Posts Tagged Arm

[NEWS] NEOFECT Redesigns Smart Board for Home

Published on May 8, 2019


NEOFECT has redesigned its Smart Board for Home in reply to feedback from patients recovering from stroke and other musculoskeletal conditions and neurological disorders.

The new Smart Board for Home NextGen includes a smaller surface to help patients use it at home more easily, a redesigned handle to better stabilize the user’s hand and arm, and updated gamified software.

The board size has been reduced from 42 inches to 32 inches so it can fit on most tables. To accommodate the weakened grip of many stroke patients, the redesigned handle includes more straps to better stabilize the user’s arm, ensure appropriate measurement for the post-game metrics, and provide a more secure, comfortable experience, according to the company in a media release.

“We took patient feedback and completely revamped the Smart Board for Home NextGen,” says Scott Kim, co-founder and CEO of San Francisco-based NEOFECT USA.

“This new model still has all the fun, measurable qualities patients can use at home, but now we’ve reduced even more barriers so that people of all abilities can gain back function in their hands and upper arms.”

Patients play games on the Smart Board for Home NextGen by placing their forearm in a cradle and moving their arm across the board. All movements are virtually mimicked on a Bluetooth-connected screen in real time. The gamified software also features an updated AI-powered algorithm to curate a more customized experience for each patient.

The Smart Board for Home NextGen games mimic real-world motions to rehabilitate users’ upper arms and shoulders, including new games like “Air Hawk” and “Tennis.”

Additionally, NEOFECT is developing a dual-player game for patients to use at home, which will be available in summer 2019.

[Source(s): NEOFECT, Business Wire]


, , , , , , , ,

Leave a comment

[Abstract] Brain-machine interface of upper limb recovery in stroke patients rehabilitation: A systematic review



Technologies such as brain-computer interfaces are able to guide mental practice, in particular motor imagery performance, to promote recovery in stroke patients, as a combined approach to conventional therapy.


The aim of this systematic review was to provide a status report regarding advances in brain-computer interface, focusing in particular in upper limb motor recovery.


The databases PubMed, Scopus, and PEDro were systematically searched for articles published between January 2010 and December 2017. The selected studies were randomized controlled trials involving brain-computer interface interventions in stroke patients, with upper limb assessment as primary outcome measures. Reviewers independently extracted data and assessed the methodological quality of the trials, using the PEDro methodologic rating scale.


From 309 titles, we included nine studies with high quality (PEDro ≥ 6). We found that the most common interface used was non-invasive electroencephalography, and the main neurofeedback, in stroke rehabilitation, was usually visual abstract or a combination with the control of an orthosis/robotic limb. Moreover, the Fugl-Meyer Assessment Scale was a major outcome measure in eight out of nine studies. In addition, the benefits of functional electric stimulation associated to an interface were found in three studies.


Neurofeedback training with brain-computer interface systems seem to promote clinical and neurophysiologic changes in stroke patients, in particular those with long-term efficacy.


, , , , , , , ,

Leave a comment

[BLOG POST] Stroke rehabilitation: maximizing arm and hand function after stroke – Evidently Cochrane

Potters hands

Stroke is the leading cause of disability in developed countries. The effects of stroke on the upper extremities are a major cause of functional impairment. This impairment of the upper extremity often leads to loss of independence with activities of daily living and of important occupations. There has been much research along different schools of thought that are intended to help people regain function and range of motion in their hand and arm after stroke. A quick search through the Cochrane Library would lead you to over a dozen Systematic Reviews of different interventions for the upper limb for people with stroke: these include: Constraint-induced movement therapyMental practiceMirror therapyVirtual realityRepetitive task practiceElectrical stimulation, and Occupational therapy for stroke … the list goes on.

So while it’s great that we are accumulating more and more evidence all the time, the challenge for therapists is that we just don’t have the time to spend scouring through the research, trying to find which one of these interventions is most effective for regaining upper limb function. Thankfully, Pollock and colleagues did the work for us and published a Cochrane Corner Overview paper titled “Interventions for Improving Upper Limb Function after Stroke.”

What was different about this study?

First, this study was called an “Overview” because it is basically a systematic review of systematic reviews of stroke on the upper extremity. In total, it included 40 systematic reviews (19 Cochrane Reviews and 21 non-Cochrane reviews with 18,078 participants) looking at improving arm function after stroke. That is a lot of research by any means. Their intent was to summarize the best evidence and, whenever possible, provide a side by-side comparison of interventions to give healthcare providers a succinct overview of the typical interventions for stroke to rehabilitate the upper limb.

So what did they find?

Good news and bad news. The bad news is they found that:

  • “There is no high quality evidence for any interventions that are currently routine practice, and evidence is insufficient to enable comparison of the relative effectiveness of interventions.” In other words, the evidence is insufficient to show which of the interventions are the most effective for improving upper limb function.

The good news is that they did find:

  • “Moderate quality evidence suggests that each of the following interventions may be effective: Constraint-Induced Movement Therapy (CIMT), Mental Practice, Mirror Therapy, interventions for sensory impairment, Virtual Reality and a relatively high dose of Repetitive Task Practice.”
  • Moderate quality evidence also indicates that unilateral arm training (exercise for the affected arm) may be more effective than bilateral arm training (doing the same exercise with both arms at the same time).
  • Some evidence shows that a greater dose of an intervention is better than a lesser dose.
  • “Effective collaboration is urgently needed to support definitive randomized controlled trials of interventions used routinely within clinical practice. Evidence related to dose is particularly needed because this has widespread clinical and research implications.”

What do we know about how intense therapy should be?

Team of health professionals

Until recently, the Scottish Intercollegiate Guidelines Network 2010 (SIGN) guideline on stroke management and rehabilitation recommended considering Constraint Induced Movement. However, Repetitive Task Training was not routinely recommended for improving upper limb function, and increased intensity of therapy for improving upper limb function in stroke patients was also not recommended.

The NICE Guidelines Stroke Rehabilitation in Adults 2013 in the UK recommended that therapists consider Constraint Induced Movement Therapy, and offer initially at least 45 minutes of each relevant stroke rehabilitation therapy for a minimum of 5 days per week to people who have the ability to participate.

A recent article in Advances in Clinical Neuroscience and Rehabilitation, called The Future of Stroke Rehabilitation: Upper Limb Recovery, points out that there is real concern that the dose and intensity of upper limb rehabilitation after stroke is just too low. The article brings some research results that at least two to three hours of arm training a day, for six weeks, reduced impairment and improved function by clinically meaningful amounts when started one to two months after stroke. However, anything less than this does not appear to provide much benefit overall.

The newly released AHA/ASA Guidelines for Stroke 2016 pulls all the updated evidence together, and states that when it comes to upper limb therapy following stroke, the research suggests that a higher dose is better. These new guidelines state that the patients who perform more than three hours of therapy daily made significantly more functional gains than those receiving less than three hours. The AHA/ASA Guidelines states that there is preliminary evidence suggesting the ideal setting appears to be the inpatient rehabilitation setting. Additionally, rehabilitation is best performed by an interprofessional team that can include a physician with expertise in rehabilitation, nurses, physical therapists, occupational therapists, speech/language therapists, psychologists, and orthotists.

What are the implications for therapists?

In order to truly have evidence based practice, we first need to identify the highest quality evidence. One of the main goals of the Cochrane Overview was to direct therapists to the highest quality evidence when making day-to-day clinical decisions. As we know, each person and each stroke is different. So for therapists, this overview suggests that that we can and should look closely into the evidence for and consider using Constraint-Induced Movement Therapy (CIMT), Mental Practice, Mirror Therapy, Interventions for Sensory Impairment, Virtual Reality and Repetitive Task Training in our practice. Preliminary evidence also suggests that we need to provide at least three hours of therapy a day in the post-acute setting.

While updated guidelines and reviews of the best available evidence are very helpful, we must always use our clinical reasoning and judgement to decide which intervention is most appropriate in our particular practice setting. The guidelines suggest that it benefits the patients when we work synergistically to facilitate an increased intensity of therapy by combining our efforts within the interprofessional team. Finally, to be truly effective we should strive to translate the evidence into functional interventions to ultimately make meaningful improvements in everyday lives of our patients.

Stroke rehabilitation: maximizing arm and hand function after stroke by Danny Minkow is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.
Based on a work at Images have been purchased for Evidently Cochrane from istock.comand may not be reproduced.


Pollock A, Farmer SE, Brady MC, Langhorne P, Mead GE, Mehrholz J, van Wijck F. Cochrane Overview: interventions for improving upper limb function after stroke. Stroke 2015;46:e57-8. doi:10.1161/STROKEAHA.114.008295. Available from:

Pollock A, Farmer SE, Brady MC, Langhorne P, Mead GE, Mehrholz J, van Wijck F. Interventions for improving upper limb function after stroke. Cochrane Database of Systematic Reviews 2014, Issue 11. Art. No.: CD010820. DOI: 10.1002/14651858.CD010820.pub2.

Scottish Intercollegiate Guidelines Network (SIGN). Management of patients with stroke: rehabilitation, prevention and management of complications, and discharge planning. Edinburgh: SIGN; 2010. (SIGN publication no. 118). [cited June 2010]. Available from:

The Stroke Association. “Web Upper Limb Video. UK Stroke Forum: Cochrane overview of interventions to improve upper limb function after stroke”. YouTube videocast, 24:28. YouTube, 18 December, 2015. Web. 9 May 2016.

National Clinical Guideline Centre; National Institute for Health and Care Excellence (commissioner). Stroke rehabilitation: long term rehabilitation after stroke. London: National Clinical Guideline Centre, Royal College of Physicians; 2013 (NICE CG162). [Issued June 2013]. Available from:

Ward NS, Kelly K, Brander F. The future of stroke rehabilitation: upper limb recovery. Advances in Clinical Neuroscience & Rehabilitation2015; 15(4): 6-8. Available from:

Clarke D, Forster A, Drummond A, Tyson S, Rodgers H, Jones F, Harris R. Delivering optimum intensity of rehabilitation in hospital and at home: what do we know? [PowerPoint slides]. Oral presentation at Key Advances in Stroke Rehabilitation conference, London, 12thJune 2013. Available from:

Winstein CJ, Stein J, Arena R, Bates B, Cherney LR, Cramer SC, Deruyter F, Eng JJ, Fisher B, Harvey RL, Lang CE, MacKay-Lyons M, Ottenbacher KJ, Pugh S, Reeves MJ, Richards LG, Stiers W, Zorowitz RD; American Heart Association Stroke Council, Council on Cardiovascular and Stroke Nursing, Council on Clinical Cardiology, and Council on Quality of Care and Outcomes Research. Guidelines for Adult Stroke Rehabilitation and Recovery: A Guideline for Healthcare Professionals From the American Heart Association/American Stroke Association. Stroke 2016;47(6):e98-e169. doi: 10.1161/STR.0000000000000098. Available from:

via Stroke rehabilitation: maximizing arm and hand function after stroke – Evidently Cochrane

, , , , , , , ,

Leave a comment

[Abstract] The effectiveness of somatosensory retraining for improving sensory function in the arm following stroke: a systematic review

The aim of this study was to evaluate if somatosensory retraining programmes assist people to improve somatosensory discrimination skills and arm functioning after stroke.

Nine databases were systematically searched: Medline, Cumulative Index to Nursing and Allied Health Literature, PsychInfo, Embase, Amed, Web of Science, Physiotherapy Evidence Database, OT seeker, and Cochrane Library.

Studies were included for review if they involved (1) adult participants who had somatosensory impairment in the arm after stroke, (2) a programme targeted at retraining somatosensation, (3) a primary measure of somatosensory discrimination skills in the arm, and (4) an intervention study design (e.g. randomized or non-randomized control designs).

A total of 6779 articles were screened. Five group trials and five single case experimental designs were included (N = 199 stroke survivors). Six studies focused exclusively on retraining somatosensation and four studies focused on somatosensation and motor retraining. Standardized somatosensory measures were typically used for tactile, proprioception, and haptic object recognition modalities. Sensory intervention effect sizes ranged from 0.3 to 2.2, with an average effect size of 0.85 across somatosensory modalities. A majority of effect sizes for proprioception and tactile somatosensory domains were greater than 0.5, and all but one of the intervention effect sizes were larger than the control effect sizes, at least as point estimates. Six studies measured motor and/or functional arm outcomes (n = 89 participants), with narrative analysis suggesting a trend towards improvement in arm use after somatosensory retraining.

Somatosensory retraining may assist people to regain somatosensory discrimination skills in the arm after stroke.

via The effectiveness of somatosensory retraining for improving sensory function in the arm following stroke: a systematic review – Megan L Turville, Liana S Cahill, Thomas A Matyas, Jannette M Blennerhassett, Leeanne M Carey, 2019

, , , , , ,

Leave a comment

[NEWS] Video Game-Integrated Training Device Helps Stroke Survivors Regain Arm Function

Published on 

Word writing text Rehab. Business concept for course treatment for drug alcohol dependence typically at residential

A new video game-led training device called a myoelectric computer interface (MyoCI), invented by Northwestern Medicine scientists, is enabling severely impaired stroke survivors to regain function in their arms after sometimes decades of immobility.

When integrated with a customized video game, the device helped retrain stroke survivors’ arm muscles into moving more normally. Most of the 32 study participants experienced increased arm mobility and reduced arm stiffness while using it, and retained their arm function a month after finishing the training, according to a study published recently in Neurorehabilitation and Neural Repair.

Many stroke survivors can’t extend their arm forward with a straight elbow because the muscles act against one another in abnormal ways, called “abnormal co-activation” or “abnormal coupling.”

The Northwestern device identifies which muscles are abnormally coupled and retrains the muscles into moving normally by using their electrical muscle activity (called electromyogram, or EMG) to control a cursor in a customized video game. The more the muscles decouple, the higher the person’s score, a media release from Northwestern University explains.

“We gamified the therapy into an ’80s-style video game,” says senior author Dr Marc Slutzky, associate professor of neurology and of physiology at Northwestern University Feinberg School of Medicine and a Northwestern Medicine neurologist. “It’s rather basic graphics by today’s standards, but it’s entertaining enough.”

“The beauty of this is even if the benefit doesn’t persist for months or years, patients with a wearable device could do a ‘tune-up’ session every couple weeks, months or whenever they need it,” adds Slutzky, whose team designed the original device. “Long-term, I envision having flexible, fully wireless electrodes that an occupational therapist could quickly apply in their office, and patients could go home and train by themselves.”

Slutzky also is studying this method on stroke patients in the hospital, starting within a week of their stroke.

Abnormal coupling of muscles leaves many stroke patients with a bent elbow, which makes it difficult to benefit from typical task-based stroke-rehabilitation therapies, such as training on bathing, getting dressed and eating.

Only about 30% of stroke patients in the United States receive therapy after their initial in-patient rehabilitation stay, often because their injury is too severe to benefit from standard therapy, it costs too much, or they’re too far from a therapist. This small, preliminary study lays the groundwork for inexpensive, wearable, at-home therapy options for severely impaired stroke survivors, the release continues.

“We’re still in the very early stages, but I’m hopeful this may be an effective new type of stroke therapy,” Slutzky states. “The goal is to one day let patients buy the training device inexpensively, potentially without even needing insurance and use it wirelessly in their home.”

Patients in the study were severely impaired – could only slightly move their arm and extend their elbow – and had had their stroke at least 6 months prior to beginning the study. The average patient was more than 6 years out from their stroke, and some were decades out.

After Slutzky’s intervention, study participants could, on average, extend their elbow angle by 11 degrees more than before the intervention, which was a pleasant surprise, Slutzky comments.

This type of treatment only requires a small amount of muscle activation, which is advantageous for severely impaired stroke patients who typically can’t move enough to even begin standard physical therapy. It also gives feedback to the patient if they’re activating their muscles properly.

To identify which muscles were abnormally coupled, study participants attempted to reach out to multiple different targets while the scientists recorded the electrical activity in eight of their arm muscles using electrodes attached to the skin. For example, the biceps and anterior deltoid muscles in the arm often activated together in stroke participants, while they normally shouldn’t.

Then, to retrain the muscles into moving normally (ie, without abnormally co-activating), the participants used their electrical muscle activity to control a cursor in a customized video game. The two abnormally coupled muscles moved the cursor in either horizontal or vertical directions, in proportion to their EMG amplitude, the release continues.

For example, if the biceps would contract in isolation, the cursor would move up. If the anterior muscles would contract in isolation, the cursor would move to the side. But if the muscles would contract together, the cursor would move diagonally.

The goal was to move the cursor only vertically or horizontally – not diagonally – to acquire targets in the game. To get a high score, participants had to learn to decouple the abnormally coupled muscles.

Muscles tend to produce more electrical muscle activity when contracting isometrically (without moving) compared to when moving the arm freely, but the ultimate goal of this training is to enable home use. One goal of this study was to see if participants could benefit without restraining the arm as much as with restraining the arm.

Participants were broken into three groups: 60 minutes of training with their arm restrained; 90 minutes of training with their arm restrained; and 90 minutes of training without arm restraints. Overall, arm function improved substantially, in all groups and there was no significant difference between the three groups, the release concludes.

[Source(s): Northwestern University, News-Medical Life Sciences]


via Video Game-Integrated Training Device Helps Stroke Survivors Regain Arm Function – Rehab Managment

, , , , , ,

Leave a comment

[ARTICLE] Changes in actual arm-hand use in stroke patients during and after clinical rehabilitation involving a well-defined arm-hand rehabilitation program: A prospective cohort study – Full Text



Improvement of arm-hand function and arm-hand skill performance in stroke patients is reported by many authors. However, therapy content often is poorly described, data on actual arm-hand use are scarce, and, as follow-up time often is very short, little information on patients’ mid- and long-term progression is available. Also, outcome data mainly stem from either a general patient group, unstratified for the severity of arm-hand impairment, or a very specific patient group.


To investigate to what extent the rate of improvement or deterioration of actual arm-hand use differs between stroke patients with either a severely, moderately or mildly affected arm-hand, during and after rehabilitation involving a well-defined rehabilitation program.


Design: single–armed prospective cohort study. Outcome measure: affected arm-hand use during daily tasks (accelerometry), expressed as ‘Intensity-of arm-hand-use’ and ‘Duration-of-arm-hand-use’ during waking hours. Measurement dates: at admission, clinical discharge and 3, 6, 9, and 12 months post-discharge. Statistics: Two-way repeated measures ANOVAs.


Seventy-six patients (63 males); mean age: 57.6 years (sd:10.6); post-stroke time: 29.8 days (sd:20.1) participated. Between baseline and 1-year follow-up, Intensity-of-arm-hand-use on the affected side increased by 51%, 114% and 14% (p < .000) in the mildly, moderately and severely affected patients, respectively. Similarly, Duration-of-arm-hand-use increased by 26%, 220% and 161% (p < .000). Regarding bimanual arm-hand use: Intensity-of-arm-hand-use increased by 44%, 74% and 30% (p < .000), whereas Duration-of-arm-hand-use increased by 10%, 22% and 16% (p < .000).


Stroke survivors with a severely, moderately or mildly affected arm-hand showed different, though (clinically) important, improvements in actual arm-hand use during the rehabilitation phase. Intensity-of-arm-hand-use and Duration-of-arm-hand-use significantly improved in both unimanual and bimanual tasks/skills. These improvements were maintained until at least 1 year post-discharge.



After stroke, the majority of stroke survivors experiences significant arm-hand impairments [12] and a decreased use of the paretic arm and hand in daily life [3]. The actual use of the affected hand in daily life performance depends on the severity of the arm-hand impairment [46] and is associated with perceived limitations in participation [78]. Severity of arm-hand impairment is also associated with a decrease of health-related quality of life [9], restricted social participation [10], and subjective well-being [1112].

Numerous interventions and arm-hand rehabilitation programs have been developed in order to resolve arm-hand impairments in stroke patients [613]. In the Netherlands, a number of stroke units in rehabilitation centres implemented a well-described ‘therapy-as-usual’ arm-hand rehabilitation program, called CARAS (acronym for: Concise Arm and hand Rehabilitation Approach in Stroke)[14], serving a broad spectrum of stroke patients across the full stroke severity range of arm-hand impairments. The arm-hand rehabilitation program has been developed to guide clinicians in systematically designing arm-hand rehabilitation, tailored towards the individual patient’s characteristics while keeping control over the overall heterogeneity of this population typically seen in stroke rehabilitation centres. A vast majority of stroke patients who participated in CARAS improved on arm-hand function (AHF), on arm-hand skilled performance (AHSP) capacity and on (self-) perceived performance, both during and after clinical rehabilitation [15]. The term ‘arm-hand function’ (AHF) refers to the International Classification of Functioning (ICF) [16] ‘body function and structures level’. The term ‘arm-hand skilled performance’ (AHSP) refers to the ICF ‘activity level’, covering capacity as well as both perceived performance and actual arm-hand use [17].

Improved AHF and/or AHSP capacity do not automatically lead to an increase in actual arm-hand use and do not guarantee an increase of performing functional activities in daily life [1820]. Improvements at function level, i.e. regaining selectivity, (grip) strength and/or grip performance, do not automatically lead to improvements experienced in real life task performance of persons in the post-stroke phase who live at home [1821]. Next to outcome measures regarding AHF, AHSP capacity and (self-) perceived AHSP, which are typically measured in controlled conditions, objective assessment of functional activity and actual arm-hand use outside the testing situation is warranted [2223].

Accelerometry can be used to reliably and objectively assess actual arm-hand use during daily task performance [2432]and has been used in several studies to detect arm-hand movements and evaluate arm-hand use in the post-stroke phase [203335]. Previous studies have demonstrated that, in stroke patients, movement counts, as measured with accelerometers, are associated with the use of the affected arm-hand (Motor Activity Log score) [3637] and, at function level, with the Fugl-Meyer Assessment [38]. Next to quantifying paretic arm-hand use, accelerometers have also been used to provide feedback to further enhance the use of the affected hand in home-based situations [39]. Most studies consist of relatively small [27304044] and highly selected study populations [45] with short time intervals between baseline and follow-up measurements. As to our knowledge, only a few studies monitored arm-hand use in stroke patients for a longer period, i.e. between time of discharge to a home situation or till 6 to 12 months after stroke [194446]. However, they used a relatively small study sample and their intervention aimed at arm-hand rehabilitation was undefined. Both studies of Connell et al. and Uswatte et al. describe a well-defined arm hand intervention where accelerometry data were used as an outcome measure [2747]. However, the study population described by Connell et al. consisted of a relative small and a relative mildly impaired group of chronic stroke survivors. The study population described by Uswatte et al. consisted of a large group of sub-acute stroke patients within strict inclusion criteria ranges [37], who, due to significant spontaneous neurologic recovery within this sub-acute phase, had a mildly impaired arm and hand [4849]. This means that the group lacked persons with a moderately to severely affected arm-hand, who are commonly treated in the daily rehabilitation setting.

The course of AHF and AHSP of a broad range of sub-acute stroke patients during and after rehabilitation involving a well-defined arm-hand rehabilitation program (i.e. CARAS) [14] has been reported by Franck et al. [15]. The present paper provides data concerning actual arm-hand use in the same study population, and focuses on two objectives. The first aim is to investigate changes in actual arm-hand use across time, i.e. during and after clinical rehabilitation, within a stroke patient group typically seen in daily medical rehabilitation practice, i.e. covering a broad spectrum of arm-hand problem severity levels, who followed a well-described arm-hand treatment regime. The second aim is to investigate to what extent improvement (or deterioration) regarding the use of the affected arm-hand in daily life situations differs between patient categories, i.e. patients with either a severely, moderately or mildly impaired arm-hand, during and after their rehabilitation, involving a well-defined arm-hand rehabilitation program.[…]

Continue —->  Changes in actual arm-hand use in stroke patients during and after clinical rehabilitation involving a well-defined arm-hand rehabilitation program: A prospective cohort study

Fig 3. Mean values for Intensity-of-arm-hand-use during uptime for subgroups 1, 2 and 3.
T = time; bl = baseline; cd = clinical discharge; m = month; Solid line = subgroup 1; Dotted line = subgroup 2; Dashed line = subgroup 3.

, , , , , , , , , , , , ,

Leave a comment

[Abstract] Self-efficacy and Reach Performance in Individuals With Mild Motor Impairment Due to Stroke

Background: Persistent deficits in arm function are common after stroke. An improved understanding of the factors that contribute to the performance of skilled arm movements is needed. One such factor may be self-efficacy (SE).

Objective: To determine the level of SE for skilled, goal-directed reach actions in individuals with mild motor impairment after stroke and whether SE for reach performance correlated with actual reach performance.

Methods: A total of 20 individuals with chronic stroke (months poststroke: mean 58.1 ± 38.8) and mild motor impairment (upper-extremity Fugl-Meyer [FM] motor score: mean 53.2, range 39 to 66) and 6 age-matched controls reached to targets presented in 2 directions (ipsilateral, contralateral). Prior to each block (24 reach trials), individuals rated their confidence on reaching to targets accurately and quickly on a scale that ranged from 0 (not very confident) to 10 (very confident).

Results: Overall reach performance was slower and less accurate in the more-affected arm compared with both the less-affected arm and controls. SE for both reach speed and reach accuracy was lower for the more-affected arm compared with the less-affected arm. For reaches with the more-affected arm, SE for reach speed and age significantly predicted movement time to ipsilateral targets (R2 = 0.352), whereas SE for reach accuracy and FM motor score significantly predicted end point error to contralateral targets (R2 = 0.291).

Conclusions: SE relates to measures of reach control and may serve as a target for interventions to improve proximal arm control after stroke.

via Self-efficacy and Reach Performance in Individuals With Mild Motor Impairment Due to Stroke – Jill Campbell Stewart, Rebecca Lewthwaite, Janelle Rocktashel, Carolee J. Winstein, 2019

, , , , , , , , , ,

Leave a comment

[Abstract] Action observation therapy for improving arm function, walking ability, and daily activity performance after stroke: a systematic review and meta-analysis

This study was to investigate the effectiveness of action observation therapy on arm and hand motor function, walking ability, gait performance, and activities of daily living in stroke patients.

Systematic review and meta-analysis of randomized controlled trials.

Searches were completed in January 2019 from electronic databases, including PubMed, Scopus, the Cochrane Library, and OTseeker.

Two independent reviewers performed data extraction and evaluated the study quality by the PEDro scale. The pooled effect sizes on different aspects of outcome measures were calculated. Subgroup analyses were performed to examine the impact of stroke phases on treatment efficacy.

Included were 17 articles with 600 patients. Compared with control treatments, the action observation therapy had a moderate effect size on arm and hand motor outcomes (Hedge’s g = 0.564; P < 0.001), a moderate to large effect size on walking outcomes (Hedge’s g = 0.779; P < 0.001), a large effect size on gait velocity (Hedge’s g = 0.990; P < 0.001), and a moderate to large effect size on activities of daily function (Hedge’s g = 0. 728; P = 0.004). Based on subgroup analyses, the action observation therapy showed moderate to large effect sizes in the studies of patients with acute/subacute stroke or those with chronic stroke (Hedge’s g = 0.661 and 0.783).

This review suggests that action observation therapy is an effective approach for stroke patients to improve arm and hand motor function, walking ability, gait velocity, and daily activity performance.

via Action observation therapy for improving arm function, walking ability, and daily activity performance after stroke: a systematic review and meta-analysis – Tzu-Hsuan Peng, Jun-Ding Zhu, Chih-Chi Chen, Ruei-Yi Tai, Chia-Yi Lee, Yu-Wei Hsieh, 2019

, , , , , , , , , , ,

Leave a comment

[Abstract] Effectiveness of electrical stimulation therapy in improving arm function after stroke: a systematic review and a meta-analysis of randomised controlled trials

The aim of this study is to investigate the effectiveness of electrical stimulation in arm function recovery after stroke.

Data were obtained from the PubMed, Cochrane Library, Embase, and Scopus databases from their inception until 12 January 2019. Only randomized controlled trials (RCTs) reporting the effects of electrical stimulation on the recovery of arm function after stroke were selected.

Forty-eight RCTs with a total of 1712 patients were included in the analysis. The body function assessment, Upper-Extremity Fugl-Meyer Assessment, indicated more favorable outcomes in the electrical stimulation group than in the placebo group immediately after treatment (23 RCTs (n = 794): standard mean difference (SMD) = 0.67, 95% confidence interval (CI) = 0.51–0.84) and at follow-up (12 RCTs (n = 391): SMD = 0.66, 95% CI = 0.35–0.97). The activity assessment, Action Research Arm Test, revealed superior outcomes in the electrical stimulation group than those in the placebo group immediately after treatment (10 RCTs (n = 411): SMD = 0.70, 95% CI = 0.39–1.02) and at follow-up (8 RCTs (n = 289): SMD = 0.93, 95% CI = 0.34–1.52). Other activity assessments, including Wolf Motor Function Test, Box and Block Test, and Motor Activity Log, also revealed superior outcomes in the electrical stimulation group than those in the placebo group. Comparisons between three types of electrical stimulation (sensory, cyclic, and electromyography-triggered electrical stimulation) groups revealed no significant differences in the body function and activity.

Electrical stimulation therapy can effectively improve the arm function in stroke patients.

via Effectiveness of electrical stimulation therapy in improving arm function after stroke: a systematic review and a meta-analysis of randomised controlled trials – Jheng-Dao Yang, Chun-De Liao, Shih-Wei Huang, Ka-Wai Tam, Tsan-Hon Liou, Yu-Hao Lee, Chia-Yun Lin, Hung-Chou Chen, 2019

, , , , , , ,

Leave a comment

[ARTICLE] Dynamic Lycra® orthoses as an adjunct to arm rehabilitation after stroke: a single-blind, two-arm parallel group, randomized controlled feasibility trial – Full Text

The aim of this study was to explore the feasibility of conducting a randomized controlled trial of dynamic Lycra® orthoses as an adjunct to arm rehabilitation after stroke and to explore the magnitude and direction of change on arm outcomes.

This is a single-blind, two-arm parallel group, feasibility randomized controlled trial.

In-patient rehabilitation.

The study participants were stroke survivors with arm hemiparesis two to four weeks after stroke receiving in-patient rehabilitation.

Participants were randomized 2:1 to wear Lycra® gauntlets for eight hours daily for eight weeks, plus usual rehabilitation (n = 27), or to usual rehabilitation only (n = 16).

Recruitment, retention, fidelity, adverse events and completeness of data collection were examined at 8 and 16 weeks; arm function (activity limitation; Action Research Arm Test, Motor Activity Log) and impairment (Nine-hole Peg Test, Motricity Index, Modified Tardieu Scale). Structured interviews explored acceptability.

Of the target of 51, 43 (84%) participants were recruited. Retention at 8 weeks was 32 (79%) and 24 (56%) at 16 weeks. In total, 11 (52%) intervention group participants and 6 (50%) control group participants (odds ratio = 1.3, 95% confidence interval = 0.2 to 7.8) had improved Action Research Arm Test level by 8 weeks; at 16 weeks, this was 8 (61%) intervention and 6 (75.0%) control participants (odds ratio = 1.1, 95% confidence interval = 0.1 to 13.1). Change on other measures favoured control participants. Acceptability was influenced by 26 adverse reactions.

Recruitment and retention were low, and adverse reactions were problematic. There were no indications of clinically relevant effects, but the small sample means definitive conclusions cannot be made. A definitive trial is not warranted without orthoses adaptation.

Studies with children who have spastic hemiplegia caused by cerebral palsy suggest that wearing dynamic Lycra® orthoses as an adjunct to goal-directed training may improve movement and functional goal achievement.1 This evidence raises the question of whether the orthoses may be effective as an adjunct to rehabilitation in adults with arm impairments after stroke. Arm impairments, which include weakness and sensory loss, restrict independence in activities of daily living and affect stroke survivors’ quality of life.2

Dynamic Lycra® orthoses are commercially available dynamic braces that use tensile properties of Lycra® to generate torsion, correct muscle force imbalances across joints, optimize muscle length and functional positioning, and provide compression to enhance proprioception and sensory awareness.3,4 However, effectiveness in stroke rehabilitation has not been fully evaluated, despite anecdotal evidence that they are already in use in clinical practice. One single case study of 6 weeks wear in a survivor with long-standing stroke4 and a crossover trial with 16 stroke survivors 3–36 weeks after stroke onset3 involving only 3 hours orthosis wear have shown improvements in arm impairment, sensation and functional outcomes after orthosis wear. Evidence is therefore limited to low-quality study designs, and rigorous effectiveness studies are required.

The aim of this feasibility randomized controlled trial was to examine recruitment, retention, adverse events, intervention fidelity, magnitude and direction of difference in outcomes in stroke survivors receiving Lycra® orthoses as an adjunct to usual rehabilitation, compared to those receiving usual rehabilitation only. It also aimed to explore survivor and carer perceptions of acceptability, to inform decisions about a future definitive randomized controlled trial.[…]


Continue —-> Dynamic Lycra® orthoses as an adjunct to arm rehabilitation after stroke: a single-blind, two-arm parallel group, randomized controlled feasibility trial – Jacqui H Morris, Alexandra John, Lucy Wedderburn, Petra Rauchhaus, Peter T Donnan, 2019


Figure 1. Example of Lycra® gauntlet used in the study.


, , , , , ,

Leave a comment

%d bloggers like this: