Posts Tagged Cerebrovascular accident

[ARTICLE] Randomized Feasibility Trial of a Novel, Integrative, and Intensive Virtual Rehabilitation Program for Service Members Post-Acquired Brain Injury – Full Text



Acquired Brain Injury, whether resulting from Traumatic brain injury (TBI) or Cerebral Vascular Accident (CVA), represent major health concerns for the Department of Defense and the nation. TBI has been referred to as the “signature” injury of recent U.S. military conflicts in Iraq and Afghanistan – affecting approximately 380,000 service members from 2000 to 2017; whereas CVA has been estimated to effect 795,000 individuals each year in the United States. TBI and CVA often present with similar motor, cognitive, and emotional deficits; therefore the treatment interventions for both often overlap. The Defense Health Agency and Veterans Health Administration would benefit from enhanced rehabilitation solutions to treat deficits resulting from acquired brain injuries (ABI), including both TBI and CVA. The purpose of this study was to evaluate the feasibility of implementing a novel, integrative, and intensive virtual rehabilitation system for treating symptoms of ABI in an outpatient clinic. The secondary aim was to evaluate the system’s clinical effectiveness.

Materials and Methods

Military healthcare beneficiaries with ABI diagnoses completed a 6-week randomized feasibility study of the BrightBrainer Virtual Rehabilitation (BBVR) system in an outpatient military hospital clinic. Twenty-six candidates were screened, consented and randomized, 21 of whom completed the study. The BBVR system is an experimental adjunct ABI therapy program which utilizes virtual reality and repetitive bilateral upper extremity training. Four self-report questionnaires measured participant and provider acceptance of the system. Seven clinical outcomes included the Fugl-Meyer Assessment of Upper Extremity, Box and Blocks Test, Jebsen-Taylor Hand Function Test, Automated Neuropsychological Assessment Metrics, Neurobehavioral Symptom Inventory, Quick Inventory of Depressive Symptomatology-Self-Report, and Post Traumatic Stress Disorder Checklist- Civilian Version. The statistical analyses used bootstrapping, non-parametric statistics, and multilevel/hierarchical modeling as appropriate. This research was approved by the Walter Reed National Military Medical Center and Uniformed Services University of the Health Sciences Institutional Review Boards.


All of the participants and providers reported moderate to high levels of utility, ease of use and satisfaction with the BBVR system (x- = 73–86%). Adjunct therapy with the BBVR system trended towards statistical significance for the measure of cognitive function (ANAM [x- = −1.07, 95% CI −2.27 to 0.13, p = 0.074]); however, none of the other effects approached significance.


This research provides evidence for the feasibility of implementing the BBVR system into an outpatient military setting for treatment of ABI symptoms. It is believed these data justify conducting a larger, randomized trial of the clinical effectiveness of the BBVR system.


Frequent use of improvised explosive devices (IEDs) in Operation Iraqi Freedom (OIF) and Operation Enduring Freedom (OEF) resulted in traumatic brain injury (TBI) being called the signature injury of recent conflicts.1 According to Department of Defense (DoD) reports, 379,519 service members received a TBI diagnosis from 2000 to 2017.2 Traumatic brain injuries are a subtype of acquired brain injury (ABI), which refers to any post-natal brain injury.3 Acquired brain injuries commonly present with symptoms of cognitive and motor impairment, and emotional instability that may persist for years and affect performance of activities of daily living (ADLs).4,5 Though survival rates of mild TBI (mTBI) are high, the resulting diminished quality of life calls for a greater focus on long-term TBI rehabilitative care.6

Another category of ABI, Cerebral Vascular Accident (CVA), often presents with similar impairments, such as diminished memory, upper extremity weakness and spasms, and depression.7–9 Moreover, those who have experienced a TBI are also at higher risk of CVA than those who have not.10,11 The majority of neurological recovery after TBI and CVA typically occurs within the first 6 months of injury, but training factors such as intensity, repetition, duration, patient motivation, and patient engagement may impact long-term treatment effectiveness on individuals in the chronic phase.12–16

Traditional rehabilitation protocols for individual’s post-ABI, such as proprioceptive neuromuscular facilitation (PNF), are widely recognized but underutilized by therapists.17 Additionally, hands-on interventions, while well known, have limited evidence supporting their success with chronic ABI rehabilitation.18 With technological advancements it may be possible to link the traditional therapies with progressive opportunities, while also increasing patient engagement and decreasing provider burden.

One method of post-ABI rehabilitation with growing clinical acceptance is virtual reality (VR). Virtual reality is defined as a synthetic world that responds in real time to changes in user input, creating a constantly-engaging environment in which users participate.19 Virtual rehabilitation utilizes VR in a variety of clinically relevant domains,20 and offers a unique platform for ABI rehabilitation by engaging patients in appropriately challenging tasks.21 It provides the needed intensity of care, can unify treatment in an integrative rehabilitation, and can involve bimanual interactions engaging both hemispheres.22 A review of studies evaluating improvements in cognitive domains (e.g., executive function) indicates that computer-based cognitive rehabilitation programs which are tailored to the participant’s abilities often produce greater results compared to non-personalized cognitive rehabilitation computer programs.23

BrightBrainer Virtual Rehabilitation System

The BrightBrainer Virtual Rehabilitation (BBVR) program is a computer-based VR platform that utilizes real-time bimanual interaction for the purpose of increasing cognitive engagement compared to simple mouse, or single finger touch interaction. Bilateral training has been found to promote improved motor functioning for people who have experienced ABI, above and beyond unilateral training.24,25 This system facilitates split attention training (focusing), task sequencing (alternating actions between arms), hand-eye coordination, and dual tasking through use of simultaneous cognitive and motor challenges. Though the BBVR system was originally developed for geriatric patients with CVA, the use of adaptable games, bimanual tasks, and repetition may make it translatable as a tool for ABI treatment in a military population.26

While literature on VR therapy post-ABI is abundant, many of the systems either focus only on rehabilitation of one aspect of post-ABI deficits,27 or are too physically large to implement in most clinics.28 The BBVR system is unique because it combines cognitive and physical training in a compact, adaptive VR system which can be implemented largely unobtrusively into clinical space. This pilot study implemented the BBVR system within a Military Treatment Facility’s (MTF) outpatient occupational therapy clinic as a 6-week intervention for participants with ABI. The primary aim was to evaluate the feasibility of integrating the BBVR system into the clinic for both 1-on-1 provider-participant interaction and concurrent treatment in which 1 provider oversees 2 participants at a time. The 3 secondary aims were: (1) to evaluate the preliminary clinical effectiveness of the BBVR system in terms of motor function, cognitive performance, and behavioral/emotional symptoms; (2) to evaluate the dose-response effect of the BBVR system; and (3) to evaluate the correlation between participant-level BBVR game performance and longitudinal change in clinical outcomes.

Continue —-> Randomized Feasibility Trial of a Novel, Integrative, and Intensive Virtual Rehabilitation Program for Service Members Post-Acquired Brain Injury | Military Medicine | Oxford Academic

, , , , , ,

Leave a comment

[Abstract] Stepping training with external feedback relating to lower limb support ability effectively improved complex motor activity in ambulatory patients with stroke: a randomized controlled trial


BACKGROUND: Lower limb support ability is important for steady and efficient mobility, but previous data commonly involved training during double stance positions, with or without external feedback, using a complex and costly machine.
AIM: To compare the effects of stepping training with or without external feedback in relation to the lower limb support ability of the affected limb on the functional ability necessary for independence in individuals with stroke.
DESIGN: A single-blinded, randomised controlled trial.
SETTING: Tertiary rehabilitation centres.
POPULATION: Ambulatory participants with stroke who walked independently over at least 10 meters with or without walking devices.
METHODS: Thirty-six participants were randomly arranged to be involved in a program of stepping training with or without external feedback related to the lower limb support ability of the affected limb (18 participants/group) for 30 minutes, followed by overground walking training for 10 minutes, 5 days/week over 4 weeks. The outcomes, including the lower limb support ability of the affected legs during stepping, functional ability and spatial walking data, were assessed prior to training, immediately after the first training session, and after 2- and 4- week training.
RESULTS: Participants demonstrated significant improvement in the amount of lower limb support ability, immediately after the first training with external feedback. Then, these participants showed further improvement in both the amount and duration of lower limb support ability, as well as the timed up and go data after 2 and 4 weeks of training (p < 0.05). This improvement was not found following control training.
CONCLUSIONS: The external feedback relating to lower limb support ability during stepping training effectively improved the movement stability and complex motor activity of ambulatory individuals with stroke who had long post-stroke time (approximately 3 years).
CLINICAL REHABILITATION IMPACT: Stepping training protocols and feedback can be easily applied in various settings using the amount of body-weight from an upright digital bathroom scale. Thus, the findings offer an alternative rehabilitation strategy for clinical, community and home-based settings for stroke individuals.

Full Text PDF

via Stepping training with external feedback relating to lower limb support ability effectively improved complex motor activity in ambulatory patients with stroke: a randomized controlled trial – European Journal of Physical and Rehabilitation Medicine 2019 Oct 15 – Minerva Medica – Journals

, , , , , , , ,

Leave a comment

[Abstract] No prevention or cure of epilepsy as yet – Invited review


  • Approximately 20% of all epilepsy is caused by acute acquired injury such as traumatic brain injury, stroke and CNS infection, with potential to prevent epilepsy
  • No treatment to prevent acquired epilepsy exists; and very few clinical studies have been done during the last 15 years to develop such treatment
  • We review possible reasons for this, possible ways to rectify the situations and note some of the ways currently under way to do so
  • We further review “cures” of epilepsy that occur spontaneously, and after surgical and sometimes medical antiseizure treatments. We note the limited understanding of the mechanisms of such remissions and thus, at present inability to replicate them with targeted therapy


Approximately 20% of all epilepsy is caused by acute acquired injury such as traumatic brain injury, stroke and CNS infection. The known onset of the injury which triggers the epileptogenic process, early presentation to medical care, and a latency between the injury and the development of clinical epilepsy present an opportunity to intervene with treatment to prevent epilepsy. No such treatment exists and yet there has been remarkably little clinical research during the last 20 years to try to develop such treatment. We review possible reasons for this, possible ways to rectify the situations and note some of the ways currently under way to do so.

Resective surgical treatment can achieve “cure” in some patients but is sparsely utilized. In certain “self-limiting” syndromes of childhood and adolescence epilepsy remits spontaneously. In a proportion of patients who become seizure free on medications or with dietary treatment, seizure freedom persists when treatment is discontinued. We discuss these situations which can be considered “cures”; and note that at present we have little understanding of mechanism of such cures, and cannot therefore translate them into a treatment paradigm targeting a “cure” of epilepsy.

via No prevention or cure of epilepsy as yet – ScienceDirect

, , , , , , , , , ,

Leave a comment

[ARTICLE] Neurotechnology-aided interventions for upper limb motor rehabilitation in severe chronic stroke – Full Text


Upper limb motor deficits in severe stroke survivors often remain unresolved over extended time periods. Novel neurotechnologies have the potential to significantly support upper limb motor restoration in severely impaired stroke individuals. Here, we review recent controlled clinical studies and reviews focusing on the mechanisms of action and effectiveness of single and combined technology-aided interventions for upper limb motor rehabilitation after stroke, including robotics, muscular electrical stimulation, brain stimulation and brain computer/machine interfaces. We aim at identifying possible guidance for the optimal use of these new technologies to enhance upper limb motor recovery especially in severe chronic stroke patients. We found that the current literature does not provide enough evidence to support strict guidelines, because of the variability of the procedures for each intervention and of the heterogeneity of the stroke population. The present results confirm that neurotechnology-aided upper limb rehabilitation is promising for severe chronic stroke patients, but the combination of interventions often lacks understanding of single intervention mechanisms of action, which may not reflect the summation of single intervention’s effectiveness. Stroke rehabilitation is a long and complex process, and one single intervention administrated in a short time interval cannot have a large impact for motor recovery, especially in severely impaired patients. To design personalized interventions combining or proposing different interventions in sequence, it is necessary to have an excellent understanding of the mechanisms determining the effectiveness of a single treatment in this heterogeneous population of stroke patients. We encourage the identification of objective biomarkers for stroke recovery for patients’ stratification and to tailor treatments. Furthermore, the advantage of longitudinal personalized trial designs compared to classical double-blind placebo-controlled clinical trials as the basis for precise personalized stroke rehabilitation medicine is discussed. Finally, we also promote the necessary conceptual change from ‘one-suits-all’ treatments within in-patient clinical rehabilitation set-ups towards personalized home-based treatment strategies, by adopting novel technologies merging rehabilitation and motor assistance, including implantable ones.


Stroke constitutes a major public health problem affecting millions of people worldwide with considerable impacts on socio-economics and health-related costs. It is the second cause of death (Langhorne et al., 2011), and the third cause of disability-adjusted life-years worldwide (Feigin et al., 2014): ∼8.2 million people were affected by stroke in Europe in 2010, with a total cost of ∼€64 billion per year (Olesen et al., 2012). Due to ageing societies, these numbers might still rise, estimated to increase 1.5–2-fold from 2010 to 2030 (Feigin et al., 2014).

Improving upper limb functioning is a major therapeutic target in stroke rehabilitation (Pollock et al., 2014Veerbeek et al., 2017) to maximize patients’ functional recovery and reduce long-term disability (Nichols-Larsen et al., 2005Veerbeek et al., 2011Pollock et al., 2014). Motor impairment of the upper limb occurs in 73–88% first time stroke survivors and in 55–75% of chronic stroke patients (Lawrence et al., 2001). Constraint-induced movement therapy (CIMT), but also standard occupational practice, virtual reality and brain stimulation-based interventions for sensory and motor impairments show positive rehabilitative effects in mildly and moderately impaired stroke victims (Pollock et al., 2014Raffin and Hummel, 2018). However, stroke survivors with severe motor deficits are often excluded from these therapeutic approaches as their deficit does not allow easily rehabilitative motor training (e.g. CIMT), treatment effects are negligible and recovery unpredictable (Byblow et al., 2015Wuwei et al., 2015Buch et al., 2016Guggisberg et al., 2017).

Recent neurotechnology-supported interventions offer the opportunity to deliver high-intensity motor training to stroke victims with severe motor impairments (Sivan et al., 2011). Robotics, muscular electrical stimulation, brain stimulation, brain computer/machine interfaces (BCI/BMI) can support upper limb motor restoration including hand and arm movements and induce neuro-plastic changes within the motor network (Mrachacz-Kersting et al., 2016Biasiucci et al., 2018).

The main hurdle for an improvement of the status quo of stroke rehabilitation is the fragmentary knowledge about the physiological, psychological and social mechanisms, their interplay and how they impact on functional brain reorganization and stroke recovery. Positive stimulating and negatively blocking adaptive brain reorganization factors are insufficiently characterized except from some more or less trivial determinants, such as number and time of treatment sessions, pointing towards the more the better (Kwakkel et al., 1997). Even the long accepted model of detrimental interhemispheric inhibition of the overactive contralesional brain hemisphere on the ipsilesional hemisphere is based on an oversimplification and lack of differential knowledge and is thus called into question (Hummel et al., 2008Krakauer and Carmichael, 2017Morishita and Hummel, 2017).

Here, we take a pragmatic approach of comparing effectiveness data, keeping this lack of knowledge of mechanisms in mind and providing novel ideas towards precision medicine-based approaches to individually tailor treatments to the characteristics and needs of the individual patient with severe chronic stroke to maximize rehabilitative outcome.[…]

Continue —>   Neurotechnology-aided interventions for upper limb motor rehabilitation in severe chronic stroke | Brain | Oxford Academic

Conceptualization of longitudinal personalized rehabilitation-treatment designs for patients with severe chronic stroke. Ideally, each patient with severe chronic stroke with a stable motor recovery could be stratified based on objective biomarkers of stroke recovery in order to select the most appropriate/promising neurotechnology-aided interventions and/or their combination for the specific case. Then, these interventions can be administered in the clinic and/or at home in sequence, moving from one to another only when patient’s motor recovery plateaus. In this way, comparisons of the efficacy of each intervention (grey arrows) are still possible, and if the selected interventions and/or their combination are suitable, motor recovery could increase.

Conceptualization of longitudinal personalized rehabilitation-treatment designs for patients with severe chronic stroke. Ideally, each patient with severe chronic stroke with a stable motor recovery could be stratified based on objective biomarkers of stroke recovery in order to select the most appropriate/promising neurotechnology-aided interventions and/or their combination for the specific case. Then, these interventions can be administered in the clinic and/or at home in sequence, moving from one to another only when patient’s motor recovery plateaus. In this way, comparisons of the efficacy of each intervention (grey arrows) are still possible, and if the selected interventions and/or their combination are suitable, motor recovery could increase.

, , , , , , , , , , , ,

Leave a comment

[Abstract] Virtual reality and non-invasive brain stimulation in stroke: How effective is their combination for upper limb motor improvement?


Upper limb (UL) hemiparesis is frequently a disabling consequence of stroke. The ability to improve UL functioning is associated with motor relearning and experience dependent neuroplasticity. Interventions such as non-invasive brain stimulation (NIBS) and task-practice in virtual environments (VEs) can influence motor relearning as well as adaptive plasticity. However, the effectiveness of a combination of NIBS and task-practice in VEs on UL motor improvement has not been systematically examined. The objective of this review was to examine the evidence regarding the effectiveness of combining NIBS with task-practice in VEs on UL motor impairment and activity levels. A systematic review of the published literature was conducted using standard methodology. Study quality was assessed using the PEDro scale and Down’s and Black checklist. Four studies examining the effects of a combination of NIBS (involving transcranial direct current stimulation; tDCS and repetitive transcranial magnetic stimulation; rTMS) were retrieved. Of these, three studies were randomized controlled trials (RCTs) and one was a cross-sectional study. There was 1a level evidence that the combination of NIBS and task-practice in a VE was beneficial in the sub-acute stage. A combination of training in a VE with rTMS as well as tDCS was beneficial for motor improvements in the UL in sub-acute stage of stroke (1b level). The combination was not found to be superior compared to task practice in VEs alone in the chronic stage (1b level). The results suggest that people with stroke may be capable of improving levels of motor impairment and activity in the sub-acute stage if their rehabilitation program involves a combination on NIBS and VE training. Emergent questions regarding the use of more sensitive outcomes, different types of stimulation parameters, locations and training environments still need to be addressed.

Source: Virtual reality and non-invasive brain stimulation in stroke: How effective is their combination for upper limb motor improvement? – IEEE Xplore Document

, , , , , , , , , , , ,

Leave a comment

[ARTICLE] Role of Practice And Mental Imagery on Hand Function Improvement in Stroke Survivors – Full Text


Objective: The purpose of this study was to evaluate the Role of Practice and Mental Imagery on Hand function improvement in stroke survivors

Method: We conducted systematic review of the previous studies and searched electronic databases for the years 1995 to 2016, studies were selected according to inclusion criteria, and critical appraisal was done for each study and summarized the use of mental practice for the improvement in hand function in stroke survivors.

Results: Studies differed in the various aspects like intervention protocols, outcome measures, design, and patient’s characteristics. The total number of practice hours to see the potential benefits from mental practice varied widely. Results suggest that mental practice has potential to improve the upper extremity function in stroke survivors.

Conclusion: Although the benefits of mental practice to improve upper extremity function looks promising, general guidelines for the clinical use of mental practice is difficult to make. Future research should explore the dosage, factors affecting the use of Mental Practice, effects of Mental Therapy alone without in combination with other interventions.


Up to 85% stroke survivors experience hemi paresis resulting in impaired movement of the arm, and hand as reported by Nakayama et al. Loss of arm function adversely affects quality of life and functional motor recovery in affected upper extremity.

Sensorimotor deficits in the upper limb, such as weakness, decreased speed of movement, decreased angular excursion and impaired temporal coordination of the joints impaired upper-limb and trunk coordination.

Treatment interventions such as materials-based occupations constraint-induced movement therapy modified constraint-induced movement therapy and task-related or task-specific training are common training methods for remediating impairments and restoring function in the upper limb.

For the improvement of upper and lower functions, physical therapy provides training for functional improvement and fine motor. For most patients such rehabilitation training has many constraints of time, place and expense, accordingly in recent studies, clinical methods such as mental practice for improvement of the upper and lower functions have been suggested.

Mental practice is a training method during which a person cognitively rehearses a physical skill using motor imagery in the absence of overt, physical movements for the purpose of enhancing motor skill performance. For example, a review of the duration of mental movements found temporal equivalence for reaching; grasping; writing; and cyclical activities, such as walking and running.

Evidence for the idea that motor imagery training could enhance the recovery of hand function comes from several lines of research: the sports literature; neurophysiologic evidence; health psychology research; as well as preliminary findings using motor imagery techniques in stroke patients.

Much interest has been raised by the potential of Motor Practice of Motor task, also called “Motor Imagery” as a neuro rehabilitation technique to enhance Motor Recovery following Stroke.

Mental Practice is a training method during which a person cognitively rehearsals a physical skill using Motor Imagery in the absence of Physical movements for the purpose of enhancing Motor skill performance.

The merits of this intervention are that the patient concentration and motivation can be enhanced without regard to time and place and the training is possible without expensive equipment.

Researchers have speculated about its utility in neurorehabilitation. In fact, several review articles examining the impact of mental practice have been published. Two reviews examined stroke outcomes in general and did not limit their review to upper-extremity–focused outcomes. Both articles included studies that were published in 2005 or earlier.

Previous reviews, however, did not attempt to rate the studies reviewed in terms of the level of evidence. Thus, in this review, we determined whether mental practice is an effective intervention strategy to remediate impairments and improve upper-limb function after stroke by examining and rating the current evidence. […]

Continue –>  Role of Practice And Mental Imagery on Hand Function Improvement in Stroke Survivors | Insight Medical Publishing

, , , , , , , , , , , , ,

Leave a comment

[Abstract] A Randomized Controlled Study: Effectiveness of Functional Electrical Stimulation on Wrist and Finger Flexor Spasticity in Hemiplegia


The objective of this study was to investigate the effectiveness of functional electrical stimulation (FES) applied to the wrist and finger extensors for wrist flexor spasticity in hemiplegic patients.


Thirty stroke patients treated as inpatients were included in the study. Patients were randomly divided into study and control groups. FES was applied to the study group. Wrist range of movement, the Modified Ashworth Scale (MAS), Rivermead Motor Assessment (RMA), Brunnstrom (BS) hand neurophysiological staging, Barthel Index (BI), and Upper Extremity Function Test (UEFT) are outcome measures.


There was no significant difference regarding range of motion (ROM) and BI values on admission between the groups. A significant difference was found in favor of the study group for these values at discharge. In the assessment within groups, there was no significant difference between admission and discharge RMA, BS hand, and UEFT scores in the control group, but there was a significant difference between the admission and discharge values for these parameters in the study group. Both groups showed improvement in MAS values on internal assessment.


It was determined that FES application is an effective method to reduce spasticity and to improve ROM, motor, and functional outcomes in hemiplegic wrist flexor spasticity.


Source: A Randomized Controlled Study: Effectiveness of Functional Electrical Stimulation on Wrist and Finger Flexor Spasticity in Hemiplegia – Journal of Stroke and Cerebrovascular Diseases

, , , , , , , , , , ,

Leave a comment

[Abstract] Assessment of the Ipsilesional Hand Function in Stroke Survivors: The Effect of Lesion Side 


The aim of this study was to examine the effect of the side of brain lesion on the ipsilesional hand function of stroke survivors.


Twenty-four chronic stroke survivors, equally allocated in 2 groups according to the side of brain lesion (right or left), and 12 sex- and age-matched healthy controls performed the Jebsen-Taylor Hand Function Test (JTHFT), the Nine-Hole Peg Test (9HPT), the maximum power grip strength (PwGSmax) test, and the maximum pinch grip strength (PnGSmax) test. Only the ipsilesional hand of the stroke survivors and both hands (left and right) of the controls were assessed.


PwGS max and PnGS max were similar among all tested groups. Performances in JTHFT and 9HPT were affected by the brain injury. Individuals with left brain damage showed better performance in 9HPT than individuals with right brain damage, but performance in JTHFT was similar.


Individuals after a brain injury have the capacity to produce maximum strength preserved when using their ipsilesional hand. However, the dexterity of their hands and digits is affected, in particular for stroke individuals with right brain lesion.

Source: Assessment of the Ipsilesional Hand Function in Stroke Survivors: The Effect of Lesion Side – Journal of Stroke and Cerebrovascular Diseases

, , , , , , , , , , ,

Leave a comment

[ARTICLE] Does the Finger-to-Nose Test measure upper limb coordination in chronic stroke? – Full Text



We aimed to kinematically validate that the time to perform the Finger-to-Nose Test (FNT) assesses coordination by determining its construct, convergent and discriminant validity.


Experimental, criterion standard study. Both clinical and experimental evaluations were done at a research facility in a rehabilitation hospital. Forty individuals (20 individuals with chronic stroke and 20 healthy, age- and gender-matched individuals) participated.. Both groups performed two blocks of 10 to-and-fro pointing movements (non-dominant/affected arm) between a sagittal target and the nose (ReachIn, ReachOut) at a self-paced speed. Time to perform the test was the main outcome. Kinematics (Optotrak, 100Hz) and clinical impairment/activity levels were evaluated. Spatiotemporal coordination was assessed with slope (IJC) and cross-correlation (LAG) between elbow and shoulder movements.


Compared to controls, individuals with stroke (Fugl-Meyer Assessment, FMA-UE: 51.9 ± 13.2; Box & Blocks, BBT: 72.1 ± 26.9%) made more curved endpoint trajectories using less shoulder horizontal-abduction. For construct validity, shoulder range (β = 0.127), LAG (β = 0.855) and IJC (β = −0.191) explained 82% of FNT-time variance for ReachIn and LAG (β = 0.971) explained 94% for ReachOut in patients with stroke. In contrast, only LAG explained 62% (β = 0.790) and 79% (β = 0.889) of variance for ReachIn and ReachOut respectively in controls. For convergent validity, FNT-time correlated with FMA-UE (r = −0.67, p < 0.01), FMA-Arm (r = −0.60, p = 0.005), biceps spasticity (r = 0.39, p < 0.05) and BBT (r = −0.56, p < 0.01). A cut-off time of 10.6 s discriminated between mild and moderate-to-severe impairment (discriminant validity). Each additional second represented 42% odds increase of greater impairment.


For this version of the FNT, the time to perform the test showed construct, convergent and discriminant validity to measure UL coordination in stroke.


Upper-limb (UL) coordination deficits are commonly observed in neurological patients (e.g., cerebellar ataxia, stroke, etc.). In healthy subjects, goal-directed movement requires synchronized interaction (coordination) between multiple effectors [1, 2, 3]. Characterizing UL coordination, however, is challenging for clinicians and researchers because of lack of consensus regarding its definition (e.g., see [4, 5, 6, 7]). Nevertheless, definitions usually describe coordinated movement as involving specific patterns of temporal (timing between joints) and spatial (joint movement pattern) variability [1, 2, 8]. However, trajectory formation differs for reaches made in a body-centered frame of reference (egocentric) compared to those relying on mapping of extrinsic space and visuo-motor transformations [9, 10] made away from the body (exocentric). Thus, coordination can be defined as the skill of adjusting temporal and spatial aspects of joint rotations according to the task [11].

Damage to descending pathways due to stroke can lead to movement deficits defined at two levels. At the end-effector level (e.g. hand), variables describe movement performance (time, straightness, smoothness, precision), whereas at the interjoint level, variables describe movement quality (joint ranges of motion, interjoint coordination) [12]. These variables may be affected differently for egocentric and exocentric movements.

Although it is widely recognized that training can improve performance of functional tasks even years after a stroke [13], a valid tool for the measurement of coordination has not yet been established. In healthy individuals, coordinated movements are described in terms of spatial variables, related to the positions of different joints or body segments in space and/or temporal variables, related to the timing between movements of joints/segments during the task [1]. Consideration of task specificity is important in characterizing coordination. In addition, movement may be affected by abnormal stereotypical UL movement synergies and concomitant reduction in kinematic redundancy [10, 14] as well as deficits reducing both movement performance and quality [15, 16].

In clinical practice, coordination is assumed to be measured by the time to perform alternating movements with different end effectors (e.g., supination/pronation of the forearm, sliding the heel up and down the anterior aspect of the shin). Another task commonly used to assess coordination is the Finger-to-Nose test (FNT) [17, 18]. In the standard neurological exam [19], the individual alternately touches their nose and the evaluator’s stationary or moving finger while lying supine, sitting or standing. In the Fugl-Meyer UL Assessment (FMA-UL) [18], the FNT is objectively measured as the difference in time to alternately touch the knee and nose five times between the more- and less-affected arm on a 0 to 2 point scale. Aside from FNT-time, two other features of endpoint performance, arm trajectory straightness/smoothness (tremor) and precision (dysmetria), are estimated qualitatively [18] for a total of six points.

However, the construct validity of FNT-time as an UL coordination measure in individuals with stroke has not been established using detailed kinematic assessment, where construct validity is defined as the degree to which experimentally-determined and theoretical definitions match [20]. For clinicians to use FNT as part of the UL assessment, this assumption must be verified along with its convergent and discriminant validity.

The study objectives were to determine construct, convergent and discriminant validity of FNT-time to measure UL coordination in individuals with chronic stroke using kinematic analysis. We characterized movement parameters during performance of FNT between healthy and stroke subjects. We also related FNT outcomes (time, trajectory straightness, precision) to UL impairment severity and activity limitations. We hypothesized that FNT-time would 1) be related to interjoint coordination measures (construct validity); 2) be correlated with other measures of UL impairment and/or activity limitations (convergent validity); and 3) discriminate between levels of UL impairment (discriminant validity). Preliminary data have appeared in abstract form [21].

Continue —> Does the Finger-to-Nose Test measure upper limb coordination in chronic stroke? | Journal of NeuroEngineering and Rehabilitation | Full Text


Fig. 1 a Experimental set up illustrating marker placement and examples of endpoint displacement for finger-to-nose test. Subject sat with one arm partially extended, index finger fully extended and target placed at 90% arm-length at eye-level. The task was to touch the target and then the nose accurately 10 times at a self-paced speed; b Examples of 10 trials of endpoint (tip of index finger) displacement over time. First row–healthy subject moving endpoint at self-paced speed; Second row–healthy subject moving endpoint at a slower speed and Third row–Stroke subject moving endpoint a self-paced speed

, , , , , , , , , , ,

Leave a comment

[REVIEW] Powered robotic exoskeletons in post-stroke rehabilitation of gait: a scoping review – Full Text


Powered robotic exoskeletons are a potential intervention for gait rehabilitation in stroke to enable repetitive walking practice to maximize neural recovery. As this is a relatively new technology for stroke, a scoping review can help guide current research and propose recommendations for advancing the research development.

The aim of this scoping review was to map the current literature surrounding the use of robotic exoskeletons for gait rehabilitation in adults post-stroke. Five databases (Pubmed, OVID MEDLINE, CINAHL, Embase, Cochrane Central Register of Clinical Trials) were searched for articles from inception to October 2015. Reference lists of included articles were reviewed to identify additional studies. Articles were included if they utilized a robotic exoskeleton as a gait training intervention for adult stroke survivors and reported walking outcome measures.

Of 441 records identified, 11 studies, all published within the last five years, involving 216 participants met the inclusion criteria. The study designs ranged from pre-post clinical studies (n = 7) to controlled trials (n = 4); five of the studies utilized a robotic exoskeleton device unilaterally, while six used a bilateral design. Participants ranged from sub-acute (<7 weeks) to chronic (>6 months) stroke. Training periods ranged from single-session to 8-week interventions. Main walking outcome measures were gait speed, Timed Up and Go, 6-min Walk Test, and the Functional Ambulation Category.

Meaningful improvement with exoskeleton-based gait training was more apparent in sub-acute stroke compared to chronic stroke. Two of the four controlled trials showed no greater improvement in any walking outcomes compared to a control group in chronic stroke.

In conclusion, clinical trials demonstrate that powered robotic exoskeletons can be used safely as a gait training intervention for stroke. Preliminary findings suggest that exoskeletal gait training is equivalent to traditional therapy for chronic stroke patients, while sub-acute patients may experience added benefit from exoskeletal gait training. Efforts should be invested in designing rigorous, appropriately powered controlled trials before powered exoskeletons can be translated into a clinical tool for gait rehabilitation post-stroke.


Stroke is a leading cause of acquired disability in the world, with increasing survival rates as medical care and treatment techniques improve [1]. This equates to an increasing population with stroke-related disability [1, 2], who experience limitations in communication, activities of daily living, and mobility [3]. A majority of this population ranks recovering the ability to walk or improving walking ability among their top rehabilitation goals [4, 5]; furthermore, the ability to walk is a determining factor as to whether an individual is able to return home after their stroke [6]. However, 30 – 40 % of stroke survivors have limited or no walking ability even after rehabilitation [7, 8] and so there is an ongoing need to advance the efficacy of gait rehabilitation for stroke survivors.

Powered robotic exoskeletons are a recently developed technology that allows individuals with lower extremity weakness to walk [9]. These wearable robots strap to the legs and have electrically actuated motors that control joint motion to automate overground walking. Powered exoskeletons were originally designed to be used as an assistive device to allow individuals with complete spinal cord injury to walk [10]. However, because they allow for walking without overhead body weight support or a treadmill, they have gained attention as an alternate intervention for gait rehabilitation in other populations such as stroke where repetitive gait training has been shown to yield improvements in walking function [11, 12]. Several powered exoskeletons are already commercially available, such as the Ekso (Ekso Bionics, USA), Rewalk (Rewalk Robotics, Israel), and Indego (Parker Hannifin, USA) exoskeletons, with more being developed.

There have been many forms of gait retraining proposed for stroke survivors. Conventional physical therapy gait rehabilitation leads to improvements in speed and endurance [13], particularly when conducted early post-stroke [14]. However, conventional gait retraining using hands-on assistance can be taxing on therapists; the number of steps actually taken in a session reflects this and has been shown to be low in sub-acute hospital rehabilitation [15]. Many of the proposed technology-based gait intervention strategies have focused on reducing the physical strain to therapists while increasing the amount of walking repetition that individuals undergo. For example, body weight-supported treadmill training (BWSTT) allows therapists to manually move the hemiparetic limb in a cyclical motion while the patient’s trunk and weight are partially supported by an overhead harness system; this has shown improvements in stroke survivors’ gait speed and endurance compared to conventional gait training [16], yet still places a high physical demand on therapists. Advances in technology have led to treadmill-based robotics, such as the Lokomat (Hocoma, Switzerland), LOPES (University of Twente, Netherlands), and G-EO (Reha-Technology, Switzerland), which have bracing that attaches to the patient’s legs to take them through a walking motion on the treadmill. The appeal of this technology is that it can provide substantially higher repetitions for walking practice than BWSTT without placing strain on therapists; however, there is conflicting evidence regarding the efficacy of treadmill-based robotics for gait training compared to conventional therapy or BWSTT. Some studies have shown that treadmill robotics improve walking independence in stroke [17, 18] but do not improve speed or endurance [18, 19]. There has been some sentiment that such technology has not lived up to the expectations originally predicted based on theory and practice [20]. One argument is that these treadmill robotics with a pre-set belt speed, combined with body weight support, create an environment where the patient has less control over the initiation of each step [21]; another argument against treadmill-based gait training is the lack of variability in visuospatial flow, which is an essential challenge of overground walking [20]. Powered robotic exoskeletons, though similar in structure to treadmill-based robotics, differ in that they require active participation from the user for both swing initiation and foot placement; for example, some exoskeletons have control strategies which will only assist the stepping motion when it detects adequate lateral weight-shifting [9]. Furthermore, because the powered exoskeletons are used for overground walking, it requires the user to be responsible for maintaining trunk and balance control, as well as navigating their path over varying surfaces.

While these powered exoskeletons hold promise, the literature surrounding their use for gait training is only just beginning to gather, with the majority focusing on spinal cord injury [22, 23, 24]. Several [25, 26, 27] systematic reviews have shown safe usage, positive effects as an assistive device, and exercise benefits for individuals with spinal cord injury. Only one systematic review [28] specifically focusing on powered exoskeletons has included studies involving stroke participants, though studies in spinal cord injury and other conditions were also included. This review focused exclusively on the Hybrid Assistive Limb (HAL) exoskeleton (Cyberdyne, Japan), (which currently is not approved for clinical use outside of Japan), and found beneficial effects on gait function and walking independence; however, the results were combined generally across all included patient populations and not specifically for stroke.

Given that this is a relatively new intervention for stroke, the objective of this scoping review was to map the current literature surrounding the use of powered robotic exoskeletons for gait rehabilitation in post-stroke individuals and to identify gaps in the research. The second objective of this scoping review was to preliminarily explore the efficacy of exoskeleton-based gait rehabilitation in stroke. As this is a relatively new technology for stroke, a scoping review can help guide current research and propose recommendations for advancing the technology.

Download PDF

Download ePub

Continue —> Powered robotic exoskeletons in post-stroke rehabilitation of gait: a scoping review | Journal of NeuroEngineering and Rehabilitation | Full Text

Fig. 1 Study results: A flowchart of selection process based on inclusion/exclusion criteria

, , , , ,

Leave a comment

%d bloggers like this: