Posts Tagged at-home activities

[Review Article] Rehabilitation Technology: Assistance from Hospital to Home – Full Text

Abstract

Rehabilitation is essential for disabled people to achieve the highest level of functional independence, reducing or preventing impairments. Nonetheless, this process can be long and expensive. This fact together with the ageing phenomenon has become a critical issue for both clinicians and patients. In this sense, technological solutions may be beneficial since they reduce the costs and increase the number of patients per caregiver, which makes them more accessible. In addition, they provide access to rehabilitation services for those facing physical, financial, and/or attitudinal barriers. This paper presents the state of the art of the assistive rehabilitation technologies for different recovery methods starting from in-person sessions to complementary at-home activities.

1. Introduction

According to the World Health Organization (WHO), about 15% of the world’s population suffers some form of disability. Due to the ageing phenomenon and the prevalence of chronic diseases such as epilepsy, cancer, or mental health disorders, this percentage has incessantly increased. This fact leads to a growing demand for rehabilitation services since they play an important role in enhancing functioning, reinforcing the person’s autonomy, and improving the patient’s quality of life [12]. This demand far exceeds availability in terms of rehabilitation professionals (i.e., occupational therapists, physiotherapists, and speech therapists) such that the density of those professionals is greatly below the threshold required for providing adequate services (approximately a tenth of that required) [34]. Additionally, different barriers like low-income deny the access to the rehabilitation services required to live in health, comfort, and dignity. These deficiencies could be overcome with technology, reducing the need for formal support services, the time and physical burden for caregivers, and, consequently, their cost [56].

In this context, the key to technology success depends on its functionality and adaptability to the user’s needs and environment. However, rehabilitation is a broad concept covering a wide range of responses to disability. Generally speaking, rehabilitation can be defined as the step-by-step process designed to reduce disability and to optimise functioning in individuals with health conditions, enabling them to better interact with their environment. For that, rehabilitation commonly includes three aspects:(i)Physical, to regain strength, mobility, and fitness(ii)Occupational, to relearn the person’s daily activities(iii)Speech-language, to recover communication skills (i.e., speaking, understanding, reading, or writing)

The duration of the rehabilitation can vary depending on several factors such as the patient’s impairment level, the therapy intensity, or the individual activity and participation. For that reason, new ways without compromising patient wellbeing have been proposed. So, three different modalities can be found in the literature: (1) the in-person rehabilitation, where patients performs their program in presence of a therapist in an inpatient facility; (2) the combined in-person and at-home rehabilitation, where in-person rehabilitation takes place in an outpatient facility and is aided with at-home programs such that patients perform some therapeutic exercises prescribed by the clinician at home; and (3) the at-home rehabilitation, suitable for those requiring minor assistance or support, where a tailored therapy takes place entirely at home.

Focusing on the individual’s functioning, the technological solutions developed up to date have mainly aimed to physical recovery since mobility plays a main role in the independence and confidence of disabled people. More recently, research in occupational rehabilitation has emerged in response to Alzheimer’s disease and neurocognitive impairments.

This paper addresses the state-of-the-art assistive technologies for rehabilitation from the hospital to in-home programs. Despite its great importance in disabled people recovery, devices designed to replace the impaired limb (e.g., prosthetics and artificial limbs [78910] or smart wheelchairs [111213]) are not covered in this work.

2. In-Person Rehabilitation

One application of technology can be found as a support tool in the rehabilitation process. They help clinicians evaluate quantitatively the patient’s performance and progress while providing consistent training, specially for extended periods of time. This results in an increase in therapy access and a health-care cost reduction.

In this sense, Robotics has met this demand with a wide range of assistive products. For example, Andago [14] is a tool for overground gait training, bridging the gap between treadmill-based and free walking. With this technology, the patient’s fear of falling is considerably reduced while therapists focus on the therapy since they do not have to secure the patient. In a similar way, the G-EO System [15] assists therapists in patient’s motor recovery and, more specifically, in teaching patients walking again. Unlike the previous system, G-EO moves the patient’s legs when necessary to help the patient’s brain form new neuroplasticity pathways to replace the ones damaged by injury or disease. Kim and Deshpande presented in [16] HARMONY an upper-body robotic exoskeleton for rehabilitation. This exoskeleton provides natural coordinated motions on the shoulder for patients suffering from spinal and neurological injuries, including a wide range of motion and controllability of force and impedance. Several devices have been also developed for hand rehabilitation (e.g., [17181920]).

Although these robotic devices aid therapists in providing effective repetitive training and quantitative evaluation of patient’s progress, it is necessary to integrate any mechanism that makes rehabilitative exercises fun, challenging, and engaging. In this context, virtual reality (VR) and video game can fill the gap. That is, computer-based programs designed to simulate real-life objects and events in an attractive environment may engage patients to stage on track. In fact, the use of this kind of systems has been shown to be an effective mean for rehabilitation treatments since they offer clinicians the ability to control and grade tasks to challenge the user while providing them with an enriched environment to achieve high user’s engagement [2122].

From this starting point, a treadmill can be combined with VR technology. This is the case of C-Mill [23], a treadmill developed to train and assess patient’s gait and balance for a safe daily walk. It comes in three models: C-Mill, C-Mill VR, and C-Mill VR+ (Figure 1). Although he VR and VR + models use VR elements to stimulate and challenge patients, their final goal is different. That is, the C-Mill VR is aimed at training automated movements and dual tasking, whilst the C-Mill VR+ is a comprehensive solution for early to late rehabilitation with balance and body weight support.[…]

 

Continue —> Rehabilitation Technology: Assistance from Hospital to Home

, , , , ,

Leave a comment

%d bloggers like this: