Posts Tagged Assistive device

[VIDEO] Soft Robotic Glove – YouTube

Harvard University

Published on Jun 5, 2015
The soft robotic glove under development at the Wyss Institute could one day be an assistive device used for grasping objects, which could help patients suffering from muscular dystrophy, amyotrophic lateral sclerosis (ALS), incomplete spinal cord injury, or other hand impairments to regain some daily independence and control of their environment. For more information, please visit: http://wyss.harvard.edu/viewpressrele…

 

via Soft Robotic Glove – YouTube

, , , , , , , ,

Leave a comment

[Conference paper] FEX a Fingers Extending eXoskeleton for Rehabilitation and Regaining Mobility – Abstract+References

 

Abstract

This paper presents the design process of an exoskeleton for executing human fingers’ extension movement for the rehabilitation procedures and as an active orthosis purposes. The Fingers Extending eXoskeleton (FEX) is a serial, under-actuated mechanism capable of executing fingers’ extension. The proposed solution is easily adaptable to any finger length or position of the joints. FEX is based on the state-of-art FingerSpine serial system. Straightening force is transmitted from a DC motor to the exoskeleton structures with use of pulled tendons. In trial tests the device showed good usability and functionality. The final prototype is a result of almost half a year of the development process described in this paper.

References

  1. 1.
    Sale P, Lombardi V, Franceschini M (2012) Hand robotics rehabilitation: feasibility and preliminary results of a robotic treatment in patients with hemiparesis. Stroke Res Treat 2012:820931 Epub 26 December 2012Google Scholar
  2. 2.
    Franceschini M et al (2012) Clinical relevance of action observation in upper-limb stroke rehabilitation: a possible role in recovery of functional dexterity: a randomized clinical trial. Neurorehabil Neural Repair 26(5):456–462CrossRefGoogle Scholar
  3. 3.
    Berger RA, Weiss A-PC (2003) Hand surgery. Lippincott Williams & Wilkins, BaltimoreGoogle Scholar
  4. 4.
    Buryanov A, Kotiuk V (2010) Proportions of hand segments. Int J Morphol 28(3):755–758CrossRefGoogle Scholar
  5. 5.
    Christopher JH (1995) Force-reflecting anthropomorphic hand masters. Armstrong laboratory internal report, crew systems directorate biodynamics and biocommunications division human systems center, Air force materiel command, July 1995Google Scholar
  6. 6.
    Garrett JW (1970) Anthropometry of the hands of female air force flight personnel. Technical report AMRL-TR-69-26, USAF aerospace medical research laboratory, Wright-Patterson AFB OHGoogle Scholar
  7. 7.
  8. 8.
    Sale P, Bovolenta F, Agosti M, Clerici P, Franceschini M (2014) Short-term and long-term outcomes of serial robotic training for improving upper limb function in chronic stroke. Int J Rehabil Res 37(1):67–73CrossRefGoogle Scholar
  9. 9.
    An KN, Askew LJ, Chao EY (1986) Biomechanics and functional assessment of upper extremities, trends in ergonomics/human factors III. In: Karwowski W (ed) Elsevier Science Publishers BV, North-Holland, pp 573–580Google Scholar
  10. 10.
    Darling WG, Cole KJ (1990) Muscle activation patterns and kinetics of human index finger movements. J Neurophysiol 63(5):1098–1108Google Scholar
  11. 11.
    Yamaura H, Matsushita K, Kato R, Yokoi H (2009) Development of hand rehabilitation system for paralysis patient – universal design using wire-driven mechanism. In: 31st annual international conference of the IEEE EMBS, Minneapolis, Minnesota, 2–6 September 2009Google Scholar
  12. 12.
    Fontana M, Bergamasco M, Salsedo F (2009) Mechanical design and experimental characterization of a novel hand exoskeleton. In: Proceedings of the AIMETA 2009, Ancona, Italy, 14–17 September 2009Google Scholar
  13. 13.
    Wege A, Hommel G (2005) Development and control of a hand exoskeleton for rehabilitation of hand injuries. In: Proceedings of the IEEE/RSJ international conference on intelligent robots and systems, Berlin, Germany, pp 3461–3466Google Scholar
  14. 14.
    Mulas M, Folgheraiter M, Gini G: An EMG-controlled exoskeleton for hand rehabilitation. In: Proceedings of the IEEE 9th international conference on rehabilitation robotics, Chicago, 28 June–1 July 2005, pp 371–374Google Scholar
  15. 15.
  16. 16.
    Kawasaki H, Ito S, Ishigure Y, Nishimoto Y, Aoki T, Mouri T, Sakaeda H, Abe M (2007) Development of a hand motion assist robot for rehabilitation therapy by patient self-motion control. In: Proceedings of the IEEE 10th international conference on rehabilitation robotics, Noordwijk, The Netherlands, 12–15 June 2007, pp 234–240Google Scholar
  17. 17.
    Hirose S (1985) Connected differential mechanism and its applications. In: Proceedings of 1985 international conference on advanced robotics, Tokyo, Japan, September, pp 319–325Google Scholar
  18. 18.
    Hirose S (1993) Biologically inspired robotics. Oxford University Press, Oxford Translated by Cave P, Goulden CGoogle Scholar
  19. 19.
    Montambault S, Gosselin CM (2001) Analysis of under actuated mechanical grippers. ASME J Mech Des 123(3):367–374CrossRefGoogle Scholar
  20. 20.
    Ryan RM (1982) Control and information in the intrapersonal sphere: an extension of cognitive evaluation theory. J Pers Soc Psychol 43(3):450–461CrossRefGoogle Scholar
  21. 21.
    McAuley E, Duncan T, Tammen V (1989) Psychometric properties of the intrinsic motivation inventory in a competitive sport setting: a confirmatory factor analysis. Res Q Exerc Sport 60(1):48–58CrossRefGoogle Scholar
  22. 22.
    Brooke J (1996) SUS: a quick and dirty usability scale. In: Jordan PW, Weerdmeester B, Thomas A, Mclelland IL (eds) Usability evaluation in industry. Taylor & Francis, LondonGoogle Scholar
  23. 23.
    Bangor A, Kortum P, Miller J (2009) Determining what individual SUS scores mean: adding an adjective rating scale. J Usability Stud 4(3):114–123Google Scholar
  24. 24.
    Bangor A, Kortum P, Miller J (2008) An empirical evaluation of the system usability scale. Int J Hum Comput Interact 24(6):574–594CrossRefGoogle Scholar

Source: FEX a Fingers Extending eXoskeleton for Rehabilitation and Regaining Mobility | SpringerLink

, , , , , , , , ,

Leave a comment

[REVIEW] A structured overview of trends and technologies used in dynamic hand orthoses – Full Text

Abstract

The development of dynamic hand orthoses is a fast-growing field of research and has resulted in many different devices. A large and diverse solution space is formed by the various mechatronic components which are used in these devices. They are the result of making complex design choices within the constraints imposed by the application, the environment and the patient’s individual needs. Several review studies exist that cover the details of specific disciplines which play a part in the developmental cycle. However, a general collection of all endeavors around the world and a structured overview of the solution space which integrates these disciplines is missing. In this study, a total of 165 individual dynamic hand orthoses were collected and their mechatronic components were categorized into a framework with a signal, energy and mechanical domain. Its hierarchical structure allows it to reach out towards the different disciplines while connecting them with common properties. Additionally, available arguments behind design choices were collected and related to the trends in the solution space. As a result, a comprehensive overview of the used mechatronic components in dynamic hand orthoses is presented.

Background

Human hands are complex and versatile instruments. They play an essential role in the interaction between a person and the environment. Many people suffer from hand impairments like spasticity, lack of control or muscle weakness, which may be due to the consequences of stroke, paralysis, injuries or muscular diseases. Such impairments may limit an individual’s independence in performing activities of daily living (ADL) and the ability to socially interact (e.g. non-verbal communication). Devices like hand exoskeletons, rehabilitation robots and assistive devices, here collectively termed as dynamic hand orthoses, aim to overcome these limitations. Their development is a fast-growing field of research and has already resulted in a large variety of devices [1, 2, 3, 4].

Each individual has different demands for a dynamic hand orthoses. Some patients benefit from rehabilitation therapy (e.g. stroke patients [5]) while others would more likely benefit from daily assistance (e.g. Duchenne Muscular Dystrophy [6]). The resulting diversity between the different devices can be illustrated by the elaborate overviews on robotic devices [4], training modalities [3] and intention detection systems [7] they use. Clearly, there are many mechatronic components to choose from and are often the result of making particular design choices within the imposed design constraints. However, not everybody has the resources (i.e. time, accessibility) to investigate all possible design choices within these constraints. Moreover, not always are design choices reported in literature and are therefore hard to retrieve. The full potential of learning from each other’s endeavors is therefore not yet fully exploited, leaving several questions in this field of research unanswered. For example, there is the discussion whether pneumatic or electric actuation is better for some applications.

The goal of this study is to collect a high quantity of dynamic hand orthoses and extract the mechatronic components which are used. Their collective properties are analyzed by using a framework which uses a generic categorization applicable for any mechatronic system: a signal domain (e.g. controllers, sensors), energy domain (e.g. energy sources, actuators) and mechanical domain (e.g. cables, linkages). Additionally, feasible technologies from other, but similar, disciplines are included (e.g. prosthetics, haptics). Trends are then visualized using bar charts and compared to available arguments behind design choices. This not only includes arguments from often-cited success-stories, but also from small-scale projects. Referring to the case of using pneumatic or electric actuation, this approach can answer how often each method is used and what arguments are reported, which may help in scoping further research and making a well-considered choice.

This paper is structured in different sections. The “Scope” section describes the boundaries and limitations of this study and Framework introduces the basis of the framework structure that is proposed. The “Results” section describes the quantitative results which illustrate the trends. How this relates to the functionality of the components, is discussed and summarized in the “Discussion” and “Conclusion” section, respectively.

Continue —> A structured overview of trends and technologies used in dynamic hand orthoses | Journal of NeuroEngineering and Rehabilitation | Full Text

, , , , , , , ,

Leave a comment

[VIDEO] WREX – Wilmington Robotic Exoskeleton – YouTube

The WREX is a state-of-the-art orthosis for enhancing movement of the upper extremities in people with neuromuscular disabilities. This unique assistive device aids in activities of daily living for a variety of pathologies such as muscle disease, cerebral palsy, spinal cord injury, multiple sclerosis and amyotrophic lateral sclerosis – which effect upper limbs. It also serves as a cost effective exercise/therapy device for people recovering from stroke and other debilitating injuries.

, , , , , , ,

Leave a comment

[REVIEW] Effects and impacts of a robotic arm used by individuals with upper limb motor impairment: A scoping review

Introduction

Individuals with motor impairments may be limited in the realization of their activities of daily living, their leisure activities or their work activities. To overcome these limitations, the involvement of a caregiver and/or the acquisition of assistive devices are often necessary. In the last few years, more and more assistance robots have been developed and the interest they generate is growing. Among these, there are robotic arms aiming to improve the functional autonomy of people living with upper limb motor impairment.

Objective

Since the effects and impacts of the use of a robotic arm by these individuals are not well documented, this study aims at obtaining an overview of what has been reported until now in the scientific literature.

Methods

To achieve this, we undertook a scoping review. Four databases were searched: PubMed, Embase, Compendex and Scopus. Following a selection process involving different steps, 36 papers were retained. Relevant data, the same for each paper, were recorded. The quality of the selected papers was evaluated using the Critical Review Form for Quantitative Studies (McMaster University). The papers were also classified according to the Canadian Model of Occupational Performance and Engagement (CMOP-E). The CMOP-E allowed us to identify the occupational domains addressed in the retained studies.

Results

Twenty-four papers presented results related to basic activities of daily living, 18 to instrumental activities of daily living, 9 to work activities, 8 to leisure activities, 2 to school and 2 to games. The quality assessment revealed a mean score of 8.8/15, demonstrating that the effects and impacts of robotic arms have to establish in a more rigorous way. The utilisation of a robotic arm has more positive than negative effects and impacts on the various occupational domains.

Conclusion

These assistive devices have the potential to be successfully integrated into the users’ life, but some improvements are desirable to increase the satisfaction related to their utilization.

Source: Effects and impacts of a robotic arm used by individuals with upper limb motor impairment: A scoping review

, , , , ,

Leave a comment

%d bloggers like this: