Posts Tagged Arm

[ARTICLE] Home-based neurologic music therapy for arm hemiparesis following stroke: results from a pilot, feasibility randomized controlled trial – Full Text

 

Continue —> Home-based neurologic music therapy for arm hemiparesis following stroke: results from a pilot, feasibility randomized controlled trialClinical Rehabilitation – Alexander J Street, Wendy L Magee, Andrew Bateman, Michael Parker, Helen Odell-Miller, Jorg Fachner, 2017

figure

Figure 1. Study flow diagram. Data collection occurred at weeks 1, 6, 9, 15 and 18. Cross-over analysis required data from weeks 1, 6, 9 and 15.

, , , , , , , , , ,

Leave a comment

[BLOG POST] Home After a Stroke: Reviewing Virtual Reality Rehab

Between September 2011 and May 2017 Dean published 173 posts about the use of virtual reality to provide rehab for stroke survivors.  The results for the hand are depressing.  For six years research focused on a subject’s ability to touch an object on the screen so the computer can move an object or make it disappear.  Enjoying these quick reactions is not enough to justify the cost of this expensive equipment.  It was a good place to start 6 years ago, but progress towards useful gains is disappointing.  Stroke survivors want to manipulate objects with their hand.

There is a glimmer of hope.  Gauthier (1) used video games that make stroke survivors do more than use their shoulder and elbow to reach forward and side to side.  These games require forearm and wrist motions.  This may not sound exciting but these motions orient our hand to the many different positions objects rest in. The photo shows the forearm is halfway between palm up and palm down so the hand can pick up a glass.  Cocking the wrist means the rim of the glass is not pointed at the ceiling but at the person’s mouth.

Unfortunately, Gauthier selected stroke survivors who already had a few degrees of active forearm and wrist movement.  How can subjects make the leap from just reaching to turning their hand palm up to catch a parachute on a video screen?  My OT gave me exercises that helped me regain forearm and wrist motions.  These small motions have made me more independent.  For example, I can turn my hand halfway between palm up and palm down to grab my cane so my sound hand can catch the door before the person in front of me lets it slam shut.  I picture stroke survivors practicing forearm and wrist motions and then immediately trying to turn their hand palm up so they can turn over a card on the computer screen. Fun + repetition is good.
1. Gauthier L, et al. Video game rehabilitation for outpatient stroke (VIGoROUS): protocol for a multi-center comparative effectiveness trial of in-home gamified constraint-induced movement therapy for rehabilitation of chronic upper extremity hemiparesis. BMC Neurology. 2017;17-109. doi:10.1186/s12883-017-0888-0.

Source: Home After a Stroke: Reviewing Virtual Reality Rehab

, , , , , , ,

Leave a comment

[BLOG POST] Which Saebo Hand Rehabilitation Device is Right For You? – Saebo

 


In 2001, two occupational therapists had one goal: to provide neurological clients access to transformative and life-changing products for improving arm and hand function. Frustrated with the current devices on the market that were limited, expensive, and inaccessible for home use, the founders were inspired to create new, revolutionary solutions.

What started as a dream has now become Saebo, a global provider of affordable rehabilitative products designed to improve mobility and function in individuals suffering from neurological and orthopedic conditions. With a vast network of Saebo-trained clinicians spanning six continents, Saebo has helped over 200,000 clients around the globe achieve a new level of independence.

At Saebo, we have three core product lines for hand rehabilitation: The SaeboFlex, SaeboGlove, and SaeboStretch. These three products have helped numerous people overcome limited motor function after suffering a stroke or other neurological or orthopedic condition.

We would love for you to get to know more about these three products and learn about why they work, and more importantly, who they can help. We have committed to making products that are unique and based on the most recent research and evidence available. Learn about three of our unique products:

 

 

SaeboFlex

The SaeboFlex is a high-profile orthosis with an outrigger system that covers the back of hand, fingertips and forearm. This orthosis positions the wrist and fingers into extension to prepare them for object manipulation. With the assistance of the SaeboFlex, the user is able to grasp objects by voluntarily flexing his or her fingers. Once the fingers relax (stop gripping), the extension spring system assists in re-opening the hand to release the object.

Saebo’s functional dynamic orthoses are specifically designed for people suffering from a neurological injury such as a stroke, head injury, and incomplete spinal cord injury. The SaeboFlex gives people the ability to perform grasp-and-release activities, which allows them to participate in task-oriented hand training. Evidence-based research supports this training as critical to recovery. The SaeboFlex is appropriate for individuals with minimal to severe tone/spasticity.

Here is an example of a man trying to pick up a ball six weeks after his stroke with and without the SaeboFlex. You can also see his improvement after six months of training:

SaeboGlove

The SaeboGlove is a low-profile, lightweight glove that helps clients suffering from neurological and orthopedic injuries incorporate their hand functionally in therapy and at home. The proprietary tension system has elastic bands that offer various tensions for individual finger joints. The tension system extends the client’s fingers and thumb following grasping and assists with hand opening.

The ideal candidate for the SaeboGlove is suffering from minimal to no spasticity or contracture. People with more severe soft-tissue shortening would need a high-profile orthosis like the SaeboFlex. For appropriate candidates, the SaeboGlove can be worn to assist with day-to-day functional tasks and during grasp-and-release exercises/activities. This new-found freedom leads to improved motor recovery and functional independence.

This video shows a man attempting grasp-and-release activities with and without the assistance of the SaeboGlove:

SaeboStretch

The SaeboStretch is a soft and adjustable dynamic resting hand splint recognizable for its unique strapping system. This splint is worn to stretch and prevent soft-tissue shortening and helps neurologically impaired clients maintain or improve motion. Saebo’s energy-storing technology allows individuals suffering from spasticity to stretch comfortably and safely, resulting in increased motivation and compliance.

The SaeboStretch is appropriate for people suffering from minimal to moderate spasticity. The orthosis includes the choice of three tension plates that offer various levels of resistance depending on the amount of tone and spasticity the individual has. The flexible hand plates also prevent or minimize joint pain and deformities. The SaeboStretch can be worn during the day or when sleeping.

See how the SaeboStretch is custom fit to the individual in this video:

Our Expert Recommendations

Over the last ten years, Saebo has grown into a leading global provider of rehabilitative products created through the unrelenting leadership and the strong network of clinicians around the world. We are growing this commitment to affordability and accessibility even further by making our newest, most innovative products more available than ever.

If your loved one is recovering from a neurological or orthopedic injury and wants to know if one of Saebo’s products is right for them, take our free 5-minute evaluation. Completing this survey will provide all of the information needed to ensure the best possible product recommendations. Upon completion of your survey, you will receive personalized suggestions tailored to your specific needs and abilities. In addition, our Product Specialists will be happy to review these recommendations with your physician or therapist.


All content provided on this blog is for informational purposes only and is not intended to be a substitute for professional medical advice, diagnosis, or treatment. Always seek the advice of your physician or other qualified health provider with any questions you may have regarding a medical condition. If you think you may have a medical emergency, call your doctor or 911 immediately. Reliance on any information provided by the Saebo website is solely at your own risk.

Source: Which Saebo Hand Rehabilitation Device is Right For You? | Saebo

, , , , , , , , , , ,

Leave a comment

[WEB SITE] Regain Use of Arm After Stroke – National Stroke Association

Regain Use of Arm After Stroke
Technology Now Widely Available Means Moderately to Severely Weakened Arms and Hands May Function Again

Experiencing a stroke can be devastating.  Many are left with an arm so weak it seems useless.  The biggest loss can be your independence.

But for many, regaining use of your arm and hand and your independence is possible.  Myomo, a medical robotics company, has developed the MyoPro—a lightweight, non-invasive powered brace (orthosis). It is the only orthosis that, sensing a patient’s own neurological signals through sensors on the surface of the skin, can restore their ability to use their arms and hands so that they can return to work, live independently and reduce their cost of care.

Hundreds of patients have used it successfully.  It is recommended by clinicians at leading rehabilitation facilities and 20 VA hospitals. (MyoPro is not for everyone and your results may vary.)

Read the whitepaper Technology Giving Hope to Stroke Patients Now Widely Available and see videos of patients and physicians describing their experience with MyoPro.

LEARN MORE

Source: National Stroke Association

, , , , , ,

Leave a comment

[ARTICLE] Short- and Long-term Effects of Repetitive Transcranial Magnetic Stimulation on Upper Limb Motor Function after Stroke: a Systematic Review and Meta-Analysis – Full Text

The aim of this study was to evaluate the short- and long-term effects as well as other parameters of repetitive transcranial magnetic stimulation (rTMS) on upper limb motor functional recovery after stroke.

The databases of PubMed, Medline, Science Direct, Cochrane, and Embase were searched for randomized controlled studies reporting effects of rTMS on upper limb motor recovery published before October 30, 2016.

The short- and long-term mean effect sizes as well as the effect size of rTMS frequency of pulse, post-stroke onset, and theta burst stimulation patterns were summarized by calculating the standardized mean difference (SMD) and the 95% confidence interval using fixed/random effect models as appropriate.

Thirty-four studies with 904 participants were included in this systematic review. Pooled estimates show that rTMS significantly improved short-term (SMD, 0.43; P < 0.001) and long-term (SMD, 0.49; P < 0.001) manual dexterity. More pronounced effects were found for rTMS administered in the acute phase of stroke (SMD, 0.69), subcortical stroke (SMD, 0.66), 5-session rTMS treatment (SMD, 0.67) and intermittent theta burst stimulation (SMD, 0.60). Only three studies reported mild adverse events such as headache and increased anxiety .

Five-session rTMS treatment could best improve stroke-induced upper limb dyskinesia acutely and in a long-lasting manner. Intermittent theta burst stimulation is more beneficial than continuous theta burst stimulation. rTMS applied in the acute phase of stroke is more effective than rTMS applied in the chronic phase. Subcortical lesion benefit more from rTMS than other lesion site.

Continue —> Short- and Long-term Effects of Repetitive Transcranial Magnetic Stimulation on Upper Limb Motor Function after Stroke: a Systematic Review and Meta-Analysis – Feb 17, 2017

figure

Figure 1. The flow diagram of the selection process.

 

 

, , , , , , , , , ,

Leave a comment

[WEB SITE] Stroke Recovery Exercises for Your Whole Body – Saebo

Stroke survival rates have improved a lot over the last few years. Stroke was once the third leading cause of death in the United States, but it fell to fourth place in 2008 and fifth place in 2013. Today, strokes claim an average of 129,000 American lives every year. Reducing stroke deaths in America is a great improvement, but we still have a long way to go in improving the lives of stroke survivors.

Stagnant recovery rates and low quality of life for stroke survivors are unfortunately very common. Just 10% of stroke survivors make a full recovery. Only 25% of all survivors recover with minor impairments. Nearly half of all stroke survivors continue to live with serious impairments requiring special care, and 10% of survivors live in nursing homes, skilled nursing facilities, and other long-term healthcare facilities. It’s easy to see why stroke is the leading cause of long-term disability in the United States. By 2030, it’s estimated that there could be up to 11 million stroke survivors in the country.

Traditionally, stroke rehabilitation in America leaves much to be desired in terms of recovery and quality of life. There is a serious gap between stroke patients being discharged and transitioning to physical recovery programs. In an effort to improve recovery and quality of life, the American Heart Association has urged the healthcare community to prioritize exercise as an essential part of post-stroke care.

Unfortunately, too few healthcare professionals prescribe exercise as a form of therapy for stroke, despite its many benefits for patients. Many stroke survivors are not given the skills, confidence, knowledge, or tools necessary to follow an exercise program. However, that can change.

With the right recovery programs that prioritize exercise for rehabilitation, stroke survivors can “relearn” crucial motors skills to regain a high quality of life. Thanks to a phenomenon known as neuroplasticity, even permanent brain damage doesn’t make disability inevitable.

A stroke causes loss of physical function because it temporarily or permanently damages the parts of the brain responsible for those functions. The same damage is also responsible for behavioral and cognitive changes, which range from memory and vision problems to severe depression and anger. Each of these changes correspond to a specific region of the brain that was damaged due to stroke.

For example, damage in the left hemisphere of your brain will cause weakness and paralysis on the right side of your body. If a stroke damages or kills brain cells in the right hemisphere, you may struggle to understand facial cues or control your behavior. However, brain damage due to stroke is not necessarily permanent.

For more Visit Site —> Stroke Recovery Exercises for Your Whole Body

, , , , , , , , , , , ,

Leave a comment

[Abstract] Robotic approaches for the rehabilitation of upper limb recovery after stroke: a systematic review and meta-analysis.

Abstract

This systematic review with a meta-analysis of studies was carried out to evaluate the effectiveness of robotic training (RT) and conventional training (CT) in improving the motor recovery of paretic upper limbs in stroke patients. Numerous electronic databases were searched from January 2000 to May 2016. Finally, 13 randomized-controlled trials fulfilled the inclusion criteria and were included in the three meta-analyses. The first meta-analysis carried out for those studies using RT for stroke patients indicated a significant improvement in the RT groups. The second meta-analysis suggested that the upper limb function (measured by Fugl-Meyer test) was significantly improved when RT was used with CT compared with CT alone. The third meta-analysis noted a significant difference in motor recovery between the CT-only and RT groups (RT only or RT combined with CT) in the chronic stages of stroke, but not in the acute or subacute stages. However, the RT group also showed a higher Fugl-Meyer score in patients at both the acute and the subacute stage. RT appeared to have positive outcomes to enhance motor recovery of the paralyzed upper limb. Robotic devices were believed to provide more assistance to patients to help support the weight of the upper limb; thus, active movement training can begin in the early rehabilitation stage. These novel devices may also help those chronic patients to achieve better rehabilitation goals. As a summary, RT could be used in addition to CT to help both therapists and patients in the management of the paralyzed upper limb.

Source: Robotic approaches for the rehabilitation of upper limb reco… : International Journal of Rehabilitation Research

, , , , , , , ,

Leave a comment

[Abstract] The effect of peripheral nerve electrical stimulation on corticomotor excitability and motor function of the paretic hand in stroke

Abstract

Electrical stimulation to the stroke-affected paretic upper limb (UL) has been a treatment to promote its motor recovery. Despite its efficacy in promoting muscle strength and enhancing motor training, the underlying neurophysiological mechanism for such motor improvement has not been clear. It is crucial to delineate the corticomotor plasticity effects of electrical stimulation when it is applied as a single entity and as an adjunct to other forms of therapies, since the knowledge would support formulation of effective treatment for the paretic UL in stroke rehabilitation.

This dissertation incorporated 4 studies to examine the corticomotor excitability modulation and motor function effects of electrical stimulation on the paretic UL due to stroke. Study 1 reviewed randomized controlled trials published before 2012 to scrutinize the efficacy of electrical stimulation on motor function improvement as well as corticomotor excitability for muscles in the paretic hand. Results of the meta-analysis showed that electrical stimulation could improve UL motor impairment but not its ability in functional task performance measured with the Action Research Arm Test. The corticomotor excitability changes associated with electrical stimulation could not be concluded because of diverse outcomes reported in only 3 studies. Study 2 was a randomized cross-over sham-controlled experiment (n = 32) set to determine a single session of 1-hour electrical stimulation delivered to the ulnar and radial nerves (PNS) of the paretic UL at an intensity of 2 to 3 sensory thresholds in modulating the corticomotor excitability in both brain hemispheres. The results confirmed that PNS could increase corticomotor excitability in terms of the recruitment curve (RC) slope and peak amplitude of motor-evoked potentials (pMEP) for the corticospinal projections to the contralateral first dorsal interosseous hand muscle (FDI) measured in both hemispheres. The PNS also enhanced better hand pincer dexterity scored by the Purdue pegboard test than the sham stimulation (PNSsham). Then Study 3 was conducted to examine if PNS could condition the corticomotor pathways for another treatment targeting motor improvement in the paretic UL. This pilot randomized cross-over study involved 20 subjects to receive 1-hour PNS paired with observation of movement demonstration in videos (termed action observation, AO) that was introduced during the last 30 minutes of PNS. PNS+AO improved the Purdue dexterity score of the paretic hand, but the change in corticomotor excitability for the contralateral FDI in the lesioned hemisphere was not significant. The control intervention PNSsham+AO did not change any of the outcome measurements. Study 4 further tested the hypothesis that PNS and/or jointly with AO might effectively condition motor training of the paretic UL in enhancing corticomotor plastic changes and hand dexterity. In this randomized sham-controlled cross-over study, 20 subjects in chronic stage of stroke were exposed to 3 separate sessions of different interventions composed of 1-hour PNS or PNSsham paired with 30 minutes of AO or sham AO (AOsham), all followed by 30-minute training of index finger abduction. The results revealed that PNS+AO+Training led to significantly increased corticomotor excitability in terms of RC slope and pMEP amplitude localized in the lesioned hemisphere but that of the intact hemisphere was not altered. This neuroplastic modulation was accompanied by enhanced hand dexterity at 24 hours post-intervention better than the control with PNSsham+AOsham+Training. On the other hand, PNS+AOsham+Training did not modulate corticomotor excitability functions but hand dexterity was increased immediately after the intervention better than after PNSsham+AOsham+Training. Training after PNSsham+AOsham conditioning was not effective on the outcome measurements.
Results of the series of studies supported that (1) one-hour PNS could increase the excitability of corticomotor pathways for the contralateral hand muscle in both the lesioned and intact hemispheres similarly; (2) one-hour PNS alone, or applied as a conditioning treatment in the presence of AO or AOsham prior to movement training in the paretic hand could lead to better hand dexterity than training after sham controls; (3) Up-regulation of corticomotor excitability specifically confined to the stroke-lesioned hemisphere was evident after a session of PNS paired with AO and Training.

To conclude, one session of PNS or PNS-associated interventions for the paretic UL could effectively improve dexterity of the paretic hand in people with chronic stroke. PNS might have primed the corticomotor pathways for AO and motor training to result in corticomotor excitability enhancement specifically confined to the stroke-lesioned hemisphere.

Source: The effect of peripheral nerve electrical stimulation on corticomotor excitability and motor function of the paretic hand in stroke | PolyU Institutional Research Archive

, , , , , , , , , , ,

Leave a comment

[WEB SITE] Trial of New Stroke Recovery Device Set to Begin – Rehab Managment

stroke

Neuroscience researchers are beginning a clinical trial, involving 150 stroke patients, of a new electronic device that they hope could help recover movement and control of the patients’ hands.

The researchers from Newcastle University are working with colleagues at the Institute of Neurosciences, Kolkata, India, on the trial, which aims to see whether the device could lead to improved hand and arm control.

“We have developed a miniaturized device which delivers an audible click followed by a weak electric shock to the arm muscle to strengthen the brain’s connections. This means the stroke patients in the trial are wearing an earpiece and a pad on the arm, each linked by wires to the device so that the click and shock can be continually delivered to them,” explains Stuart Baker, professor of Movement Neuroscience at Newcastle University, who is leading the trial, in a media release from Newcastle University.

“We think that if they wear this for 4 hours a day we will be able to see a permanent improvement in their extensor muscle connections which will help them gain control on their hand,” adds Baker, senior author of a study about the device, published recently in The Journal of Neuroscience.

This study is the researchers’ report regarding their testing of the device on primates and healthy human participants.

In the study, the release explains, the Newcastle University researchers report how they pair a click in a headphone with an electric shock to a muscle to induce the changes in connections either strengthening or weakening reflexes depending on the sequence selected. They demonstrated that wearing the portable electronic device for seven hours strengthened the signal pathway in more than half of the subjects (15 out of 25).

“We would never have thought of using audible clicks unless we had the recordings from primates to show us that this might work. Furthermore, it is our earlier work in primates which shows that the connections we are changing are definitely involved in stroke recovery,” Baker states.

[Source(s): Newcastle University, Newswise]

[Photo courtesy of Newcastle University]

Source: Trial of New Stroke Recovery Device Set to Begin – Rehab Managment

, , , , , , , ,

Leave a comment

[ARTICLE] Democratizing Neurorehabilitation: How Accessible are Low-Cost Mobile-Gaming Technologies for Self-Rehabilitation of Arm Disability in Stroke? – Full Text HTML

Abstract

Motor-training software on tablets or smartphones (Apps) offer a low-cost, widely-available solution to supplement arm physiotherapy after stroke. We assessed the proportions of hemiplegic stroke patients who, with their plegic hand, could meaningfully engage with mobile-gaming devices using a range of standard control-methods, as well as by using a novel wireless grip-controller, adapted for neurodisability. We screened all newly-diagnosed hemiplegic stroke patients presenting to a stroke centre over 6 months. Subjects were compared on their ability to control a tablet or smartphone cursor using: finger-swipe, tap, joystick, screen-tilt, and an adapted handgrip. Cursor control was graded as: no movement (0); less than full-range movement (1); full-range movement (2); directed movement (3). In total, we screened 345 patients, of which 87 satisfied recruitment criteria and completed testing. The commonest reason for exclusion was cognitive impairment. Using conventional controls, the proportion of patients able to direct cursor movement was 38–48%; and to move it full-range was 55–67% (controller comparison: p>0.1). By comparison, handgrip enabled directed control in 75%, and full-range movement in 93% (controller comparison: p<0.001). This difference between controllers was most apparent amongst severely-disabled subjects, with 0% achieving directed or full-range control with conventional controls, compared to 58% and 83% achieving these two levels of movement, respectively, with handgrip. In conclusion, hand, or arm, training Apps played on conventional mobile devices are likely to be accessible only to mildly-disabled stroke patients. Technological adaptations such as grip-control can enable more severely affected subjects to engage with self-training software.

Introduction

The most important intervention shown to improve physical function after stroke is repetitive, task-directed exercises, supervised by a physiotherapist, with higher intensity leading to faster and greater recovery. In practice, access to physiotherapy is significantly limited by resource availability . For example, 55% of UK stroke in-patients receive less than half the recommended physiotherapy time of 45 minutes per day.

One solution to inadequate physiotherapy is robotic technology, that enables patients to self-practice, with mechanical assistance, via interaction with adapted computer games. While a range of rehabilitation robotics have been marketed over the last decade, and shown to be efficacious, they are not widely used due to factors such as high-cost (typically, $10,000–100,000), cumbersome size, and restriction to patients with high baseline performance, and who have access to specialist rehabilitation centres.

An alternative approach to self-rehabilitation, are medical applications (Apps), or gaming software, run on mobile media devices e.g. tablets or smartphones. Because such devices are low-cost ($200–500), and ubiquitous, they have the potential to democratize computerized-physiotherapy, especially in under-resourced settings, e.g. chronically-disabled in the community. Furthermore, their portability enables home use, while their employment of motivational gaming strategies can potentiate high-intensity motor practice. Accordingly, increasing numbers of motor-training Apps for mobile devices have been commercialised in recent years, and clinical trials are under way. However, since these devices are designed for able-person use, it is questionable as to how well disabled people can access them, and engage meaningfully and repeatedly with rehabilitation software.

This study assesses the degree of motor interaction that can be achieved by hemiplegic stroke patients using four types of conventional hand-control methods (finger swipe, tap, joystick and tilt) for mobile devices. An adapted controller of the same mobile devices, whose materials cost ~$100, was evaluated alongside. Since the latter interface exploits the fact that handgrip is relatively spared in stroke hemiplegia, and is sensitive to subtle forces, we expected that this would increase the range of arm-disability severities able to achieve meaningful computer-game control. In order to assess motor control, with minimal cognitive confounding (given that many softwares also have cognitive demands), we used a simple 1-dimensional motor assessment for all controller types.

Continue —> PLOS ONE: Democratizing Neurorehabilitation: How Accessible are Low-Cost Mobile-Gaming Technologies for Self-Rehabilitation of Arm Disability in Stroke?

Fig 1. Control methods and devices trialled. Conventional control mechanisms were trialled using standard tablet and smartphone (A, B). Subjects were required only to move a cursor along a single vertical path, full-range, and then to an indicated vertical level (they were not tested on playing the underlying game). B shows software used for assessing swipe, with varying cursor size. There was no improvement in accessibility using a larger cursor. The novel control mechanism (C) is a wireless grip-force sensor that detects both finger-flexion and extension movements, the latter assisted by a fingerstrap holding the device within a partially-extended hand. Control software for C entailed moving a circle in a vertical plane towards a target star. Cursor and target stimuli dimensions and contrast are similar between all methods.

, , , , , , , , , ,

Leave a comment

%d bloggers like this: