews have been published on the prediction of motor recovery after stroke, but none have critically appraised development and validation studies of models for predicting walking and arm recovery.
In this review, we highlight some common methodological limitations of models that have been developed and validated. Notable models include the proportional recovery model and the PREP algorithm. We also identify five other models based on clinical predictors that might be ready for further validation. It has been suggested that neurophysiological and neuroimaging data may be used to predict arm recovery. Current evidence suggests, but does not show conclusively, that the addition of neurophysiological and neuroimaging data to models containing clinical predictors yields clinically important increases in predictive accuracy.

1. Introduction

It would be useful to be able to predict recovery of walking and arm after stroke. Accurate predictions are needed so that clinicians can provide patients with prognoses, set goals, select therapies and plan discharge [1,2,3,4]. For example, if it was possible to predict with some certainty that a particular patient would be unable to walk independently at six months, the clinicians providing that patient with acute and subacute care might work toward a discharge goal of safe transfers. Therapy might involve carer training and equipment prescription rather than intensive gait training. The ability to make accurate predictions could reduce the length of stay in hospitals and enable efficient utilization of stroke care resources [4,5].
Several systematic reviews have identified strong predictors of walking and arm recovery after stroke [2,3,6]. In one systematic review of prognostic studies on walking, clinical variables such as age, severity of paresis and leg power were found to be strong predictors of walking after stroke (based on five studies, each of between 197 and 804 patients) [2]. In another systematic review of prognostic studies on arm recovery, clinical, neurophysiological and neuroimaging data were found to be strong predictors of arm recovery after stroke (based on 58 studies of 9–1197 patients) [3]. These clinical, neurophysiological and neuroimaging data included measures of upper limb impairment, upper limb function, lower limb impairment, motor and somatosensory evoked potentials, and measures obtained with diffusion tensor imaging [3].
In practice, clinicians base their predictions about clinical outcomes on multiple variables [7,8,9]. If multiple predictors are to be used to make prognoses, there needs to be a proper accounting of the independent (incremental) predictive value of each predictor variable. Therefore the most useful information about prognosis is likely to come from multivariate prediction models [7,8,9].
The research which underpins establishment of clinically useful multivariate prediction models involves several steps. First ‘development studies’ are conducted to build the multivariate prediction models [7]. Subsequently the predictive accuracy of the models is tested on new cohorts [7,10]. These studies are known as ‘validation studies’ [7]. It is recommended that prediction models should not be used in clinical practice until both development and validation studies have been conducted [7,10]. Once development and validation studies have been conducted, impact studies may be conducted, although the reality is that few reports of impact studies are published. Impact studies resemble clinical trials; they test the efficacy of use of prediction models on patient outcomes, clinician behaviour and cost-effectiveness of care [7,11]. Recent narrative reviews have provided updates on the prediction of motor recovery after stroke [5,12] but these reviews have not focused on development and validation studies of models for predicting walking and arm recovery.
This review provides a critical review of prediction models of walking and arm recovery after stroke. Studies were identified using the search strategy and inclusion criteria in the Appendix. The review begins in the second section with the definitions and measurements of walking and arm recovery. The third section provides a detailed description of the recommended process for developing and validating a prediction model because this process provides a benchmark against which prediction modelling studies of walking and arm recovery can be evaluated. The fourth section critically appraises development and validation studies of walking and arm recovery with the aim of identifying multivariate models that could potentially be implemented in clinical practice. Much has been written about the role of neurophysiological and neuroimaging data in predicting arm recovery. The fifth section considers whether neurophysiological and neuroimaging data provide additional predictive value over clinical data alone in predicting arm recovery. We conclude with a summary and recommendations for future prediction modelling studies.

Continue —> Brain Sciences | Free Full-Text | Prediction of Walking and Arm Recovery after Stroke: A Critical Review | HTML

, , , , , , ,

Leave a comment

[WEB SITE] UTSW testing whether implant device can help restore lost arm function after stroke

07/05/2015 09:59:00

DALLAS – UT Southwestern Medical Center will be one of three national sites to pioneer U.S. testing for an implant device that stimulates the vagus nerve in stroke patients to see whether it can help restore lost arm function.

Physical therapy instructor Staci Shearin, left, works with Maria Ramirez to improve functional abilities in her right arm after her stroke. New research at UT Southwestern is evaluating stimulation of the vagus nerve as a way to help restore lost arm function.

The Vivistim® System device, developed by Dallas-based MicroTransponder Inc. with a license from UT Dallas, stimulates the neck’s vagus nerve, a key nerve stretching from the medulla oblongata in the brain down to the throat, larynx, trachea, lungs, heart, esophagus, and intestinal tract. Implanted under the collarbone, the device, which is about the size of a pacemaker, sends painless, half-second electrical pulses up the vagus nerve, causing chemicals called neuromodulators to be released in various parts of the brain. Alternate forms of vagus nerve stimulation therapy already are approved for use in the U.S. by the Federal Drug Administration for treating other illnesses, including depression and epilepsy.

“These neuromodulators appear to facilitate the creation of new neuron pathways in the brain, which play a key role in restoring muscle movement,” said Dr. Ty Shang, Assistant Professor of Neurology and Neurotherapeutics at UT Southwestern, who is heading the UT Southwestern arm of the trial. UT Southwestern is one of three sites in the nation.

“A stroke deprives brain cells of oxygen,” said Dr. Shang, a vascular neurologist who is part of UT Southwestern’s stroke team. “Without oxygen, the brain cells die, and can no longer perform the function for which they were intended. There has been no known way to regenerate new brain cells to replace them, but in early tests with this device, the brain appears to ‘rewire’ other cells to perform the function.

The study is sponsored by MicroTransponder Inc. and partially funded by the Texas Biomedical Device Center at UT Dallas. The Vivistim® system, designed to improve motor function in the more involved arm of a person following stroke, was studied starting in 2013 for efficacy and safety in a small study in Glasgow, Scotland. Individuals in the Glasgow study experienced meaningful functional improvements in their more involved arm. Many were able to resume daily activities like swimming, driving, and caring for grandchildren.

more —> Health News – UTSW testing whether implant device can help restore lost arm function after stroke.

, , , , , , , ,

Leave a comment

%d bloggers like this: