Posts Tagged Cerebrovascular disease

[Abstract] Medical Mobile Applications for Stroke Survivors and Caregivers



Recent studies estimate nearly half of the US population can access mobile medical applications (apps) on their smartphones. The are no systematic data available on apps focused on stroke survivors/caregivers.


To identify apps (a) designed for stroke survivors/caregivers, (b) dealing with a modifiable stroke risk factor (SRF), or (c) were developed for other purposes but could potentially be used by stroke survivors/caregivers.


A systematic review of the medical apps in the US Apple iTunes store was conducted between August 2013 and January 2016 using 18 predefined inclusion/exclusion criteria. SRFs considered were: diabetes, hypertension, smoking, obesity, atrial fibrillation, and dyslipidemia.


Out of 30,132 medical apps available, 843 (2.7%) eligible apps were identified. Of these apps, (n = 74, 8.7%) apps were specifically designed for stroke survivors/caregivers use and provided the following services: language/speech therapy (n = 28, 37%), communication with aphasic patients (n = 19, 25%), stroke risk calculation (n = 11, 14%), assistance in spotting an acute stroke (n = 8, 10%), detection of atrial fibrillation (n = 3, 4%), direction to nearby emergency room (n = 3, 4%), physical rehabilitation (n = 3, 4%), direction to the nearest certified stroke center (n = 1, < 2%), and visual attention therapy (n = 1, <2%). 769 apps identified that were developed for purposes other than stroke. Of these, the majority (n = 526, 68%) addressed SRFs.


Over 70 medical apps exist to specifically support stroke survivors/caregivers and primarily targeted language and communication difficulties. Apps encompassing most stroke survivor/caregiver needs could be developed and tested to ensure the issues faced by these populations are being adequately addressed.

via Medical Mobile Applications for Stroke Survivors and Caregivers – ScienceDirect

, , , ,

Leave a comment

[Abstract] Investigation of multi-joint coordinated upper limb rehabilitation assisted with electromyography (EMG)-driven neuromuscular electrical stimulation (NMES)-robot after stroke


More than 80% of stroke survivors worldwide suffer from permanent upper limb motor deficits. Restoration of upper limb motor functions in conventional rehabilitation remains challenging; the main difficulties are as follows: 1) lack of intensive, repetitive practice in manually delivered treatment; 2) lack of coordination management of upper limb motor tasks, particularly those involving the distal joints, e.g., the wrist and the hand; and 3) lack of understanding of the optimal joint supportive scheme in task-oriented upper limb training. More effective training strategies are necessary for upper limb rehabilitation following stroke. Robots have proved to be valuable assistants in labour-demanding post-stroke rehabilitation, with a controllable mechanical design and repeatable dynamic support in physical training. A series of rehabilitation robots for multi-joint practices were successfully designed in our previous works. In this work, we proposed a device-assisted multi-joint coordinated strategy for post-stroke upper limb training. The objectives of the study were as follows: 1) To evaluate the rehabilitation effectiveness of multi-joint coordinated upper limb practice assisted by an electromyography (EMG)-driven neuromuscular electric stimulation (NMES)-robot for stroke survivors in both the subacute and chronic stages. 2) To compare different joint supportive schemes using NMES-robots and identify the optimized scheme for upper limb rehabilitation. The objectives were achieved through three independent clinical trials using common clinical assessments, namely, the Fugl-Meyer Assessment (FMA), Modified Ashworth Scales (MAS), Action Research Arm Test (ARAT), and Functional Independence Measurement (FIM), and cross-session EMG evaluations to trace the recovery progress of individual muscle activities (i.e. EMG activation level) and muscular coordination (i.e. Co-contraction Index, CI) between a pair of muscles.
The first clinical randomized controlled trial (RCT) was conducted to investigate the clinical effects and rehabilitation effectiveness of the new training strategy in the subacute stroke period. Subjects were randomly assigned to two groups and received either 20 sessions of NMES-robot-assisted training (NMES-robot group, n=14) or time-matched conventional treatments (control group, n=10). Significant improvements were achieved in FMA (full score and shoulder/elbow), ARAT, and FIM for both groups [P<0.001, effect sizes (EFs)>0.279], whereas significant improvements in FMA (wrist/hand) and MAS (wrist) after treatment were only observed in the NMES-robot group (P<0.05, EFs>0.145), with the outcomes maintained for 3 months. In the NMES-robot group, CIs of the muscle pairs of biceps brachii and flexor carpi radialis (BIC&FCR) and biceps brachii and triceps brachii (BIC&TRI) were significantly reduced and the EMG activation level of the FCR decreased significantly. The result indicated comparable proximal motor improvements in both groups and better distal motor outcomes and more effective release of muscle spasticity across the whole upper limb in the NMES-robot group. The second part of the work was a clinical trial with a single-group design. Recruited chronic stroke patients (n=17) received 20 sessions of NMES-robot-assisted multi-joint coordinated upper limb training. Significant improvements were observed in FMA (full score and shoulder/elbow), ARAT, and FIM (P<0.05, EFs>0.157) and maintained for 3 months. CIs of the FCR&TRI and BIC&TRI muscle pairs and EMG activation levels of the FCR and BIC significantly decreased. The results indicated that the new training strategy was effective for upper limb recovery in the chronic stroke, with the long sustainability of the motor outcomes. In the third trial, another clinical RCT was conducted to investigate the training effects of different joint supportive schemes. The recruited chronic subjects were randomly assigned to receive task-oriented multi-joint practices with NMES-robotic support either to the finger-palm (hand group, n=15) or to the wrist-elbow (sleeve group, n=15). Significant improvements in FMA (full score and shoulder/elbow) and ARAT (P<0.05, EFs>0.147) were observed in both groups, whereas significant improvements in FMA (wrist/hand) and MAS (finger, wrist, and elbow) (P<0.05, EFs>0.149) were only observed in the hand group. These results indicated that the distal supportive scheme was more effective in distal motor recovery and whole arm spasticity control than the proximal supportive one under the same training strategy. In conclusion, NME-robot-assisted multi-joint coordinated training was able to achieve significant motor outcomes and effective muscle spasticity control in the entire upper limb, especially at the distal segments, i.e., the wrist and the fingers, in both subacute and chronic stroke patients. Moreover, the distal supportive scheme proved more effective than the proximal supportive scheme in multi-joint coordinated upper limb training.

via Investigation of multi-joint coordinated upper limb rehabilitation assisted with electromyography (EMG)-driven neuromuscular electrical stimulation (NMES)-robot after stroke | PolyU Institutional Research Archive


, , , , , , , , , , ,

Leave a comment

[ARTICLE] Effect of the combination of motor imagery and electrical stimulation on upper extremity motor function in patients with chronic stroke: preliminary results – Full Text


The combination of motor imagery (MI) and afferent input with electrical stimulation (ES) enhances the excitability of the corticospinal tract compared with motor imagery alone or electrical stimulation alone. However, its therapeutic effect is unknown in patients with hemiparetic stroke. We performed a preliminary examination of the therapeutic effects of MI + ES on upper extremity (UE) motor function in patients with chronic stroke.

A total of 10 patients with chronic stroke demonstrating severe hemiparesis participated. The imagined task was extension of the affected finger. Peripheral nerve electrical stimulation was applied to the radial nerve at the spiral groove. MI + ES intervention was conducted for 10 days. UE motor function as assessed with the Fugl–Meyer assessment UE motor score (FMA-UE), the amount of the affected UE use in daily life as assessed with a Motor Activity Log (MAL-AOU), and the degree of hypertonia in flexor muscles as assessed with the Modified Ashworth Scale (MAS) were evaluated before and after intervention. To assess the change in spinal neural circuits, reciprocal inhibition between forearm extensor and flexor muscles with the H reflex conditioning-test paradigm at interstimulus intervals (ISIs) of 0, 20, and 100 ms were measured before and after intervention.

UE motor function, the amount of the affected UE use, and muscle hypertonia in flexor muscles were significantly improved after MI + ES intervention (FMA-UE: p < 0.01, MAL-AOU: p < 0.01, MAS: p = 0.02). Neurophysiologically, the intervention induced restoration of reciprocal inhibition from the forearm extensor to the flexor muscles (ISI at 0 ms: p = 0.03, ISI at 20 ms: p = 0.03, ISI at 100 ms: p = 0.01).

MI + ES intervention was effective for improving UE motor function in patients with severe paralysis.

Upper motor dysfunction is a common problem in patients with stroke and disrupts activities of daily living and eventually worsens quality of life.1,2 Recently, several rehabilitation approaches have been developed to improve upper extremity (UE) motor function. Previous research has shown that intensive use of the paretic upper limb contributes to improved motor function, even though the motor recovery period has already passed.36 However, intensive use of the paretic upper limb is impossible for patients with severe upper limb paralysis, because they cannot voluntarily control the paretic hand. Therefore, other rehabilitative approaches for severely impaired patients are needed. As an alternative approach, motor imagery (MI) can be applied to patients regardless of the degree of motor paralysis. MI is defined as a dynamic state during which the representation of a given motor act is internally rehearsed within working memory without any overt motor output.7 Functional imaging studies have revealed that brain activity during motor execution and MI is largely shared in motor networks, such as the primary motor area, supplementary motor area, and premotor area.810 Also, transcranial magnetic stimulation (TMS) studies reported that excitability of the corticospinal tract (CST) is significantly higher during MI in comparison with baseline.1115 Based on these observations, MI has been applied for rehabilitation of patients with hemiparetic stroke, and the positive therapeutic effects on UE motor function have been reported.1620 However, the effect size differs among the studies,19 and is lower with regard to motor recovery of the paretic hand.20 To obtain clinically significant improvement, ingenuity to strengthen the therapeutic effect of MI is thought to be necessary.

The combination of MI and afferent input with electrical stimulation (ES) is an approach to enhance the therapeutic effect of MI. The effectiveness of ES for modulation of the excitability of the CST and improvement of dexterity performance of the paretic hand has been reported in patients with mild to moderate paralysis.21,22 Moreover, the additive effect of MI and ES has been reported in healthy adults. Saito and colleagues reported that a combination of MI and peripheral nerve ES enhances the excitability of the CST compared with MI alone or ES alone.23 In addition, Kaneko and colleagues reported that the combination of MI and electrical muscular stimulation reproduces the excitability of the CST at levels similar to voluntary muscle contraction.24 However, its therapeutic effects for motor function in patients with stroke are unknown. Therefore, we performed a preliminary examination of the therapeutic effects of a combination of MI and peripheral nerve ES (MI + ES) on UE motor function in patients with severe paralysis. The aim of this study is to investigate the feasibility and potential of the therapeutic effect for future randomized controlled trials.[…]


Continue —> Effect of the combination of motor imagery and electrical stimulation on upper extremity motor function in patients with chronic stroke: preliminary results – Kohei Okuyama, Miho Ogura, Michiyuki Kawakami, Kengo Tsujimoto, Kohsuke Okada, Kazuma Miwa, Yoko Takahashi, Kaoru Abe, Shigeo Tanabe, Tomofumi Yamaguchi, Meigen Liu, 2018


Figure 1. The experimental setup of the intervention with combination of motor imagery and electrical stimulation (MI + ES).

, , , , , , , , , , ,

Leave a comment

[Abstract] The effect of peripheral nerve electrical stimulation on corticomotor excitability and motor function of the paretic hand in stroke


Electrical stimulation to the stroke-affected paretic upper limb (UL) has been a treatment to promote its motor recovery. Despite its efficacy in promoting muscle strength and enhancing motor training, the underlying neurophysiological mechanism for such motor improvement has not been clear. It is crucial to delineate the corticomotor plasticity effects of electrical stimulation when it is applied as a single entity and as an adjunct to other forms of therapies, since the knowledge would support formulation of effective treatment for the paretic UL in stroke rehabilitation.

This dissertation incorporated 4 studies to examine the corticomotor excitability modulation and motor function effects of electrical stimulation on the paretic UL due to stroke. Study 1 reviewed randomized controlled trials published before 2012 to scrutinize the efficacy of electrical stimulation on motor function improvement as well as corticomotor excitability for muscles in the paretic hand. Results of the meta-analysis showed that electrical stimulation could improve UL motor impairment but not its ability in functional task performance measured with the Action Research Arm Test. The corticomotor excitability changes associated with electrical stimulation could not be concluded because of diverse outcomes reported in only 3 studies. Study 2 was a randomized cross-over sham-controlled experiment (n = 32) set to determine a single session of 1-hour electrical stimulation delivered to the ulnar and radial nerves (PNS) of the paretic UL at an intensity of 2 to 3 sensory thresholds in modulating the corticomotor excitability in both brain hemispheres. The results confirmed that PNS could increase corticomotor excitability in terms of the recruitment curve (RC) slope and peak amplitude of motor-evoked potentials (pMEP) for the corticospinal projections to the contralateral first dorsal interosseous hand muscle (FDI) measured in both hemispheres. The PNS also enhanced better hand pincer dexterity scored by the Purdue pegboard test than the sham stimulation (PNSsham). Then Study 3 was conducted to examine if PNS could condition the corticomotor pathways for another treatment targeting motor improvement in the paretic UL. This pilot randomized cross-over study involved 20 subjects to receive 1-hour PNS paired with observation of movement demonstration in videos (termed action observation, AO) that was introduced during the last 30 minutes of PNS. PNS+AO improved the Purdue dexterity score of the paretic hand, but the change in corticomotor excitability for the contralateral FDI in the lesioned hemisphere was not significant. The control intervention PNSsham+AO did not change any of the outcome measurements. Study 4 further tested the hypothesis that PNS and/or jointly with AO might effectively condition motor training of the paretic UL in enhancing corticomotor plastic changes and hand dexterity. In this randomized sham-controlled cross-over study, 20 subjects in chronic stage of stroke were exposed to 3 separate sessions of different interventions composed of 1-hour PNS or PNSsham paired with 30 minutes of AO or sham AO (AOsham), all followed by 30-minute training of index finger abduction. The results revealed that PNS+AO+Training led to significantly increased corticomotor excitability in terms of RC slope and pMEP amplitude localized in the lesioned hemisphere but that of the intact hemisphere was not altered. This neuroplastic modulation was accompanied by enhanced hand dexterity at 24 hours post-intervention better than the control with PNSsham+AOsham+Training. On the other hand, PNS+AOsham+Training did not modulate corticomotor excitability functions but hand dexterity was increased immediately after the intervention better than after PNSsham+AOsham+Training. Training after PNSsham+AOsham conditioning was not effective on the outcome measurements.
Results of the series of studies supported that (1) one-hour PNS could increase the excitability of corticomotor pathways for the contralateral hand muscle in both the lesioned and intact hemispheres similarly; (2) one-hour PNS alone, or applied as a conditioning treatment in the presence of AO or AOsham prior to movement training in the paretic hand could lead to better hand dexterity than training after sham controls; (3) Up-regulation of corticomotor excitability specifically confined to the stroke-lesioned hemisphere was evident after a session of PNS paired with AO and Training.

To conclude, one session of PNS or PNS-associated interventions for the paretic UL could effectively improve dexterity of the paretic hand in people with chronic stroke. PNS might have primed the corticomotor pathways for AO and motor training to result in corticomotor excitability enhancement specifically confined to the stroke-lesioned hemisphere.

Source: The effect of peripheral nerve electrical stimulation on corticomotor excitability and motor function of the paretic hand in stroke | PolyU Institutional Research Archive

, , , , , , , , , , ,

Leave a comment

%d bloggers like this: