Posts Tagged BoNT-A

[Abstract] How effective is physical therapy for gait muscle activity in hemiparetic patients who receive botulinum toxin injections?

Abstract

BACKGROUND: Administration of botulinum neurotoxin A (BoNT-A) to the ankle plantar flexors in patients with hemiplegia reduces the strength of knee extension, which may decrease their walking ability. Studies have reported improvements in walking ability with physical therapy following BoNT-A administration. However, no previous studies have evaluated from an exercise physiology perspective the efficacy of physical therapy after BoNT-A administration for adult patients with hemiplegia.

AIM: To investigate the effects of physical therapy following BoNT-A administration on gait electromyography for patients with hemiparesis secondary to stroke.

DESIGN: Non-randomized controlled trial.

SETTING: Single center.

POPULATION: Thirty-five patients with chronic stroke with spasticity were assigned to BoNT-A monotherapy (N.=18) or BoNT-A plus physical therapy (PT) (N.=17).

METHODS: On the paralyzed side of the body, 300 single doses of BoNT-A were administered intramuscularly to the ankle plantar flexors. Physical therapy was performed for 2 weeks, starting from the day after administration. Gait electromyography was performed and gait parameters were measured immediately before and 2 weeks after BoNT-A administration. Relative muscle activity, coactivation indices, and walking time/distance were calculated for each phase.

RESULTS: For patients who received BoNT-A monotherapy, soleus activity during the loading response decreased 2 weeks after the intervention (P<0.01). For those who received BoNT-A+PT, biceps femoris activity and knee coactivation index during the loading response and tibialis anterior activity during the pre-swing phases increased, whereas soleus and rectus femoris activities during the swing phase decreased 2 weeks after the intervention (P<0.05). These rates of change were significantly greater than those for patients who received BoNT-A monotherapy (P<0.05).
CONCLUSIONS: Following BoNT-A monotherapy, soleus activity during the stance phase decreased and walking ability either remained unchanged or deteriorated. Following BoNT-A+PT, muscle activity and knee joint stability increased during the stance phase, and abnormal muscle activity during the swing phase was suppressed.

CLINICAL REHABILITATION IMPACT: If botulinum treatment of the ankle plantar flexors in stroke patients is targeted to those with low knee extension strength, or if it aims to improve leg swing on the paralyzed side of the body, then physical therapy following BoNT-A administration could be an essential part of the treatment strategy.

HTML PDF

via How effective is physical therapy for gait muscle activity in hemiparetic patients who receive botulinum toxin injections? – European Journal of Physical and Rehabilitation Medicine 2019 February;55(1):8-18 – Minerva Medica – Journals

, , , , , , ,

Leave a comment

[Abstract] Comparative hybrid effects of combining botulinum toxin A injection with bilateral robot-assisted, mirror or task-oriented therapy for upper extremity spasticity in patients with chronic stroke

Introduction/Background

Spasticity, a common impairment after stroke, has profound negative impact on outcomes in patients with stroke. Botulinum toxin type A (BoNT-A) injection combined with rehabilitation training is suggested for spasticity treatment. However, there is no recommendation about what kind of rehabilitation training is more appropriate than others following BoNT-A injection. The purpose of this study was to compare the effects of combining BoNT-A injection with bilateral robot-assisted (RT) or mirror (MT) or task-oriented (TT) therapy for upper extremity (UE) spasticity in patients with chronic stroke.

Material and method

Participants were randomly assigned to RT, or MT, or TT group after BoNT-A injection. The participants received 45 minutes of intervention per day, 3 days/week, for 8 weeks according the allocated results. In addition, all participants received 30 minutes of functional practice training. At pre-intervention, post-intervention and 3-month follow-up a blinded research assistant did outcome measures, including body function and structures by Fugl-Meyer Assessment (FMA), and Modified Ashworth Scale (MAS); activity and participation measures by Motor Activity Log (MAL), and Nottingham Extended Activities of Daily Living Scale (EADLS).

Results

Thirty-seven subjects met the inclusion criteria and underwent randomization, 13 were assigned to the RT; 12 to MT; and 12 to TT group. The 3 groups were well matched with regard to baseline characteristics and functional status. All groups had significant improvement in FMA, MAS and MAL post-intervention. There were no group differences in FMA, MAS, EADLs either post-intervention or at follow-up. There was a trend that TT group had higher quality of movement (QOM) in MAL post intervention than the other 2 groups (P = 0.07), at follow-up TT group had significantly higher QOM in MAL than the other 2 groups (P = 0.03).

Conclusion

Combining BoNT-A injection with TT resulted in better quality of UE movement in patients with spastic stroke than with RT or MT.

 

via Comparative hybrid effects of combining botulinum toxin A injection with bilateral robot-assisted, mirror or task-oriented therapy for upper extremity spasticity in patients with chronic stroke – ScienceDirect 

, , , , , , , ,

Leave a comment

[Abstract] How effective is physical therapy for gait muscle activity in hemiparetic patients who receive botulinum toxin injections?

BACKGROUND: Administration of botulinum neurotoxin A (BoNT-A) to the ankle plantar flexors in patients with hemiplegia reduces the strength of knee extension, which may decrease their walking ability. Studies have reported improvements in walking ability with physical therapy following BoNT-A administration. However, no previous studies have evaluated from an exercise physiology perspective the efficacy of physical therapy after BoNT-A administration for adult patients with hemiplegia.

AIM: To investigate the effects of physical therapy following BoNT-A administration on gait electromyography for patients with hemiparesis secondary to stroke.

DESIGN: Non-randomized controlled trial.

SETTING: Single center.

POPULATION: Thirty-five patients with chronic stroke with spasticity were assigned to BoNT-A monotherapy (n=18) or BoNT-A plus physical therapy (PT) (n=17).
METHODS: On the paralyzed side of the body, 300 single doses of BoNT-A were administered intramuscularly to the ankle plantar flexors. Physical therapy was performed for 2 weeks, starting from the day after administration. Gait electromyography was performed and gait parameters were measured immediately before and 2 weeks after BoNT- A administration. Relative muscle activity, co-activation indices, and walking time/distance were calculated for each phase.

RESULTS: For patients who received BoNT-A monotherapy, soleus activity during the loading response decreased 2 weeks after the intervention (p<0.01). For those who received BoNT-A+PT, biceps femoris activity and knee co-activation index during the loading response and tibialis anterior activity during the pre-swing phases increased, whereas soleus and rectus femoris activities during the swing phase decreased 2 weeks after the intervention (p<0.05). These rates of change were significantly greater than those for patients who received BoNT-A monotherapy (p<0.05).

CONCLUSIONS: Following BoNT-A monotherapy, soleus activity during the stance phase decreased and walking ability either remained unchanged or deteriorated. Following BoNT-A+PT, muscle activity and knee joint stability increased during the stance phase, and abnormal muscle activity during the swing phase was suppressed.

CLINICAL REHABILITATION IMPACT: If botulinum treatment of the ankle plantar flexors in stroke patients is targeted to those with low knee extension strength, or if it aims to improve leg swing on the paralyzed side of the body, then physical therapy following BoNT-A administration could be an essential part of the treatment strategy.

PDF

via How effective is physical therapy for gait muscle activity in hemiparetic patients who receive botulinum toxin injections? – European Journal of Physical and Rehabilitation Medicine 2018 Jun 11 – Minerva Medica – Journals

, , , , , ,

Leave a comment

[ARTICLE] Combined treatment of botulinumtoxin and robot-assisted rehabilitation therapy on poststroke, upper limb spasticity: A case report – Full Text

Abstract

Rationale: Spasticity is a major complication after stroke, and botulinumtoxin A (BoNT-A) injection is commonly used to manage focal spasticity. However, it is uncertain whether BoNT-A can improve voluntary motor control or activities of daily living function of paretic upper limbs. This study investigated whether BoNT-A injection combined with robot-assisted upper limb therapy improves voluntary motor control or functions of upper limbs after stroke.

Patient concerns: Two subacute stroke patients were transferred to the Department of Rehabilitation.

Diagnoses: Patients demonstrated spasticity in the upper extremity on the affected side.

Interventions: BoNT-A was injected into the paretic muscles of the shoulder, arm, and forearm of the 2 patients at the subacute stage. Conventional rehabilitation therapy and robot-assisted upper limb training were performed during the rehabilitation period.

Outcomes: Manual dexterity, grip strength, muscle tone, and activities of daily living function were improved after multidisciplinary rehabilitation treatment.

Lessons: BoNT-A injection in combination with multidisciplinary rehabilitation treatment, including robot-assisted arm training, should be recommended for subacute spastic stroke patients to enhance appropriate motor recovery.

1 Introduction

Upper limb spasticity is a common complication following stroke, occurring in 20% to 40% of stroke survivors.[1] As upper limb spasticity, joint contractures, and pain limit the voluntary motor control of the arm and hand, the functions of which are essential for the activity of daily living (ADL), ADL dependencies, including hygiene, dressing, and positioning, can be exacerbated.[2]

Injection of botulinumtoxin A (BoNT-A), which is commonly used in the management of focal spasticity in the chronic phase of stroke, reduces muscle tone and passive range of motion. However, it is unclear whether BoNT-A can improve voluntary motor control or ADL functions of upper limbs.[3]

Recently, task-specific high-intensity training with a multidisciplinary team approach has become an important concept in stroke rehabilitation therapy, and robot-assisted arm training (RAT) has been shown to allow well tolerated and intensive task-specific repetitive training of the paretic arm.[4] However, multidisciplinary rehabilitation therapies using RAT in combination with BoNT-A injection have rarely been applied to subacute poststroke spasticity. Thus, we report on 2 cases showing the beneficial effects of RAT in combination with BoNT-A injection on upper limb spasticity in the subacute phase of stroke. […]

Continue —> Combined treatment of botulinumtoxin and robot-assisted reha… : Medicine

, , , , , , , , ,

Leave a comment

[ARTICLE] Effect of early use of AbobotulinumtoxinA after stroke on spasticity progression: Protocol for a randomised controlled pilot study in adult subjects with moderate to severe upper limb spasticity (ONTIME pilot) – Full Text

Abstract

Introduction

Approximately 15 million people suffer a stroke annually, up to 40% of which may develop spasticity, which can result in impaired limb function, pain and associated involuntary movements affecting motor control.

Robust clinical data on spasticity progression, associated symptoms development and functional impairment is scarce. Additionally, maximal duration of muscle tone reduction following botulinum toxin type A (BoNT-A) injections remains undetermined. The ONTIME pilot study aims to explore these issues and evaluate whether abobotulinumtoxinA 500 U (Dysport®; Ipsen) administered intramuscularly within 12 weeks following stroke delays the appearance or progression of symptomatic (disabling) upper limb spasticity (ULS).

Methods

ONTIME is a 28-week, phase 4, randomised, double-blind, placebo-controlled, exploratory pilot study initiated at four centres across Malaysia, the Philippines, Singapore and Thailand. Subjects (n = 42) with moderate to severe ULS (modified Ashworth scale [MAS] score ≥2) in elbow flexors or pronators, wrist flexors, or finger flexors will be recruited. Subjects will be randomised 2:1 to abobotulinumtoxinA 500 U or placebo (single dose 2–12 weeks after first-ever stroke).

Primary efficacy will be measured by time between initial injection and visit at which reinjection criteria (MAS score ≥2 in the primary targeted muscle group and appearance or reappearance of symptomatic ULS) are met. Follow-up visits will be 4-weekly to a maximum of 28 weeks.

Discussion

This pilot study will facilitate the design and sample size calculation of further confirmatory studies, and is expected to provide insights into the optimal management of post-stroke patients, including timing of BoNT-A therapy and follow-up duration.

1. Introduction

An estimated 15 million people suffer a stroke annually [1]; of whom, up to 40% develop post-stroke spasticity, a state of velocity-dependent increase in tonic stretch reflexes (‘muscle tone’) with exaggerated tendon jerks [2] most commonly affecting upper limbs [3]; [4]; [5]; [6] ;  [7]. Post-stroke spasticity impedes active and passive functioning of affected limb(s), impairs activities of daily living and requires long-term treatment; associated healthcare costs are up to four-fold greater than for stroke survivors without spasticity [7]. Furthermore, spasticity may involve pain and involuntary movements, interfering with dressing, gait, balance and walking speed, and can disrupt rehabilitation [8]. Without functional improvement, secondary musculoskeletal complications such as contractures and deformity may develop [9].

Data on the proportion of patients with post-stroke spasticity developing disability are scarce. One survey (N = 140) reported a prevalence of 17% spasticity and 4% disabling spasticity with a year [4]. Upper limb involvement and age <65 years were associated with disabling spasticity in this study [4]. In other studies, over a third of individuals developed spasticity within a year, including 20% with severe spasticity [10] ;  [11], suggesting higher rates of disabling spasticity than those reported by Lundström et al. [4].

Studies evaluating the timeframe for developing spasticity symptoms post-stroke are also few, with small cohorts (around 100 patients), but suggest the prevalence and severity of spasticity increases within a year post-stroke [5]; [6]; [10]; [11]; [12] ;  [13]. Certain studies indicate that spasticity symptoms and muscle tone changes are apparent in up to 25% of stroke victims within 2 weeks [3]; [5] ;  [14]. One study reported increased muscle tone as an early risk factor for developing severe disabling spasticity, particularly if it affected more than two joints, or was associated with a modified Ashworth scale (MAS) score ≥2 in one affected joint within 6 weeks post-stroke [14]. Indeed, spasticity may persist [15], and the severity of upper limb spasticity (ULS) may increase over time, most commonly affecting anti-gravity muscles, during the first 2 weeks and at 3 months post-stroke [5].

AbobotulinumtoxinA is an effective focal intervention for reducing ULS [16] and coupled with neurorehabilitation is recommended in standard clinical practice [17] ;  [18]. Treatment with botulinum toxin A (BoNT-A) is generally delayed in post-stroke spasticity until patients show clinical signs of increased muscle tone, usually about 3 months following stroke [19], despite evidence that symptoms begin much earlier.

Recent studies aimed to evaluate whether earlier post-stroke treatment with BoNT-A may prevent disabling spasticity development [15]; [19] ;  [20] and demonstrate that BoNT-A administered within 3 months provides sustained improvement in muscle tone. However, there is a paucity of robust clinical data on spasticity progression timeframes, associated symptom development, functional impairment, and maximal duration of muscle tone reduction with BoNT-A.

The ONTIME pilot study explores these foregoing issues to establish whether treatment with abobotulinumtoxinA (Dysport®) within 2–12 weeks post-stroke might delay symptomatic or disabling spasticity development, and to assess the duration of this effect. Importantly, this study incorporates composite measure of active and passive functionality, involuntary movements and pain.

Fig. 1

Continue —> Effect of early use of AbobotulinumtoxinA after stroke on spasticity progression: Protocol for a randomised controlled pilot study in adult subjects with moderate to severe upper limb spasticity (ONTIME pilot)

, , , , , , , , , , ,

Leave a comment

[ARTICLE] High doses of incobotulinumtoxinA for the treatment of post-stroke spasticity: are they safe and effective? – Full Text 

1. Introduction

Botulinum toxin type A (BoNT-A) represents the gold standard therapy for focal spasticity and related disorders also in acquired brain injury including stroke. Since 1989, the effectiveness of BoNT-A in reducing poststroke spasticity showed reversibility and low prevalence of complications [1], obtaining the approval of U.S. Food and Drug Administration for upper limb spasticity after stroke in 2010. In the following years, many studies have been published demonstrating its safety and effectiveness [2,3]. However, the role of BoNT-A in the management of poststroke spasticity has been modified, changing from muscle chemodenervation (nerve block) to become an useful tool for improving limb posture, applying splint, consenting hygiene, standing, and walking in patients with spastic equino-varus foot deformities with also improvement joint range of motion and muscle extensibility or reduction of spasticity-related pain.
The correct evaluation of the patient to be injected is necessary to increase the efficacy of BoNT-A considering that there is a high response for improving passive function, but controversy also exists about the improvement in motor function relative to the improvement of spasticity. There are proposals on dosages, injection techniques, patient selection, and outcome measures, but a consensus about the employment of adjunctive therapies after the BoNT-A injection, considered necessary to increase the effect on spasticity reduction, has not been reached, considering the time to start, the duration of adjunctive therapies, and the type of rehabilitation procedures [4]. So, at present, the injection sites, the choice of muscles, the dosage, the dilution, and the rehabilitation programs after BoNT-A treatment are often identified by injector’s decision-making without specialized training.
BoNT-A has clearly been recommended as first-line treatment for focal spasticity by several European consensus statements and the American Academy of Neurology [4,5] and current guidelines suggested the employment of a dose up to 600 units (U) of onabotulinumtoxinA (Botox®, Allergan, Inc., Irvine, CA, USA) and incobotulinumtoxinA (Xeomin®, Merz Pharmaceuticals GmbH, Frankfurt, Germany) or up to 1500 U of abobotulinumtoxinA (Dysport®, Ipsen, Slough, UK/Galderma, Paris, France) per injection session to treat spasticity after stroke [5]. However, in recent years, higher doses have been used, especially in case of upper and lower limb severe spasticity considering the low prevalence of complications and the reversibility of the BoNT-A [6,7]. The possibility to employ high doses is strictly related to the precision of the injection. A correct muscle identification with instrumental guide (i.e. electrical stimulation or ultrasonography) may reduce the spread of the toxins to the nearby tissues and the risk of adverse effects.

Continue —> High doses of incobotulinumtoxinA for the treatment of post-stroke spasticity: are they safe and effective? – Expert Opinion on Drug Metabolism & Toxicology –

, , , , , , ,

Leave a comment

[ARTICLE] Safety and efficacy of incobotulinumtoxinA as a potential treatment for poststroke spasticity – Full Text HTML/PDF

Abstract: Spasticity is a common disabling symptom for several neurological conditions. Botulinum toxin type A injection represents the gold standard treatment for focal spasticity after stroke showing efficacy, reversibility, and low prevalence of complications. In recent years, incobotulinumtoxinA, a new Botulinum toxin type A free of complexing proteins, has been used for treating several movement disorders with safety and efficacy. IncobotulinumtoxinA is currently approved for treating spasticity of the upper limb in stroke survivors, even if several studies described the use also in lower limb muscles. In the present review article, we examine the safety and effectiveness of incobotulinumtoxinA for the treatment of spasticity after stroke.

Introduction

Spasticity with muscle paresis and loss of dexterity represents one of the most common and discomforting complications affecting stroke survivors. It can have a disabling effect on stroke patients through pain and reduced mobility, affecting quality of life, and can be highly detrimental to daily functioning. Previous studies, based on the estimates of health care professionals, suggested that the prevalence of poststroke spasticity was ~60%, even if this value can be lower than the real value considering the difficulties in measuring spasticity routinely in rehabilitative settings.1

In a recent study, conducted in a clinical setting, 39% of patients with first-ever stroke were spastic after 12 months.2 Lundström et al reported that an estimated prevalence of spasticity 1 year after the first-ever stroke was 17% and that it was more prevalent in the upper limb than in the lower limb.3

In another study, spasticity was present in only 19% of the 95 subjects investigated 3 months after stroke.4 The same group of authors reported that 13 subjects out of 63 displayed spasticity after 18 months of stroke.5

There is no consensus concerning the number of patients developing spasticity. The discrepancies about the prevalence of spasticity onset after stroke might be related to various study settings and samples as well as the difficulty to measure and to identify its early development, discriminating between spastic-dystonia, muscle contracture, increase of stiffness, and other biomechanical factors. It is known that spastic hypertone can be responsible for motor impairments and activity limitations as well as for forced limb posture and pain at rest and during passive movements. The degree of spasticity may change according to the position of the patients, the task being performed, and the presence of aggravating factors such as pressure ulcers, skin infections, or urinary tract infections. Therefore, considering the variability of clinical features of stroke survivors, the assessment of spasticity is difficult as well as the need for treatment. In fact, for example, it has also been suggested that for stroke patients, the overactivity of leg extensor muscles enables them to support their body, standing position, and stance phase of gait cycle but interferes with knee flexion during the swing phase, so in this case, a botulinum toxin (BoNT) injection into rectus femoris or vastus intermedius muscles can be useful to reduce this impairment.6

Spasticity is also divided into generalized and focal when few muscles are involved. This type of classification can influence the choice of treatment considering not only the therapy but also the aim to improve limb posture and body image, to apply splinting, to consent hygiene, to increase passive articular range of motion, to walk and stand, to decrease pain and discomfort, to reduce the burden of care, or to prevent contracture. The purpose of this review article is to evaluate the effectiveness of the employment of incobotulinumtoxinA, a recent marked formulation of botulinum toxin type A (BoNT-A), to reduce spasticity in stroke survivors through an analysis of published clinical studies.

Continue (HTML) —-> Source: Safety and efficacy of incobotulinumtoxinA as a potential treatment fo | NDT

Download Article [PDF] 

, , , , , , ,

Leave a comment

[ARTICLE] Factors Influencing Goal Attainment in Patients with Post-Stroke Upper Limb Spasticity Following Treatment with Botulinum Toxin A in Real-Life Clinical Practice: Sub-Analyses from the Upper Limb International Spasticity (ULIS)-II Study – Full Text HTML

Abstract

In this post-hoc analysis of the ULIS-II study, we investigated factors influencing person-centred goal setting and achievement following botulinum toxin-A (BoNT-A) treatment in 456 adults with post-stroke upper limb spasticity (ULS). Patients with primary goals categorised as passive function had greater motor impairment (p < 0.001), contractures (soft tissue shortening [STS]) (p = 0.006) and spasticity (p = 0.02) than those setting other goal types. Patients with goals categorised as active function had less motor impairment (0.0001), contracture (p < 0.0001), spasticity (p 1 year)) post-stroke (80.0% vs. 79.2%) or presence or absence of severe contractures (76.7% vs. 80.6%), although goal types differed. Earlier BoNT-A intervention was associated with greater achievement of active function goals. Severe contractures impacted negatively on goal achievement except in pain and passive function. Goal setting by patients with ULS is influenced by impairment severity, age and time since stroke. Our findings resonate with clinical experience and may assist patients and clinicians in selecting realistic, achievable goals for treatment.

Full Text HTML —> Toxins | Free Full-Text | Factors Influencing Goal Attainment in Patients with Post-Stroke Upper Limb Spasticity Following Treatment with Botulinum Toxin A in Real-Life Clinical Practice: Sub-Analyses from the Upper Limb International Spasticity (ULIS)-II Study | HTML.

, , , , , , ,

Leave a comment

%d bloggers like this: