Posts Tagged Arm Swing

[ARTILE] Changes in gait kinematics and muscle activity in stroke patients wearing various arm slings – Full Text


Stroke patients often use various arm slings, but the effects of different slings on the joint kinematics and muscle activity of the arm in the gait have not been investigated. The effects of joint kinematics and muscle activity in the gait were investigated to provide suggestions for gait training for stroke patients. In all, 10 chronic stroke patients were voluntarily recruited. An eight-camera three-dimensional motion analysis system was used to measure joint kinematics while walking; simultaneously, electromyography data were collected for the anterior and posterior deltoids and latissimus dorsi. The amplitude of pelvic rotation on the less-affected side differed significantly among the different arm slings (P<0.05). Changes in the knee kinematics of the less-affected side also differed significantly (P<0.05), while there were no significant differences in the muscle activity of the affected arm. In stroke patients, an extended arm sling is more useful than no sling or a flexed arm sling in terms of the amplitude of the rotation of the less-affected pelvic side in the stance phase while walking. The less-affected knee joint is flexed more without a sling than with any sling. All arm slings support the extension of the contralateral knee.


Stroke is a major cause of morbidity worldwide. Approximately 800,000 patients have strokes annually (Lloyd-Jones et al., 2010). Patients with stroke have disabilities that result from paralysis, and most complain of difficulty walking (Jørgensen et al., 1995). Bovonsunthonchai et al. (2012) showed that the affected upper extremity is important for improving the performance and coordination of gait in stroke patients. In addition, the movement of the upper extremity improves the range of motion at the ankle as well as trunk stability (Stephenson et al., 2010).
Stroke patients often develop a subluxation of the shoulder on the affected side, because they can no longer support the weight of their own arm due to paralysis (Griffin et al., 1986). Consequently, arm slings are often necessary. Stroke patients often use a hemisling. Faghri et al. (1994) stated that use of a hemisling induced flexion synergy patterns of the upper trunk and delayed functional activity. However, few studies have examined how different arm slings, including a hemisling, affect the gait patterns of stroke patients. Reported studies have examined the hemisling in terms of the gait patterns (Yavuzer and Ergin, 2002), balance (Acar and Karatas, 2010), and energy consumption (Han et al., 2011) of stroke patients.
There are various types of arm sling, such as the flexed sling (a single-strap hemisling), extended sling (Bobath sling, Rolyan sling), GivMohr sling (Dieruf et al., 2005), and elastic arm sling (Hwang and An, 2015). The sling supports some of the weight of the arm and simultaneously limits the motion of the upper extremities. Pontzer et al. (2009)suggested that the arms serve as passive mass dampers to decrease the rotation of the torso and head. Lieberman et al. (20072008) also held that the arms serve as passive dampers to minimise vertical motion. The trunk and shoulders act as elastic linkages between the pelvis, shoulder girdle, and arms (Pontzer et al., 2009).
Some studies have examined the activities of the arm muscle during walking (Lieberman et al., 2007Prentice et al., 2001), while other studies have found that most of the arm swing is passive, while a small torque may actively occur in shoulder rotation (Jackson et al., 1978Kubo et al., 2004). The muscle activity of the upper extremities is still the subject of debate (Collins et al., 2009Kubo et al., 2004Kuhtz-Buschbeck and Jing, 2012). However, the restrictive effects and support provided by various arm slings could have different effects on the muscle activities of the affected arm in stroke patients.
Therefore, we investigated how the muscle activities of the affected arm and kinematic data taken during walking are influenced by flexion-type (hemisling), extension-type (Rolyan sling), and elastic arm slings under elastic tension. We discuss which arm should be used for clinical gait training.

Continue —> Changes in gait kinematics and muscle activity in stroke patients wearing various arm slings – ScienceCentral

Fig. 1 The conditions of the various arm slings: (A) none, (B) a flexed type, (C) an extended type, and (D) an elastic type.

, , , , ,

Leave a comment

[Abstract] The effect of upper limb casting on gait pattern. – International Journal of Rehabilitation Research

The effect of upper limb casting on gait pattern.

Published Ahead-of-Print


Casting of the arm may interfere with normal walking patterns because of additional load of the cast or prevention of arm swing.

This study aimed to determine the effect of applying various casts on temporospatial walking parameters, including gait velocity and cadence, step length, and single limb support.

A computerized gait system was used to assess these variables for 23 healthy individuals in four walking modes: normal walking, with a cast above the elbow and a sling, and with a cast below the elbow, with and without a sling. Thirteen participants had their dominant hand casted and 10 had their nondominant hand casted.

On average, casted participants took significantly smaller steps with the leg on the casted side and spent less time supported on the casted side. The least changes were noted with the arm in a cast below the elbow and no sling, and the greatest changes were noted with the arm in a cast above the elbow and in a sling. This difference was heightened when the dominant hand was casted and lessened when the nondominant hand was casted. No differences were found in walking velocity or cadence between the walking modes.

Casting of the upper limb has significant effects on gait, which should be taken into consideration, especially in individuals with previous gait abnormalities.

Source: The effect of upper limb casting on gait pattern. : International Journal of Rehabilitation Research

, , , , , ,

Leave a comment

[ARTICLE] The effect of arm swing exercise on gait and balance in stroke patients – Full Text PDF

Abstract: The aim of this study is investigate the effect of arm swing exercise on balance and gait in stroke patients.

Group A (n=8): 0.5kg strap was applied during arm swing exercise in experimental group for 30 minutes a day, 3 times a week for 4 weeks. Group B (n=8): Subjects in control group performed neurodevelopmental treatment for 30 minutes a day, 3 times a week for 4 weeks. Subjects were measured for balance and gait on Berg Balance scale, 10meter walking test and Six-minute walk test.

There were significant changed of 10Meter Walking Test and 6-Minute Walk Test after experimental group performed the reinforced arm swing exercise of upper extremities and control group was provided with neurodevelopment treatment(p <0.05).

However, there was no statistically significant found difference change of Berg Balance Scale in experimental group (p >0.05). The application reinforced arm swing exercise can be said to be effective intervention for the gait training in hemiplegic stroke patient.

Download Full Text PDF


, , , ,

Leave a comment

%d bloggers like this: