Posts Tagged Children

[WEB SITE] Findings reveal how seizures can have lasting detrimental effects on memory

October 16, 2017

Although it’s been clear that seizures are linked to memory loss and other cognitive deficits in patients with Alzheimer’s disease, how this happens has been puzzling. In a study published in the journal Nature Medicine, a team of researchers reveals a mechanism that can explain how even relatively infrequent seizures can lead to long-lasting cognitive deficits in animal models. A better understanding of this new mechanism may lead to future strategies to reduce cognitive deficits in Alzheimer’s disease and other conditions associated with seizures, such as epilepsy.

“It’s been hard to reconcile how infrequent seizures can lead to persistent changes in memory in patients with Alzheimer’s disease,” said corresponding author Dr. Jeannie Chin, assistant professor of neuroscience at Baylor College of Medicine. “To solve this puzzle, we worked with a mouse model of Alzheimer’s disease focusing on the genetic changes that seizures might trigger in the memory center of the brain, the hippocampus, that could lead to loss of memory or other cognitive deficits.”

The researchers measured the levels of a number of proteins involved in memory and learning and found that levels of the protein deltaFosB strikingly increase in the hippocampus of Alzheimer’s disease mice that had seizures. DeltaFosB already is well known for its association with other neurological conditions linked to persistent brain activity of specific brain regions, such as addiction. In this study, the researchers found that after a seizure, the deltaFosB protein remains in the hippocampus for an unusually long time; its half-life – the time it takes for the amount of protein to decrease by half – is eight days. Most proteins have a half-life that is between hours and a day or two.

“Interestingly, because deltaFosB is a transcription factor, meaning that its job is to regulate the expression of other proteins, these findings led us to predict that the increased deltaFosB levels might be responsible for suppressing the production of proteins that are necessary for learning and memory,” Chin said. “In fact, we found that when the levels of deltaFosB increase, those of other proteins, such as calbindin, decrease. Calbindin also has been known for a long time to be involved in Alzheimer’s disease and epilepsy, but its mechanism of regulation was not known. We then hypothesized that deltaFosB might be regulating the production of calbindin.”

Further investigations supported the researchers’ hypothesis. The scientists showed that deltaFosB can bind to the gene calbindin suppressing the expression of the protein. When they either prevented deltaFosB activity or experimentally increased calbindin expression in the mice, calbindin levels were restored and the mice improved their memory. And when researchers experimentally increased deltaFosB levels in normal mice, calbindin expression was suppressed and the animals’ memory deteriorated, demonstrating that deltaFosB and calbindin are key regulators of memory.

Connecting pieces of the puzzle

“Our findings have helped us answer the question of how even infrequent seizures can have such lasting detrimental effects on memory,” Chin said. “We found that seizures can increase the levels of deltaFosB in the hippocampus, which results in a decrease in the levels of calbindin, a regulator of memory processes. DeltaFosB has a relatively long half-life, therefore even when seizures are infrequent, deltaFosB remains in the hippocampus for weeks acting like a brake, reducing the production of calbindin and other proteins, and disrupting the consequent brain activity involved in memory. The regulation of gene expression far outlasts the actual seizure event that triggered it.”

The scientists found the same changes in deltaFosB and calbindin levels in the hippocampus of Alzheimer’s disease patients and in the temporal lobe of epilepsy patients. However, they underscore that it is too soon to know whether regulating deltaFosB or calbindin could improve or prevent memory problems or other cognitive deficits in people with Alzheimer’s disease. However, “now that we know that the levels of deltaFosB and calbindin are effective markers of brain activity in the hippocampus and memory function, we propose that these markers could potentially help assess clinical therapies for Alzheimer’s and other diseases with seizures,” Chin said.

Source: Findings reveal how seizures can have lasting detrimental effects on memory

Advertisements

, , , , , , , , , , , , , , , ,

Leave a comment

[WEB SITE] Doctors appear to have reached unexpected consensus in prescribing pediatric anti-seizure medications

July 19, 2017

The number of available anti-seizure medications has exploded in the past two decades, going from just a handful of medicines available in the 1990s to more than 20 now. Once the Food and Drug Administration (FDA) approves each new medicine based on trials in adults, it’s available for clinicians to prescribe off-label to all age groups. However, says William D. Gaillard, M.D., division chief of Child Neurology and Epilepsy, Neurophysiology and Critical Care Neurology at Children’s National Health System, trials that lead to FDA approval for adults do not provide any information about which medications are best for children.

“With so many medications and so little data,” Dr. Gaillard says, “one might think doctors would choose a wider variety of medicines when they prescribe to children with epilepsy.”

However, the results from a recent study by Dr. Gaillard and colleagues, published online in Pediatric Neurology on June 27, 2017, show otherwise. The study indicates that doctors in the United States appear to have reached an unexpected consensus about which medication to prescribe for their pediatric patients.

The study is part of a broader effort to collect data on the youngest epilepsy patients — those younger than 3 years old, the age at which epilepsy most often becomes evident. As part of this endeavor, researchers from 17 U.S. pediatric epilepsy centers enrolled in the study 495 children younger than 36 months old who had been newly diagnosed with non-syndromic epilepsy (a condition not linked to any of the commonly recognized genetic epilepsy syndromes).

The researchers mined these patients’ electronic medical records for information about their demographics, disease and treatments. About half of the study participants were younger than 1 year old when they were diagnosed with epilepsy. About half had disease marked by focal features, meaning that their epilepsy appeared to originate from a particular place in the brain. Nearly all were treated with a single medication, as opposed to a cocktail of multiple medicines.

Of those treated with a single medication, nearly all were treated with one of five medicines: Levetiracetam, oxcarbazepine, phenobarbital, topiramate and zonisamide. However, the data showed a clear prescribing preference. About 63 percent of the patients were prescribed levetiracetam as a first choice. By contrast, oxcarbazepine and phenobarbital, the next most frequently prescribed medicines, were taken by patients as a first choice by a mere 14 percent and 13 percent respectively.

Even more striking, of the children who were not prescribed levetiracetam initially but required a second medication due to inadequate efficacy or unacceptable side effects, 62 percent also received this medication. That made levetiracetam the first or second choice for about 74 percent of all the children in the study, despite the availability of more than 20 anti-seizure medications.

It’s not clear why levetiracetam is such a frequent choice in the United States, says Dr. Gaillard. However, in its favor, the drug is available in a liquid formulation, causes no ill effects medically and can be started intravenously if necessary. Studies have shown that it appears to be effective in controlling seizures in about 40 percent of infants.

Yet, levetiracetam’s market dominance appears to be a North American phenomenon, the study authors write. A recent international survey that Dr. Gaillard also participated in suggests that outside of this continent, carbazepine and oxcarbazepine were the most frequently prescribed medications to treat focal seizures.

What’s really necessary, Dr. Gaillard says, is real data on efficacy for each of the medications commonly prescribed to pediatric epilepsy patients–a marked vacuum in research that prevents doctors from using evidence-based reasoning when making medication choices.

“This study identifies current practices, but whether those practices are correct is a separate question,” he explains. “Just because a medication is used commonly doesn’t mean it is the best medication we should be using.”

To answer that question, he says, researchers will need to perform a head-to-head clinical trial comparing the top available epilepsy medications in children. This study sets the stage for such a trial by identifying which medications should be included.

“Uncontrolled pediatric epilepsy can have serious consequences, from potential problems in development to a higher risk of death,” Dr. Gaillard says. “You want to use the optimal medicine to treat the disease.”

Source: Doctors appear to have reached unexpected consensus in prescribing pediatric anti-seizure medications

, , , , , , , ,

Leave a comment

[WEB SITE] Brain surgery helps remove scar tissue causing seizures in epilepsy patients

By the time epilepsy patient Erika Fleck came to Loyola Medicine for a second opinion, she was having three or four seizures a week and hadn’t been able to drive her two young children for five years.

“It was no way to live,” she said.

Loyola epileptologist Jorge Asconapé, MD, recommended surgery to remove scar tissue in her brain that was triggering the seizures. Neurosurgeon Douglas Anderson, MD, performed the surgery, called an amygdalohippocampectomy. Ms. Fleck hasn’t had a single seizure in the more than three years since her surgery.

“I’ve got my life back,” she said. “I left my seizures at Loyola.”

Surgery can be an option for a minority of patients who do not respond to medications or other treatments and have epileptic scar tissue that can be removed safely. In 60 to 70 percent of surgery patients, seizures are completely eliminated, and the success rate likely will improve as imaging and surgical techniques improve, Dr. Anderson said.

Traditionally, patients would have to try several medications with poor results for years or decades before being considered for surgery, according to the Epilepsy Foundation. “More recently, surgery is being considered sooner,” the foundation said. “Studies have shown that the earlier surgery is performed, the better the outcome.” (Ms. Fleck is a service coordinator for the Epilepsy Foundation North/Central Illinois Iowa and Nebraska.)

Dr. Asconapé said Ms. Fleck was a perfect candidate for surgery because the scar tissue causing her seizures was located in an area of the brain that could be removed without damaging critical structures.

Ms. Fleck experienced complex partial seizures, characterized by a deep stare, unresponsiveness and loss of control for a minute or two. An MRI found the cause: A small area of scar tissue in a structure of the brain called the hippocampus. The subtle lesion had been overlooked at another center.

Epilepsy surgery takes about three hours, and patients typically are in the hospital for two or three days. Like all surgery, epilepsy surgery entails risks, including infection, hemorrhage, injury to other parts of the brain and slight personality changes. But such complications are rare, and they pose less risk to patients than the risk of being injured during seizures, Dr. Asconapé said.

Loyola has been designated a Level Four Epilepsy Center by the National Association of Epilepsy Centers. Level Four is the highest level of specialized epilepsy care available. Level Four centers have the professional expertise and facilities to provide the highest level of medical and surgical evaluation and treatment for patients with complex epilepsy.

Loyola’s comprehensive, multidisciplinary Epilepsy Center offers a comprehensive multidisciplinary approach to epilepsy and seizure disorders for adults and children as young as two years old. Pediatric and adult epileptologist consultation and state-of-the-art neuroimaging and electrodiagnostic technology are used to identify and assess complex seizure disorders by short- and long-term monitoring.

Source: Loyola University Health System

Source: Brain surgery helps remove scar tissue causing seizures in epilepsy patients

, , , , , , , , , ,

Leave a comment

[Abstract+References] XOOM: An End-User Development Tool for Web-Based Wearable Immersive Virtual Tours

Abstract

XOOM is a novel interactive tool that allows non ICT-specialists to create web-based applications of Wearable Immersive Virtual Reality (WIVR) technology that use 360° realistic videos as interactive virtual tours. These applications are interesting for various domains that range from gaming, entertainment, cultural heritage, and tourism to education, professional training, therapy and rehabilitation. 360° interactive videos are displayed on smart-phones placed on head-mounted VR viewers. Users explore the virtual environment and interact with active elements through head direction and movements. The virtual scenarios can be seen also on external displays (e.g., TV monitors or projections) to enable other users to participate in the experience, and to control the VR space if needed, e.g., for education, training or therapy purposes. XOOM provides the functionality to create applications of this kind, import 360° videos, concatenate them, and superimpose active elements on the virtual scenes, so that the resulting environment is more interactive and is customized to the requirement of a specific domain and user target. XOOM also supports automatic data gathering and visualizations (e.g., through heat-maps) of the users’ experience, which can be inspected for analytics purposes, as well as for user evaluation (e.g., in education, training, or therapy contexts). The paper describes the design and implementation of XOOM, and reports a case study in the therapeutic context.

Source: XOOM: An End-User Development Tool for Web-Based Wearable Immersive Virtual Tours | SpringerLink

, , , , , , , , , ,

Leave a comment

[WEB SITE] The epilepsy signs in children you need to watch out for

Mother and son smiling at each other, face to face

Epilepsy is a common condition affecting the brain, and almost one in every 100 people across all ages will have the condition. Irfan Malik, consultant neurosurgeon at the London Neurosurgery Partnership, part of The Harley Street Clinic, looks at some of the more obscure epilepsy symptoms to watch out for in children.

What is epilepsy?

Epilepsy is caused by a sudden burst of intense electrical activity in the brain. The resulting seizures can present themselves in various ways – it all depends on which part of the brain is affected. The most well-known type of epileptic seizure is the tonic-clonic, which affects the whole brain. It is probably the most noticeable form of epilepsy and is known as a generalised seizure. This is usually identified by involuntary jerking of the body and often results in the partial or total loss of consciousness or awareness.

Epilepsy also causes focal seizures which affect one particular part of the brain. The way these seizures present themselves can vary from person to person. This tends to be why diagnosis can be so tricky in children, as young people often present with a range of different symptoms. As a result, epilepsy in children is often picked up at a late stage.

What are the symptoms of focal seizures?

The brain is made up of four different lobes – the parietal, temporal, occipital and frontal. Each affects different aspects of your physical and mental function and, in turn, focal seizures located in one of these areas can result in rarer types of epileptic symptoms.

In most cases the following symptoms won’t be cause for concern, but given the variation in how focal seizures can present it’s important for parents and teachers to spot potential signs of epilepsy.

1. Absence

While children of all ages can have a tendency to stare off into the distance – or have short attention spans – in some young children this could be a symptom of Childhood Absence Epilepsy (CAE).

CAE syndrome triggers what are known as absence seizures. They usually last about 10 seconds and end abruptly, consisting of staring spells during where the child may not be aware or responsive. In many cases a child will then resume normal activity straight after the seizure and may not even be aware that it even happened, which can make it particularly hard to diagnose. Absence seizures can occur from anywhere between one to 100 times a day. If left undiagnosed they can go on to affect their performance at school, and cause tonic-clonic fits later on in life.

2. Deja-vu

Epilepsy located in the temporal lobes will affect your child’s functions, including things such as feelings, emotions, thoughts, and experiences. An example of this is seizures that appear as feelings of Deja-vu, and a sense that what’s happening has happened before. However in other cases some people can feel as if everything around them appears strange or foreign.

Father and daughter playing on swing

Epilepsy in the temporal part of the brain can also cause a strange taste in their mouth or to smell something that isn’t there. These seizures can vary in intensity and quality, with some being so mild that your child barely even notices.

3. Strange sensations

The Parietal lobe is known as the “association cortex” as it is responsible for connecting meaning to the brain’s functions, such as recognising sounds as words and what you see as visual images. Seizures in this part of the brain can result in strange sensations – known as sensory seizures – and can present in a number of ways. For example, some children often feel like a part of their body is missing, have difficulty understanding words, experience hallucinations and have feelings of numbness, heat, pressure or electricity. These can last anywhere from a few seconds to a few minutes.

4. Hallucinations

Epilepsy occurring in the occipital lobe – as the name suggests – will affect your child’s sight. This is usually hard to diagnose and tends to be rare. Symptoms can include seeing flashing lights or colours, patterns, or images that appear to repeat before the eyes. It can also affect vision, causing partial blindness.

5. Laughter

Perhaps one of the most surprising, signs of an epileptic seizure is laughter. Known as gelastic seizures – taken from the Greek word for laughter – this type of seizure will usually occur suddenly in your child, causing them to laugh, often hysterically for no obvious reason, and will seem completely out of place. It tends to be slightly more common in boys, however it’s very rare, affecting one of every 1,000 children with epilepsy.

Confirming diagnosis

Usually there’s nothing to worry about, however if you think your child might be exhibiting any symptoms of epilepsy then it’s best to visit a specialist epilepsy centre to confirm a diagnosis. A consultant will conduct an investigation which will usually involve a mixture of tests such as blood tests, an MRI scan, and an electroencephalogram (EEG) – a procedure which detects electrical activity in your child’s brain using small, flat metal discs (electrodes) attached to the scalp. Today, treatment is fairly straightforward and epilepsy can be managed with anti-epileptic drugs (AEDs) that help control seizures. Many children will even grow out of epilepsy as they get older.

Further information on epilepsy can be found at Epilepsy ActionThe London Neurosurgery Partnership at The Harley Street Clinic can provide an initial assessment service and offers support for children and their families who are looking for an epilepsy diagnosis.

Source: The epilepsy signs in children you need to watch out for

, , , , , , ,

Leave a comment

[WEB SITE] UC study explores how low risk stress reduction treatments may benefit epilepsy patients

Patients with epilepsy face many challenges, but perhaps the most difficult of all is the unpredictability of seizure occurrence. One of the most commonly reported triggers for seizures is stress.

A recent review article in the European journal Seizure, by researchers at University of Cincinnati Epilepsy Center at the UC Gardner Neuroscience Institute, looks at the stress-seizure relationship and how adopting stress reduction techniques may provide benefit as a low risk form of treatment.

The relationship between stress and seizures has been well documented over the last 50 years. It has been noted that stress can not only increase seizure susceptibility and in rare cases a form of reflex epilepsy, but also increase the risk of the development of epilepsy, especially when stressors are severe, prolonged, or experienced early in life.

“Studies to date have looked at the relationship from many angles,” says Michael Privitera, MD, director of the UC Epilepsy Center and professor in the Department of Neurology and Rehabilitation Medicine at the UC College of Medicine. “The earliest studies from the 1980s were primarily diaries of patients who described experiencing more seizures on ‘high-stress days’ than on ‘low-stress days.'”

Privitera and Heather McKee, MD, an assistant professor in the Department of Neurology and Rehabilitation Medicine, looked at 21 studies from the 1980s to present–from patients who kept diaries of stress levels and correlation of seizure frequency, to tracking seizures after major life events, to fMRI studies that looked at responses to stressful verbal/auditory stimuli.

“Most all [of these studies] show increases in seizure frequency after high-stress events. Studies have also followed populations who have collectively experienced stressful events, such as the effects of war, trauma or natural disaster, or the death of a loved one,” says Privitera. All of which found increased seizure risk during such a time of stress.

For example, a 2002 study evaluated the occurrence of epileptic seizures during the war in Croatia in the early 1990s. Children from war-affected areas had epileptic seizures more often than children not affected by the war. Additionally, the 10-year follow up showed that patients who had their first epileptic seizure during a time of stress were more likely to have controlled epilepsy or even be off medication years later.

“Stress is a subjective and highly individualized state of mental or emotional strain. Although it’s quite clear that stress is an important and common seizure precipitant, it remains difficult to obtain objective conclusions about a direct causal factor for individual epilepsy patients,” says McKee.

Another aspect of the stress-seizure relationship is the finding by UC researchers that there were higher anxiety levels in patients with epilepsy who report stress as a seizure precipitant. The researchers suggest patients who believe stress is a seizure trigger may want to talk with their health care provider about screening for anxiety.

“Any patient reporting stress as a seizure trigger should be screened for a treatable mood disorder, especially considering that mood disorders are so common within this population,” adds McKee.

The researchers report that while some small prospective trials using general stress reduction methods have shown promise in improving outcomes in people with epilepsy, large-scale, randomized, controlled trials are needed to convince both patients and providers that stress reduction methods should be standard adjunctive treatments for people with epilepsy.

“What I think some of these studies point to is that efforts toward stress reduction techniques, though somewhat inconsistent, have shown promise in reducing seizure frequency. We need future research to establish evidence-based treatments and clarify biological mechanisms of the stress-seizure relationship,” says Privitera.

Overall, he says, recommending stress reduction methods to patients with epilepsy “could improve overall quality of life and reduce seizure frequency at little to no risk.”

Some low risk stress reduction techniques may include controlled deep breathing, relaxation or mindfulness therapy, as well as exercise, or establishing routines.

Source: UC study explores how low risk stress reduction treatments may benefit epilepsy patients

, , , , , , , , , , , ,

Leave a comment

[BLOG POST] Anti-epilepsy medicine use during pregnancy does not harm overall health of children, study finds

.

Children whose mothers have taken anti-epilepsy medicine during pregnancy, do not visit the doctor more often than children who have not been exposed to this medicine in utero. This is the result of a new study from Aarhus.

Previous studies have shown that anti-epilepsy medicine may lead to congenital malformations in the foetus and that the use of anti-epilepsy medicine during pregnancy affects the development of the brain among the children. There is still a lack of knowledge in the area about the general health of children who are exposed to anti-epilepsy medicine in foetallife. But this new study is generally reassuring for women who need to take anti-epilepsy medicine during their pregnancy.

Being born to a mother who has taken anti-epilepsy medicine during pregnancy appears not to harm the child’s health. These are the findings of the first Danish study of the correlation between anti-epilepsy medicine and the general health of the child which has been carried out by the Research Unit for General Practice, Aarhus University and Aarhus University Hospital.

The results have just been published in the international scientific journal BMJ Open.

The researchers have looked into whether children who have been exposed to the mother’s anti-epilepsy medicine have contact with their general practitioner (GP) more often than other children – and there are no significant differences.

No reason til worry

“Our results are generally reassuring for women who need to take anti-epilepsy medicine during their pregnancy, including women with epilepsy,” says Anne Mette Lund Würtz, who is one of the researchers behind the project.

The difference in the number of contacts to the general practitioner between exposed and non-exposed children is only three per cent.

“The small difference we found in the number of contacts is primarily due to a difference in the number of telephone contacts and not to actual visits to the GP. At the same time, we cannot rule out that the difference in the number of contacts is caused by a small group of children who have more frequent contact with their GP because of illness,” explains Anne Mette Lund Würtz.

Of the 963,010 children born between 1997 and 2012, who were included in the survey, anti-epilepsy medicine was used in 4,478 of the pregnancies that were studied.

Anti-epilepsy medicine is also used for the treatment of other diseases such as migraine and bipolar disorder. The study shows that there were no differences relating to whether the women who used anti-epilepsy medicine during pregnancy were diagnosed with epilepsy or not.

Background for the results

Type of study: The population study was carried out using the Danish registers for the period 1997-2013.

The analyses takes into account differences in the child’s gender and date of birth, as well as the mother’s age, family situation, income, level of education, as well as any mental illness, use of psychiatric medicine and insulin, and substance abuse.

Source: Anti-epilepsy medicine use during pregnancy does not harm overall health of children, study finds

, , , , , , , , , , , , ,

Leave a comment

[WEB SITE] Australian survey reveals cannabis use in people with epilepsy to manage seizures

People with epilepsy resort to cannabis products when antiepileptic drug side-effects are intolerable and epilepsy uncontrolled.

The first Australian nationwide survey on the experiences and opinions of medicinal cannabis use in people with epilepsy has revealed that 14 per cent of people with epilepsy have used cannabis products as a way to manage seizures.

The study showed that of those with a history of cannabis product use, 90 per cent of adults and 71 per cent of parents of children with epilepsy reported success in managing seizures after commencing using cannabis products.

Published in Epilepsy & Behaviour, the Epilepsy Action Australia study, in partnership with The Lambert Initiative at the University of Sydney, surveyed 976 respondents to examine cannabis use in people with epilepsy, reasons for use, and any perceived benefits self-reported by consumers (or their carers).

The survey revealed:

  • 15 per cent of adults with epilepsy and 13 per cent of parents/guardians of children with epilepsy were currently using, or had previously used, cannabis products to treat epilepsy.
  • Across all respondents, the main reasons for trying cannabis products were to manage treatment-resistant epilepsy and to obtain a more favourable side-effect profile compared to standard antiepileptic drugs.
  • The number of past antiepileptic drugs was a significant predictor of medicinal cannabis use in both adults and children with epilepsy.

“This survey provides insight into the use of cannabis products for epilepsy, in particular some of the likely factors influencing use, as well as novel insights into the experiences of and attitudes towards medicinal cannabis in people with epilepsy in the Australian community,” said lead author Anastasia Suraev from The Lambert Initiative.

“Despite the limitations of a retrospective online survey, we cannot ignore that a significant proportion of adults and children with epilepsy are using cannabis-based products in Australia, and many are self-reporting considerable benefits to their condition.

“More systematic clinical studies are urgently needed to help us better understand the role of cannabinoids in epilepsy,” she said.

Co-author of the paper Carol Ireland, CEO of Epilepsy Action Australia, who was recently appointed to the Australian Government’s new Australian Advisory Council on the Medicinal Use of Cannabis, said: “Cannabis products are often what people turn to when they have been unable to control their epilepsy with conventional medication.”

“This highlights a growing need to educate consumers and health professionals on the use of cannabis by people with epilepsy, and to provide safe and timely access to cannabinoid medicine in order to lessen people’s reliance on illicit black market products” she said.

, , , , ,

Leave a comment

[ARTICLE] New Approaches to Exciting Exergame-Experiences for People with Motor Function Impairments – Full Text

Abstract:

The work presented here suggests new ways to tackle exergames for physical rehabilitation and to improve the players’ immersion and involvement. The primary (but not exclusive) purpose is to increase the motivation of children and adolescents with severe physical impairments, for doing their required exercises while playing. The proposed gaming environment is based on the Kinect sensor and the Blender Game Engine. A middleware has been implemented that efficiently transmits the data from the sensor to the game. Inside the game, different newly proposed mechanisms have been developed to distinguish pure exercise-gestures from other movements used to control the game (e.g., opening a menu). The main contribution is the amplification of weak movements, which allows the physically impaired to have similar gaming experiences as the average population. To test the feasibility of the proposed methods, four mini-games were implemented and tested by a group of 11 volunteers with different disabilities, most of them bound to a wheelchair. Their performance has also been compared to that of a healthy control group. Results are generally positive and motivating, although there is much to do to improve the functionalities. There is a major demand for applications that help to include disabled people in society and to improve their life conditions. This work will contribute towards providing them with more fun during exercise.

1. Introduction

For a number of years, the possibility of applying serious games for rehabilitation purposes has been thoroughly investigated [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28]. It is often claimed that serious games reduce health system costs and efforts as they enable in-home rehabilitation without loss of medical monitoring, and in so doing provide an additional fun factor for patients [22,23,24]. Multiple reviews have summarized the very powerful contributions and reveal that the systems are generally evaluated as feasible, but no state of general applicability has yet been reached [2,3,5,7,11,13].
Most studies are quite specialised and tend to cover the same groups of largely elderly patients (e.g., stroke and Parkinson’s), which do not constitute a credible target group per se for gaming among the population. In addition, the impression is that the same functionalities are being tested repeatedly, without any evolution. Above all, other groups like children and adolescents with chronic diseases are rarely addressed, even though they are an excellent target group and would probably benefit greatly from using exergames as they need to move like any other child but are mostly limited to performing their exercises with a physiotherapist. This is generally boring, time-consuming and prevents them from playing with friends during this time. If instead they could play games involving physical exercises, without it feeling like rehabilitation, due to proper immersion and motivation, they would possibly need fewer sessions with the therapist, which may in turn improve their social life. Commercially available games would be good enough for many children with physical disabilities, if only they were configurable and adaptive to their potential and needs. Remote controls (RC) are typically not sufficiently configurable (button functions cannot be changed or the RC cannot be used with one hand) and are only made for hands (why not for feet or the mouth?) Some RCs are not sufficiently precise in detection, and so the user ends up tired and loses motivation. Motion capture devices like the Kinect sensor seem to provide better prerequisites for exergaming purposes but feature important limitations too, (e.g., detection of fine movements and rotations) such that the needs of many people are still not be covered by commercial solutions.
However, this is not due to the sensors, but rather the software, which lacks configurability for special needs, such as simple adjustments of level difficulties or the option of playing while seated. For the latter, some Kinect games are available [29], but those are hardly the most liked ones, as has been stated by affected users [30]. Therefore, more complex solutions are required to adapt a game to problems like muscle weaknesses (most games require wide or fast movements), spasticity (“strange” movements are not recognized) or the available limbs (for instance configuring a game to be controlled with the feet for players without full hand use).
To fill these gaps, the authors of the work presented here are pursuing the overall aim (as part of a long-term project) of creating an entertaining exergaming environment for adventure games that immerses the players into a virtual world and makes them forget their physical impairments. Knowledge of the gaming industry is applied to create motivating challenges that the users have to solve, which are sufficiently addictive to make the exercises pass to an unconscious plane. The gaming environment is configurable to the user’s potential and requirements. Challenges will be programmable by a therapist and will also adapt themselves to the players automatically real-time, by observing their fatigue or emotional state (lowering the difficulty or switching to more relaxing exercises when needed)…

Sensors 17 00354 g008

Figure 8. Different scenes while the volunteers were playing. (a) “The Paper-Bird”, (b) “The Ladder”, (c) “The Boat” and (d) “Whack-a-Mole”.

Continue —> Sensors | Free Full-Text | New Approaches to Exciting Exergame-Experiences for People with Motor Function Impairments | HTML

, , , , , , , , , , ,

Leave a comment

[WEB SITE] Studies uncover long-term effects of traumatic brain injury

Doctors are beginning to get answers to the question that every parent whose child has had a traumatic brain injury (TBI) wants to know: What will my child be like 10 years from now?

In a study to be presented Friday Feb. 10 at the annual meeting of the Association of Academic Physiatrists in Las Vegas, researchers from Cincinnati Children’s will present research on long-term effects of TBI—an average of seven years after injury. Patients with mild to moderate brain injuries are two times more likely to have developed , and those with severe injuries are five times more likely to develop secondary ADHD. These researchers are also finding that the family environment influences the development of these attention problems.

  • Parenting and the exert a powerful influence on recovery. Children with severe TBI in optimal environments may show few effects of their injuries while children with milder injuries from disadvantaged or chaotic homes often demonstrate persistent problems.
  • Early family response may be particularly important for long-term outcomes suggesting that working to promote effective parenting may be an important early intervention.
  • Certain skills that can affect social functioning, such as speed of information processing, inhibition, and reasoning, show greater .
  • Many children do very well long-term after brain injury and most do not have across the board deficits.

More than 630,000 children and teenagers in the United States are treated in emergency rooms for TBI each year. But predictors of recovery following TBI, particularly the roles of genes and environment, are unclear. These environmental factors include family functioning, parenting practices, home environment, and socioeconomic status. Researchers at Cincinnati Children’s are working to identify genes important to recovery after TBI and understand how these genes may interact with to influence recovery.

  • They will be collecting salivary DNA samples from more than 330 children participating in the Approaches and Decisions in Acute Pediatric TBI Trial.
  • he primary outcome will be global functioning at 3, 6, and 12 months post injury, and secondary outcomes will include a comprehensive assessment of cognitive and behavioral functioning at 12 months post injury.
  • This project will provide information to inform individualized prognosis and treatment plans.

Using neuroimaging and other technologies, scientists are also learning more about brain structure and connectivity related to persistent symptoms after TBI. In a not-yet-published Cincinnati Children’s study, for example, researchers investigated the structural connectivity of brain networks following aerobic training. The recovery of structural connectivity they discovered suggests that aerobic training may lead to improvement in symptoms.

Over the past two decades, investigators at Cincinnati Children’s have conducted a series of studies to develop and test interventions to improve cognitive and behavioral outcomes following pediatric . They developed an innovative web-based program that provides family-centered training in problem-solving, communication, and self-regulation.

  • Across a series of randomized trials, online family problem-solving treatment has been shown to reduce behavior problems and executive dysfunction (management of cognitive processes) in older children with TBI, and over the longer-term improved everyday functioning in 12-17 year olds.
  • Web-based parenting skills programs targeting younger children have resulted in improved parent-child interactions and reduced behavior problems. In a computerized pilot trial of attention and memory, children had improvements in sustained attention and parent-reported executive function behaviors. These intervention studies suggest several avenues for working to improve short- and long-term recovery following TBI.

Explore further: Drug shown to aid injured adult brains may exacerbate cognitive problems in children

Source: Studies uncover long-term effects of traumatic brain injury

, , , , , , , ,

Leave a comment

%d bloggers like this: