Posts Tagged Bilateral arm training

[Abstract] The effect of bilateral arm training on motor areas excitability in chronic stroke patients

Abstract

Objectives

Physical therapy exercises that do not enhance motor areas neuroplasticity lead to motor impairment especially at the upper extremity (UE) in the chronic stroke patients. The aim of this study was to assess the effect of using bilateral arm training on motor areas excitability (neuroplasticity) in the chronic stroke patients.

Methods

Thirty male chronic stroke patients with moderate impairment of UE were assigned into two equal groups. The changes of motor areas excitability (neuroplasticity) were assessed before and after arm training by spectral analysis of mapping electroencephalogram (EEG). Delta, theta, alpha, beta 1 and beta 2 waves were recorded. The equation which was used to detect the neural plasticity and the changing at motor areas excitability was dividing the fast wave/slow waves or detecting the ratio of mean frequency of (beta 2 + beta 1 + alpha/theta + delta).

Results

Patients in group 1 (G1) received unilateral arm training and patients in group 2 (G2) received bilateral arm training. The Results: Showed significant increase in the excitability (neuroplasticity) at (F4 + F8) and (C4) motor areas in G2 comparing to G1 (p!9 .006) and (p!9 .036 ) respectively.

Discussion

Bimanual training leads to activation of extensive networks in both hemispheres.

Conclusions

It was concluded that bilateral arm training is a recommended method to enhance the motor areas excitability (neuroplasticity) in the chronic stroke patients.

Significance

Post stroke physical therapy can make use of bimanual training for better rehabilitation.

Source: S185 The effect of bilateral arm training on motor areas excitability in chronic stroke patients – Clinical Neurophysiology

Advertisements

, , , , , , , ,

Leave a comment

[Abstract] Effectiveness of Bilateral Arm Training for Improving Extremity Function and Activities of Daily Living Performance in Hemiplegic Patients

Background

Bilateral movement therapy, which encourages simultaneous use of the limbs on both the affected and nonaffected sides, is known to help in motor function recovery in hemiplegic patients. However, studies on the effectiveness of bilateral arm training for improving upper limb function and activities of daily living (ADL) performance in hemiplegic stroke patients are lacking. The present study investigated the effectiveness of bilateral arm training for improving upper limb function and ADL performance in hemiplegic stroke patients.

Methods

The study included 30 hemiplegic stroke patients. The patients were randomly divided into an experimental group (n = 15) and a control group (n = 15). All patients received a uniform general occupational therapy session lasting 30 minutes 5 times a week for 8 weeks. The experimental group received an additional session of bilateral arm training lasting 30 minutes, and the control group received an additional session of general occupational therapy lasting 30 minutes. The Fugl-Meyer assessment (FMA), Box and Block Test (BBT), and modified Barthel index (MBI) were used for evaluation.

Results

In both the experimental and control groups, the FMA, BBT, and MBI scores were significantly higher after the intervention than before the intervention (P <.05). The changes in the FMA, BBT, and MBI scores were greater in the experimental group than in the control group (P <.05).

Conclusions

Bilateral arm training along with general occupational therapy might be more effective than occupational therapy alone for improving upper limb function and ADL performance in hemiplegic stroke patients.

Source: Effectiveness of Bilateral Arm Training for Improving Extremity Function and Activities of Daily Living Performance in Hemiplegic Patients – Journal of Stroke and Cerebrovascular Diseases

, , , ,

Leave a comment

[Abstract] A comparative study on the effects of mirror therapy and bilateral arm training on hand function of chronichemiparetic patients.

Abstract

Introduction: Upper limb chronic hemiparesis is one of the most important factors creating functional disability in stroke patients and therefore several alternative treatments have been proposed with the aim of early restoring upper limb function. Mirror therapy is one of these treatments and the effect of this method has not been evaluated yet in compare with the other methods. Therefore, in this study we compared this method with the effect of bilateral arm training in chronic hemiparetic patients on hand function.

Materials and methods: In this randomized double blind clinical trial, 24 stroke patients were selected by systematic sampling and were placed in two groups of bilateral arm training (12 patients) and mirror therapy (12 patients). Treatment programs consisted of 15 sessions (5 days per week), including 30-minute bimanual training program with mirror for the mirror therapy group and 30 minutes bimanual exercises without mirror for the bilateral arm training group. Patients were assessed by Fuglmayer test for hand function, Box & Block test of dexterity for fine movements of upper extremity and Jamar Dynamometer for the power of the upper extremity before and after treatment and after one month follow up period after treatment.

Results: Data showed that the mean scores obtained from the mirror therapy group immediately after therapy and after the follow up period for hand function and fine movements and power variables were significantly higher than those obtained from the bilateral arm training group (P>0.05).

Conclusion: The findings of this study suggest that mirror therapy may be more effective method for improving hand functions in stroke patients during the chronic phase of recovery.

Source: A comparative study on the effects of mirror therapy and bilateral arm training on hand function of chronichemiparetic patients. – CAB Direct

, , , , , ,

Leave a comment

[ARTICLE] Effectiveness of Modified Constraint Induced Movement Therapy and Bilateral Arm Training on Upper Extremity Function after Chronic Stroke: A Comparative Study – Full Text PDF

ABSTRACT

Statement of the Problem: Upper limb hemiparesis is a common impairment underlying disability after Stroke. Transfer of treatment to daily functioning remains a question for traditional approaches used in treatment of upper extremity hemiparesis. Approaches based on Motor Learning principles may facilitate the transfer of treatment to activities of daily living.
Methodology: Forty one subjects with chronic stroke, attending department of occupational therapy, National Institute for the Orthopaedically Handicapped, Kolkata, West Bengal, India participated in a single blinded randomized pre-test and post-test control group training study. Subjects were randomized over three intervention groups receiving modified Constraint Induced Movement Therapy (n = 13), Bilateral Arm training (n = 14), and an equally intensive conventional treatment program (n = 14). Subjects in the bilateral arm training group participated in bilateral symmetrical activities, where as subjects in constraint induced movement therapy group performed functional activities with the affected arm only and conventional group received conventional Occupational Therapy. Each group received intensive training for 1 hour/day, 5 days/week, for 8 weeks. Pre-treatment and post-treatment measures included the Fugl-Meyer measurement of physical performance (FMA- upper extremity section), action research arm test, motor activity log. Assessments were administered by a rater blinded to group assignment.
Result: Both m-CIMT (p = 0.01) and bilateral arm training (p = 0.01) group showed statistically significant improvement in upper extremity functioning on Action Research Arm Test score in comparison to the conventional therapy group (p = 0.33). The bilateral arm training group had significantly greater improvement in upper arm function (Proximal Fugl-Meyer Assessment score, p = 0.001); while the constraint induced movement therapy group had greater improvement of hand functions (Distal Fugl-Meyer Assessment score, p = 0.001. There is an improvement seen in Quality of movement in the Conventional Therapy group. (p = 0.001).
Conclusion: Both the treatment techniques can be used for upper extremity management in patients with chronic stroke. Bilateral arm training may be used to improve upper arm function and m-CIMT may be used to improve hand functions, while the group that received modified constraint induced movement therapy had greater improvement.

References

[1] Whittal, J., McCombe Waller, S., Silver, K.H.C., et al. (2000) Repetitive Bilateral Arm Training with Rhythmic Auditory Cueing Improves Motor Function in Chronic Stroke. Stroke, 31, 2390-2395.
http://dx.doi.org/10.1161/01.STR.31.10.2390
[2] Bonifer, N.M., Anderson, K.M., Arciniegas, D.B., et al. (2005) Constraint Induced Movement Therapy for Stroke: Efficacy for Patients with Minimal Upper Extremity Motor Ability. Archives of Physical Medicine and Rehabilitation, 86, 1867-1872. http://dx.doi.org/10.1016/j.apmr.2005.04.002
[3] Radomski, M.V. and Trombly Latham, C.A. (2008) Occupational Therapy for Physical Dysfunction. 6th Edition, Lippincott Williams and Wilkins, Philadelphia.
[4] Taub, E., Uswatte, G. and Pidikiti, R. (1999) Constraint Induced Movement Therapy, a New Family of Techniques with Broad Application to Physical Rehabilitation—A Clinical Review. Journal of Rehabilitation Research and Development, 36, 273-251.
[5] Dobkin, B.H. (2005) Clinical Practice. Rehabilitation after Stroke. The New England Journal of Medicine, 352, 1677- 1684. http://dx.doi.org/10.1056/NEJMcp043511
[6] Taub, E., et al. (1993) Techniques to Improve Chronic Motor Deficits after Stroke. Archive of Physical Medicine and Rehabilitation, 74, 347-354.
[7] Page, S.J., Levine, P., Sisto, S., et al. (2002) Stroke Patients and Therapists Opinions of Constraint Induced Movement Therapy. Clinical Rehabilitation, 16, 55-60. http://dx.doi.org/10.1191/0269215502cr473oa
[8] Page, S.J., Sisto, S., Levine, P. and McGrath, R.E. (2004) Efficacy of Modified Constraint Induced Movement Therapy in Chronic Stroke: A Single Blind Randomized Controlled Trial. Archives of Physical Medicine and Rehabilitation, 85, 14-17. http://dx.doi.org/10.1016/S0003-9993(03)00481-7
[9] Luft, A.R., McCombe-Waller, S., Whitall, J. et al. (2004) Repetitive Bilateral Arm Training and Motor Cortex Activation in Chronic Stroke. JAMA, 292, 1853-1861. http://dx.doi.org/10.1001/jama.292.15.1853
[10] Uswatte, G. and Taub, E. (1999) Constraint Induced Movement Therapy. New Approaches to Outcome Measurement in Rehabilitation. In: Struss, D.T., Winocur, G. and Robertson, I.H., Eds., Cognitive Neurorehabilitation, a Comprehensive Approach, Cambridge University Press, Cambridge, England, 215-29
[11] Fugl-Meyer, A.R., et al. (1975) The Post Stroke Hemiplegic Patient. I. A Method for Evaluation of Physical Performance. Scandinavian Journal of Rehabilitation Medicine, 7, 13-31.
[12] Vander Lee, J.H., Beckermen, H., Lankhorst, G.J. and Breter, L.M. (2001) The Responsiveness of the Action Research Arm Test and Fugl-Meyer Assessment of Physical Performance Scale in Chronic Stroke Patients. Journal of Rehabilitation Medicine, 33, 110-113.
http://dx.doi.org/10.1080/165019701750165916
[13] Vander Lee, J.H., Wagenaar, R.C., Lankhorst, G.J., et al. (1999) Forced Use of the Upper Extremity in Chronic Stroke Patients: Results from a Single Blind Randomized Clinical Trial. Stroke, 30, 2369-2375.
http://dx.doi.org/10.1161/01.STR.30.11.2369
[14] Staines, W.R., McIlroy, W.E., Graham, S.J. and Black, S.E. (2001) Bilateral Movement Enhances Ipsilesional Cortical Activity in Acute Stroke: A Pilot Functional MRI Study. Neurology, 56, 401-404.
http://dx.doi.org/10.1212/WNL.56.3.401
[15] Kelso, J.A.S., Putnam, C.A. and Goodman, D. (1983) On the Space-Time Structure of Human Inter Limb Coordination. The Quarterly Journal of Experimental Psychology Section, 35A, 347-375.
http://dx.doi.org/10.1080/14640748308402139
[16] Carr, J. and Shepherd, R. (1998) Neurological Rehabilitation: Optimizing Motor Performance. Butterworth-Heineman, Edinburgh, 241-264.
[17] Levine, P. and Page, S.J. (2004) Modified Constraint Induced Movement Therapy: A Promising Restorative out Patient Therapy. Top Stroke Rehabilitation, 11, 1-10.
http://dx.doi.org/10.1310/R4HN-51MW-JFYK-2JAN

Source: Effectiveness of Modified Constraint Induced Movement Therapy and Bilateral Arm Training on Upper Extremity Function after Chronic Stroke: A Comparative Study

, , , , , , , , ,

Leave a comment

[ARTICLE] Proprioceptive Based Training for stroke recovery. Proposal of new treatment modality for rehabilitation of upper limb in neurological diseases – Full Text HTML

Abstract

Background: The central nervous system (CNS) has plastic properties allowing its adaptation through development. These properties are still maintained in the adult age and potentially activated in case of brain lesion. In the present study authors hypothesized that a significant recovery of voluntary muscle contraction in post stroke patients experiencing severe upper limb paresis can be obtained, when proprioceptive based stimulations are provided. Proprioceptive based training (PBT) is based on performing concurrent movements with both unaffected and affected arm, with the aim to foster motor recovery through some mutual connections of interhemispheric and transcallosal pathways. The aim of this pre-post pilot study was to evaluate the feasibility of PBT on recovery of voluntary muscle contraction in subacute phase after stroke.

Methods: The treatment lasted 1 h daily, 5 days per week for 3 weeks. The PBT consisted of multidirectional exercises executed synchronously with unaffected limb and verbal feedback. The Medical Research Council scale (MRC), Dynamometer, Fugl-Meyer Upper Extremity scale (F-M UE), Functional Independence Measure scale (FIM) and modified Ashworth scale were administered at the beginning and at the end of training. Statistical significance was set at p < 0.05.

Results: Six patients with severe paresis of the upper limb within 6 months after stroke were enrolled in the study (5 ischemic and 1 hemorrhagic stroke, 3 men and 3 women, mean age 65.7 ± 8.7 years, mean distance from stroke 4.1 ± 1.5 months) and all of them well tolerated the training. The clinical changes of voluntary muscle contraction after PBT were statistically significant at the MRC scale overall (p = 0.028), and dynamometer assessment overall (p = 0.028). Each patient improved muscle contraction of one or more muscles and in 4 out of 6 patients voluntary active movement emerged after therapy. The functional outcomes (i.e. F-M UE and FIM) did not show significant change within group.

Conclusions: The findings of this preliminary research revealed that PBT may be a feasible intervention to improve the motricity of upper limb in stroke survivors.

Continue —>  Proprioceptive Based Training for stroke recovery. Proposal of new treatment modality for rehabilitation of upper limb in neurological diseases – Springer.

, , , , , , , , ,

Leave a comment

[ARTICLE] Effects of virtual reality-based bilateral upper-extremity training on brain activity in post-stroke patients – Full Text PDF

[Purpose] This study investigated the therapeutic effects of virtual reality-based bilateral upper-extremity training on brain activity in patients with stroke.

[Subjects and Methods] Eighteen chronic stroke patients were divided into two groups: the virtual reality-based bilateral upper-extremity training group (n = 10) and the bilateral upper-limb training group (n = 8). The virtual reality-based bilateral upper-extremity training group performed bilateral upper-extremity exercises in a virtual reality environment, while the bilateral upper-limb training group performed only bilateral upper-extremity exercise. All training was conducted 30 minutes per day, three times per week for six weeks, followed by brain activity evaluation.

[Results] Electroencephalography showed significant increases in concentration in the frontopolar 2 and frontal 4 areas, and significant increases in brain activity in the frontopolar 1 and frontal 3 areas in the virtual reality-based bilateral upper-extremity training group.

[Conclusion] Virtual reality-based bilateral upper-extremity training can improve the brain activity of stroke patients. Thus, virtual reality-based bilateral upper-extremity training is feasible and beneficial for improving brain activation in stroke patients.

Full Text PDF [435K]

via Effects of virtual reality-based bilateral upper-extremity training on brain activity in post-stroke patients.

, , , , , ,

Leave a comment

[ARTICLE] Unilateral and Bilateral Upper-Limb Training Interventions After Stroke Have Similar Effects on Bimanual Coupling Strength

Abstract

Background: Bilateral training in poststroke upper-limb rehabilitation is based on the premise that simultaneous movements of the nonparetic upper limb facilitate performance and recovery of paretic upper-limb function through neural coupling effects.

Objective: To determine whether the degree of coupling between both hands is higher after bilateral than after unilateral training and control treatment.

Methods: In a single-blinded randomized controlled trial, we investigated rhythmic interlimb coordination after unilateral (mCIMT) and bilateral (mBATRAC) upper-limb training and a dose-matched control treatment (DMCT) in 60 patients suffering from stroke. To this end, we used a series of tasks to discern intended and unintended coupling effects between the hands. In addition, we investigated the control over the paretic hand as reflected by movement harmonicity and amplitude. All tasks were performed before and after a 6-week intervention period and at follow-up 6 weeks later.

Results: There were no significant between-group differences in change scores from baseline to postintervention and from postintervention to follow-up with regard to interlimb coupling. However, the mBATRAC group showed greater movement harmonicity and larger amplitudes with the paretic hand after training than the mCIMT and DMCT groups.

Conclusions: The degree of coupling between both hands was not significantly higher after bilateral than after unilateral training and control treatment. Although improvements in movement harmonicity and amplitude following mBATRAC may indicate a beneficial influence of the interlimb coupling, those effects were more likely due to the particular type of limb movements employed during this training protocol.

via Unilateral and Bilateral Upper-Limb Training Interventions After Stroke Have Similar Effects on Bimanual Coupling Strength.

, , , , , , , , , ,

Leave a comment

[ARTICLE] Sequencing bilateral and unilateral task-oriented training versus task oriented training alone to improve arm function in individuals with chronic stroke – Full Text PDF

Abstract (provisional)

Backgroun: Recovering useful hand function after stroke is a major scientific challenge for patients with limited motor recovery. We hypothesized that sequential training beginning with proximal bilateral followed by unilateral task oriented training is superior to time-matched unilateral training alone. Proximal bilateral training could optimally prepare the motor system to respond to the more challenging task-oriented training.

Methods: Participants: Twenty-six participants with moderate severity hemiparesis Intervention: Participants received either 6-weeks of bilateral proximal training followed sequentially by 6-weeks unilateral task-oriented training (COMBO) or 12-weeks of unilateral task-oriented training alone (SAEBO). A subset of 8 COMB0 and 9 SAEBO participants underwent three functional magnetic resonance imaging (fMRI) scans of hand and elbow movement every 6?weeks. Main Outcome Measures: Fugl-Meyer Upper extremity scale, Modified Wolf Motor Function Test, University of Maryland Arm Questionnaire for Stroke, Motor cortex activation (fMRI).

Results: The COMBO group demonstrated significantly greater gains between baseline and 12-weeks over all outcome measures (p?=?.018 based on a MANOVA test) and specifically in the Modified Wolf Motor Function test (time). Both groups demonstrated within-group gains on the Fugl-Meyer Upper Extremity test (impairment) and University of Maryland Arm Questionnaire for Stroke (functional use). fMRI subset analyses showed motor cortex (primary and premotor) activation during hand movement was significantly increased by sequential combination training but not by task-oriented training alone.

Conclusions: Sequentially combining a proximal bilateral before a unilateral task-oriented training may be an effective way to facilitate gains in arm and hand function in those with moderate to severe paresis post-stroke compared to unilateral task oriented training alone.

The complete article is available as a provisional PDF. The fully formatted PDF and HTML versions are in production.

via BMC Neurology | Abstract | Sequencing bilateral and unilateral task-oriented training versus task oriented training alone to improve arm function in individuals with chronic stroke.

, , , , , , ,

Leave a comment

%d bloggers like this: