Posts Tagged Children

[WEB SITE] Parenting After Brain Injury

Parenting After Brain Injury

Parenting is a challenging life role for all people, yet one of the most valued roles within society. Brain Injury frequently occurs at a life stage where people are yet to complete their parenting responsibilities. For people with acquired brain injury (ABI), facing cognitive, physical, communication, behavioural and psychological challenges, parenting can present complex challenges. In addition, persons with ABI often face societal and environmental barriers. These fact sheets have been developed to assist parents with an ABI and their partners to improve their knowledge and skills to meet the ongoing challenges of parenting. family walking together
little girl finger painting boy doing his homework two little girls arguing

Encouraging your
Developing Child

Setting Routines

Managing Behaviour

Other Useful Parenting Website Links and Resources

Parenting Fact Sheet References and Acknowledgements
Return to Support for Families

Contact ABIOS
abios@health.qld.gov.au

Last updated: 20 March 2017

via Parenting After Brain Injury | Queensland Health

, , , , , , , , , , ,

Leave a comment

[WEB SITE] Assisto & VHAB will dramatically change how people with neuromuscular disabilities communicate

April 4, 2019

 

In our series #TechThursdays, we bring you news about Virtual Rehabilitation (VHAB) and Assisto devices. VHAB, which is based on virtual reality and Assisto, which is on artificial intelligence, are targeted at people with neuromuscular disabilities.

Tech giant Tata Consultancy Services (TCS) are looking to enable people with neuromuscular disabilities in a big way with VHAB (Virtual Rehabilitation) and Assisto. The two devices use the latest available technologies to enhance communication skills.

Assisto addresses the communication difficulties that many people with cerebral palsy face by tuning their voices for better clarity. This is achieved with Algorithm, a speech synthesis. So, when the user speaks, the listener will hear a clearer enunciation.

VHAB, on the other hand, us targeted at children with neuromuscular disabilities like cerebral palsy and autism. Many children diagnosed with disabilities are put through rigorous physiotherapy sessions which can be tiring. VHAB makes these sessions game-based with the help of virtual reality. Gesture analysis, finger-mapping and motion sensors will be used for this.

Both Assisto and VHAB have been successfully tested on children at the Adarsh School in Kochi.

Ashwin KumarPrincipal, Adarsh School believes taht the devices will revolutionize the way people with neuromuscular disabilities communicate.

People with cerebral palsy and autism may have issues with their tongue muscles that can affect communication. Assisto and VHAB devices are definitely going to help them. The software that was developed by TCS was tested on two of our children and it worked really well. In their next phase of the project, they are planning to introduce this to more children and reach out to people who need it.- Ashwin Kumar, Principal, Adarsh School

These devices will also make day-to-day tasks also easier for children with neuromuscular disabilities. The team fine-tuned the devices over three years.

“They provide a gameified app platform and a game environment is created for the user”, says Robin Tommy one of the members of the team that worked on developing them. “It is a combination of physical and game therapies and pain-free as well so kids would love it. The devices aim to enable movements for the user and motivate them to do daily activities with ease. It is mainly based on gesture and motion”.

Seema LalCo-founder of TogetherWeCan, a well known parents supports group in Kerala, believes that technologies like these will be game changers for people with disabilities.

‘We often talk about how technology can be a curse when it comes to things like game addiction and so on. At the same time, it can be a boon for children with neuromuscular disabilities. The United Nations is already talking about the benefits of assistive technology for people with disabilities, and in enabling them to participate actively in many things. I believe this new initiative from TCS is brilliant. Communication is the key for any person and technology is truly a boon”, says Lal.

This is a CSR project of TCS and the great news is that it plans to look at ways to introduce Assisto and VHAB in other schools as well as NGOs. VHAB was recently launched at the ZEP Rehabilitation Centre in Pune,

via Assisto & VHAB will dramatically change how people with neuromuscular disabilities communicate : Newz Hook – Changing Attitudes towards Disability

, , , , , , ,

Leave a comment

[WEB SITE] New method based on artificial intelligence may help predict epilepsy outcomes

 

Medical University of South Carolina (MUSC) neurologists have developed a new method based on artificial intelligence that may eventually help both patients and doctors weigh the pros and cons of using brain surgery to treat debilitating seizures caused by epilepsy. This study, which focused on mesial temporal lobe epilepsy (TLE), was published in the September 2018 issue of Epilepsia. Beyond the clinical implications of incorporating this analytical method into clinicians’ decision making processes, this work also highlights how artificial intelligence is driving change in the medical field.

Despite the increase in the number of epilepsy medications available, as many as one-third of patients are refractory, or non-responders, to the medication. Uncontrolled epilepsy has many dangers associated with seizures, including injury from falls, breathing problems, and even sudden death. Debilitating seizures from epilepsy also greatly reduce quality of life, as normal activities are impaired.

Epilepsy surgery is often recommended to patients who do not respond to medications. Many patients are hesitant to undergo brain surgery, in part, due to fear of operative risks and the fact that only about two-thirds of patients are seizure-free one year after surgery. To tackle this critical gap in the treatment of this epilepsy population, Dr. Leonardo Bonilha and his team in the Department of Neurology at MUSC looked to predict which patients are likely to have success in being seizure free after the surgery.

Neurology Department Chief Resident Dr. Gleichgerrcht explains that they tried “to incorporate advanced neuroimaging and computational techniques to anticipate surgical outcomes in treating seizures that occur with loss of consciousness in order to eventually enhance quality of life”. In order to do this, the team turned to a computational technique, called deep learning, due to the massive amount of data analysis required for this project.

The whole-brain connectome, the key component of this study, is a map of all physical connections in a person’s brain. The brain map is created by in-depth analysis of diffusion magnetic resonance imaging (dMRI), which patients receive as standard-of-care in the clinic. The brains of epilepsy patients were imaged by dMRI prior to having surgery.

Deep learning is a statistical computational approach, within the realm of artificial intelligence, where patterns in data are automatically learned. The physical connections in the brain are very individualized and thus it is challenging to find patterns across multiple patients. Fortunately, the deep learning method is able to isolate the patterns in a more statistically reliable method in order to provide a highly accurate prediction.

Currently, the decision to perform brain surgery on a refractory epilepsy patient is made based on a set of clinical variables including visual interpretation of radiologic studies. Unfortunately, the current classification model is 50 to 70 percent accurate in predicting patient outcomes post-surgery. The deep learning method that the MUSC neurologists developed was 79 to 88 percent accurate. This gives the doctors a more reliable tool for deciding whether the benefits of surgery outweigh the risks for the patient.

A further benefit of this new technique is that no extra diagnostic tests are required for the patients, since dMRIs are routinely performed with epilepsy patients at most centers.

This first study was retrospective in nature, meaning that the clinicians looked at past data. The researchers propose that an ideal next step would include a multi-site prospective study. In a prospective study, they would analyze the dMRI scans of patients prior to surgery and follow-up with the patients for at least one year after surgery. The MUSC neurologists also believe that integrating the brain’s functional connectome, which is a map of simultaneously occurring neural activity across different brain regions, could enhance the prediction of outcomes.

Dr. Gleichgerrcht says that the novelty in the development of this study lies in the fact that this “is not a question of human versus machine, as is often the fear when we hear about artificial intelligence. In this case, we are using artificial intelligence as an extra tool to eventually make better informed decisions regarding a surgical intervention that holds the hope for a cure of epilepsy in a large number of patients.”

 

via New method based on artificial intelligence may help predict epilepsy outcomes

, , , , , , , , , , ,

Leave a comment

[WEB SITE] Children’s Response About Virtual Reality Rehab is Positive

Published on 

virtualreality

 

The virtual reality (VR) system Serious Game may help children with cerebral palsy and other neurological impairments rehabilitate their upper limbs, suggests a study conducted by a team of Italian researchers who developed the system.

The study, published recently in IEEE Transactions on Neural Systems and Rehabilitation Engineering, examined Serious Game, which is composed of a virtual reality camera mounted to the head and two wearable haptic devices placed on two fingers.

In their study, the team investigated the usability of this rehabilitation system in three patients with cerebral palsy and five patients with developmental dyspraxia—a disorder characterized by the impairment of the ability to plan and carry out sensory and motor tasks. The mean age of participants in this group was 10.13 years, according to a news story from Cerebral Palsy News Today.

Typically developing children, with a mean age of 13.38 years, and adults, with a mean age of 26.75 years, also were included in the study.

The participants were divided into two groups: one assisted by the Serious Game technology and another undergoing conventional neurocognitive rehabilitation therapy. Both conditions required movements involving similar motor functions, such as reaching, grasping, and rotating both forearms and hands, but with different tasks and goals in various contexts.

The children attended 16 training sessions of two sessions per week for 4 weeks, over two separate periods. Between the two interventions, a washout period of 4 weeks was added in which children followed only cognitive therapy with no physical sessions.

The children’s exercise capacity was measured using validated clinical scales and motion analysis, the news story continues.

Typically developing children were eager to complete the assigned task even though they were instructed to execute the session with attention and without rushing, while the adults, cerebral palsy, and developmental dyspraxia groups seemed to pay greater attention to precisely performing motor tasks.

The accuracy and velocity of movement were only different between typically developing children and neuromotor patients in the reach-to-grasp exercise, in which children were asked to flip a card protruding from a horizontal support. No significant differences were observed in the path-tracking task, in which children were seated in front of a desk and asked to reach a target by moving the hand along a straight path, the story explains.

Children with neurological disorders completed the game without exceeding the maximum time threshold imposed. Also, these children reported positive feedback after participating in the Serious Game.

The results of virtual reality were consistent with the participants’ motor skills. Overall, the cerebral palsy and developmental dyspraxia group had lower performance than typically developing children and adults, while in turn, the typically developing children had lower performance than adults.

“Results show the system was compliant with different levels of motor skills and allowed patients to complete the experimental rehabilitation session, with performance varying according to the expected motor abilities of the different groups,” researchers wrote, in the study.

“The ability both to customize the modalities of interaction with the virtual environment and, in the same time, to arise motivation in young participants have revealed virtual reality as a potentially important rehabilitation tool in these children,” they add, per the news story.

In the future, the team plans to study this approach in a larger population.

[Source: Cerebral Palsy News Today]

 

via Children’s Response About Virtual Reality Rehab is Positive – Rehab Managment

, , , , , , ,

Leave a comment

[Slideshow] Updated Clinical Guidelines on the Ketogenic Diet in Children with Epilepsy

The International Ketogenic Diet Study Group has released new clinical guidelines on the ketogenic diet in children with epilepsy.[1] The updated recommendations are the first change since the original guidelines on the subject were published almost 10 years ago.[2]

The Slideshow —> Updated Clinical Guidelines on the Ketogenic Diet in Children with Epilepsy | Neurology Times

, , , ,

Leave a comment

[WEB SITE] FDA approves marijuana based medication for epilepsy treatment

 

An advisory panel from the United States Food and Drug Administration (FDA) has recommended the approval of a novel epilepsy drug that is made up of ingredients from marijuana. The agency normally follows the recommendations of the advisory panels regarding approvals and rejections of applications of new drugs. The recommendation statement came yesterday (19th April 2018).

If this drug gets a green light, it is expected to become the first cannabis-derived prescription medicine to be available in the US. The drug is named Epidiolex and is made by GW Pharmaceuticals from Britain. It contains cannabidiol or CBD that is derived from cannabis. However the drug is not seen to cause any intoxication among the users.

Marijuana plant flowering outdoors. Image Credit: Yarygin / Shutterstock

Marijuana plant flowering outdoors. Image Credit: Yarygin / Shutterstock

The use of only one of the components of cannabis also makes it different from medical marijuana that is approved for pain management and other conditions around the world and in the United States. Synthetic forms of chemicals in the cannabis plant are also used to treat nausea among cancer patients and in AIDS patients to prevent weight loss.

Dr. Igor Grant, director of the Center for Medicinal Cannabis Research at the University of California San Diego welcomed this new recommendation from the panel saying, “This is a very good development, and it basically underscores that there are medicinal properties to some of the cannabinoids… I think there could well be other cannabinoids that are of therapeutic use, but there is just not enough research on them to say.”

As of now the panel has recommended the use of this new drug for two types of epilepsy only – Lennox-Gastaut syndrome and Dravet syndrome. These are notoriously difficult to treat and most people continue to have seizures despite treatment. Multiple seizures may occur in a day and this makes the children with these conditions vulnerable for developmental and intellectual disabilities. Lennox-Gastaut syndrome can appear in toddlers at around ages 3 to 5 and Dravet syndrome is usually diagnosed earlier. Nearly 30,000 children and adults suffer from Lennox-Gastaut syndrome and similar numbers of people are diagnosed with Dravet syndrome. Due to the small population of diagnosed patients Epidiolex was filed and classified under orphan drug status.

An orphan drug is one that is developed for a relatively rare disease condition. The FDA provides special subsidies and support for development of orphan drugs and often speed tracks their approval process.

The recommendation from the advisory panel is based on the results of three randomized, double-blind, placebo-controlled trials that included patients of both these disease conditions. The agency statement says, “The statistically significant and clinically meaningful results from these three studies provide substantial evidence of the effectiveness of CBD for the treatment of seizures associated with LGS and DS.” They drug causes liver damage but the report says that this could be managed effectively.

The FDA will conduct a final vote for approval of this drug in June. Oral solution of the drug for a small group of patients with these conditions would be allowed.

Reference: https://www.fda.gov/downloads/AdvisoryCommittees/CommitteesMeetingMaterials/Drugs/PeripheralandCentralNervousSystemDrugsAdvisoryCommittee/UCM604736.pdf

 

via FDA approves marijuana based medication for epilepsy treatment

, , , , , , , , , , , , , ,

Leave a comment

[WEB SITE] New brain cells are added in elderly adult brains too

According to a new study from the Columbia University however, brain cells are continuously added to our brains even when we reach our 70s. This is a process called neurogenesis. Their work is published in a study that appeared in the latest issue of the journal Cell Stem Cell this week.

Neuron detailed anatomy illustrations. Neuron types, myelin sheath formation, organelles of the neuron body and synapse. Image Credit: Tefi / Shutterstock

Lead author Dr. Maura Boldrini, a research scientist at the department of psychiatry, Columbia University and her colleagues investigated the brains of 28 dead people aged between 14 and 79 years. They were studying the effects of aging on the brain’s neuron production. The team examined the brains that were donated by the families of the deceased at the time of death. The brains were frozen immediately at minus-112 degrees Fahrenheit before they could be examined. This preserved the tissues.

Neurogenesis has been shown to decline with age in lab mice and rats as well as in experimental primates. The team wanted to explore if same rates of decline are seen in human brains as well. So they checked the brains samples for developing neurons. These developmental stages included stem cells, intermediate progenitor cells, immature neuronal cells and finally new mature neurons. They focused on the hippocampus region of the brain that deals with memory and emotional control and behavior.

The results revealed that for all age groups, the hippocampus shows new developing neurons. The researchers concluded that even during old age, the hippocampus continues to make new neurons. The differences that they noted with age include reduction in the development of new blood vessels as people got older. The proteins that help the neurons to make new connections are reduced with age. This was a finding that differentiated ageing brains from younger ones, they explained. Boldrini said the new neurons are there in older brains but they make fewer connections than younger brains. This explains the memory losses and decrease in emotional resiliency in older adults she said.

An earlier study last month came from another set of researchers led by University of California San Francisco researcher Arturo Alvarez-Buylla. The study titled, “Human hippocampal neurogenesis drops sharply in children to undetectable levels in adults,” was published first week of March this year in the journal Nature.

The team found that after adolescence there is little or no neurogenesis in the brain. They examined the brains of 17 deceased individuals and 12 patients with epilepsy part of whose brains had been surgically resected. The debate between the two teams continues. Boldrini explained that Buylla’s team had examined different types of samples that were not preserved as her samples had been.

Further the other team examined three to five sections of the hippocampus and not the whole of it she explained. More studies on this needed to make concrete conclusions regarding neurogenesis in the elderly say experts.

References

via New brain cells are added in elderly adult brains too

, , , , , , , , , , ,

Leave a comment

[Abstract] The management of epilepsy in children and adults.

The International League Against Epilepsy has recently published a new classification of epileptic seizures and epilepsies to reflect the major scientific advances in our understanding of the epilepsies since the last formal classification 28 years ago. The classification emphasises the importance of aetiology, which allows the optimisation of management. Antiepileptic drugs (AEDs) are the main approach to epilepsy treatment and achieve seizure freedom in about two-thirds of patients. More than 15 second generation AEDs have been introduced since the 1990s, expanding opportunities to tailor treatment for each patient. However, they have not substantially altered the overall seizure-free outcomes. Epilepsy surgery is the most effective treatment for drug-resistant focal epilepsy and should be considered as soon as appropriate trials of two AEDs have failed. The success of epilepsy surgery is influenced by different factors, including epilepsy syndrome, presence and type of epileptogenic lesion, and duration of post-operative follow-up. For patients who are not eligible for epilepsy surgery or for whom surgery has failed, trials of alternative AEDs or other non-pharmacological therapies, such as the ketogenic diet and neurostimulation, may improve seizure control. Ongoing research into novel antiepileptic agents, improved techniques to optimise epilepsy surgery, and other non-pharmacological therapies fuel hope to reduce the proportion of individuals with uncontrolled seizures. With the plethora of gene discoveries in the epilepsies, “precision therapies” specifically targeting the molecular underpinnings are beginning to emerge and hold great promise for future therapeutic approaches.

 

via The management of epilepsy in children and adults. – Abstract – Europe PMC

, , , , , ,

Leave a comment

[REVIEW] Care delivery and self-management strategies for children with epilepsy – Abstract

Abstract

Background

In response to criticism that epilepsy care for children has little impact, healthcare professionals and administrators have developed various service models and strategies to address perceived inadequacies.

Objectives

To assess the effects of any specialised or dedicated intervention for epilepsy versus usual care in children with epilepsy and in their families.

Search methods

We searched the Cochrane Epilepsy Group Specialized Register (27 September 2016), the Cochrane Central Register of Controlled Trials (CENTRAL; 2016, Issue 9) in the Cochrane Library, MEDLINE (1946 to 27 September 2016), Embase (1974 to 27 September 2016), PsycINFO (1887 to 27 September 2016) and CINAHL Plus (1937 to 27 September 2016). In addition, we also searched clinical trials registries for ongoing or recently completed trials, contacted experts in the field to seek information on unpublished and ongoing studies, checked the websites of epilepsy organisations and checked the reference lists of included studies.

Selection criteria

We included randomised controlled trials (RCTs), cohort studies or other prospective studies with a (matched or unmatched) control group (controlled before-and-after studies), or time series studies.

Data collection and analysis

We used standard methodological procedures expected by Cochrane.

Main results

Our review included six interventions reported through seven studies (of which five studies were designed as RCTs). They reported on different education and counselling programmes for children and parents; teenagers and parents; or children, adolescents and their parents. Each programme showed some benefits for the well-being of children with epilepsy, but all had methodological flaws (e.g. in one of the studies designed as an RCT, randomisation failed), no single programme was independently evaluated with different study samples and no interventions were sufficiently homogeneous enough to be included in a meta-analysis,.

Authors’ conclusions

While each of the programmes in this review showed some benefit to children with epilepsy, their impacts were extremely variable. No programme showed benefits across the full range of outcomes, and all studies had major methodological problems. At present there is insufficient evidence in favour of any single programme.

Plain language summary

Care delivery and self-management strategies for children with epilepsy

Background

Epilepsy is spectrum of disorders in which a person may have seizures (fits) that are unpredictable in frequency. Most seizures are well controlled with medicines and other types of treatments, but epilepsy can cause problems in social, school and work situations, making independent living difficult. People with seizures tend to have physical problems (e.g. fractures, bruising and a slightly increased risk of sudden death) as well as social problems because of the stigma attached to the illness. People with epilepsy and their families may lack social support or experience social isolation, embarrassment, fear and discrimination, and some parents may also feel guilty. Self-management of epilepsy refers to a wide range of health behaviours and activities that a person can learn and adapt to control their seizures and improve their well-being. This approach needs a partnership between the person and the providers of services (e.g. specialist epilepsy outpatient clinics, nurse-based liaison services between family doctors and specialist hospital doctors, specialist epilepsy community teams), as well as targeted services for specific groups (e.g. children, teenagers and families).

Study characteristics

We searched scientific databases for studies in children and adolescents with epilepsy that looked at the effects of self-management of epilepsy. The results are current to September 2016. We wanted to look at several outcomes to see how well people and their families generally cope with epilepsy.

Key results

This review compared six education- or counselling-based self-management interventions for children with epilepsy. Four interventions were aimed at children and their parents; one was aimed at teenagers and their parents; and one was aimed at children, adolescents and their parents. Each of the interventions appeared to improve some of the outcomes studied, but no intervention improved all of the outcomes that were measured. The studies also had problems with their methods, which makes their results less reliable. While none of the interventions caused any harm, their impact was limited, and we cannot recommend any single intervention as being the best one for children with epilepsy.

Evidence for the best ways to care for children with epilepsy is still unclear.

Quality of the evidence

The quality of the evidence is poor because all of the studies had major problems in how they were run.

 

via Care delivery and self-management strategies for children with epilepsy – Fleeman – 2018 – The Cochrane Library – Wiley Online Library

, , , , , , , ,

Leave a comment

[WEB SITE] Epilepsy in children: tips on letting your child be independent with epilepsy

epilepsy in childrenLetting your child have the right amount of freedom can be difficult for any parent, but when you throw the unpredictability of epilepsy into the mix, things can get really challenging!

Despite this, becoming more independent is a crucial part of growing up for any child. It is important that you are not overly controlling with your child so that, in time, they can become good decision-makers in their own right and will be able to manage their epilepsy themselves.

In this blog post, we give you some helpful tips on letting your child be independent in spite of their epilepsy

Learn as much as you can about epilepsy

Firstly, to encourage and support your child in their epilepsy journey, you must learn as much as you can about the condition. Then you can discuss epilepsy openly and honestly with your child, and establish where boundaries need to be set.

Don’t let your child’s epilepsy define them

However, it’s important not to let your child’s epilepsy define them. Try not to think of your child as sick or fragile because of their condition – hopefully you will soon reach the stage where their epilepsy is manageable.

Your child’s achievements in life and their general well-being are far more important than their epilepsy, and it is important to remember this when deciding what they can and can’t do.

child on a bicycleDon’t rule out independent sports or activities

You might think that certain sports and activities such as cycling or swimming are off limits to your child living with epilepsy. However, it’s always worth consulting your child’s doctor or paediatrician before ruling them out completely – sports can be a great opportunity for your child to gain independence and to make friends.

While some activities may have to be limited (particularly when seizures are unpredictable), it’s important for your child to have as many of the same opportunities as their peers as possible.

Technology

Thankfully, technology is available that can make day-to-day living much easier. There are now products thatcan really help to settle your mind about your child’s safety, and allow them to gain the independence they need.

For example, seizure alarms make it possible to always know when your child has a seizure and be able to react accordingly even if you aren’t with them.

Another great solution is the anti-suffocation pillow. These ensure that, if your child has a seizure in the night, they will still be able to breathe. This allows you to be at ease, and your child to have more independence.

If you are a parent of a child living with epilepsy, why not let other parents know any tips or advice that you have in the comments below…

 

via Epilepsy in children: tips on letting your child be independent with epilepsy | telmenow.com

, , , ,

Leave a comment

%d bloggers like this: