Posts Tagged Chronic disease

[WEB SITE] Monthly cycles of brain activity linked to seizures in patients with epilepsy

January 8, 2018
UC San Francisco neurologists have discovered monthly cycles of brain activity linked to seizures in patients with epilepsy. The finding, published online January 8 in Nature Communications, suggests it may soon be possible for clinicians to identify when patients are at highest risk for seizures, allowing patients to plan around these brief but potentially dangerous events.

“One of the most disabling aspects of having epilepsy is the seeming randomness of seizures,” said study senior author Vikram Rao, MD, PhD, an assistant professor of neurology at UCSF and member of the UCSF Weill Institute for Neurosciences. “If your neurologist can’t tell you if your next seizure is a minute from now or a year from now, you live your life in a state of constant uncertainty, like walking on eggshells. The exciting thing here is that we may soon be able to empower patients by letting them know when they are at high risk and when they can worry less.”

Epilepsy is a chronic disease characterized by recurrent seizures — brief storms of electrical activity in the brain that can cause convulsions, hallucinations, or loss of consciousness. Epilepsy researchers around the world have been working for decades to identify patterns of electrical activity in the brain that signal an oncoming seizure, but with limited success. In part, Rao says, this is because technology has limited the field to recording brain activity for days to weeks at most, and in artificial inpatient settings.

At UCSF Rao has pioneered the use of an implanted brain stimulation device that can quickly halt seizures by precisely stimulating a patient’s brain as a seizure begins. This device, called the NeuroPace RNS® System, has also made it possible for Rao’s team to record seizure-related brain activity for many months or even years in patients as they go about their normal lives. Using this data, the researchers have begun to show that seizures are less random than they appear. They have identified patterns of electrical discharges in the brain that they term “brain irritability” that are associated with higher likelihood of having a seizure.

Related Stories

  • Adequate intake of choline during pregnancy could provide cognitive benefits for offspring
  • Powerful imaging technique sheds light on how the brain responds to vascular injury
  • Callous-unemotional traits linked to brain structure differences in boys, not girls

The new study, based on recordings from the brains of 37 patients fitted with NeuroPace implants, confirmed previous clinical and research observations of daily cycles in patients’ seizure risk, explaining why many patients tend to experience seizures at the same time of day. But the study also revealed that brain irritability rises and falls in much longer cycles lasting weeks or even months, and that seizures are more likely to occur during the rising phase of these longer cycles, just before the peak. The lengths of these long cycles differ from person to person but are highly stable over many years in individual patients, the researchers found.

The researchers show in the paper that when the highest-risk parts of a patient’s daily and long-term cycles of brain irritability overlap, seizures are nearly seven times more likely to occur than when the two cycles are mismatched.

Rao’s team is now using this data to develop a new approach to forecasting patients’ seizure risk, which could allow patients to avoid potentially dangerous activities such as swimming or driving when their seizure risk is highest, and to potentially take steps (such as additional medication doses) to reduce their seizure risk, similar to how people with asthma know to take extra care to bring their inhalers when pollen levels are high.

“I like to compare it to a weather forecast,” Rao said. “In the past, the field has focused on predicting the exact moment a seizure will occur, which is like predicting when lightning will strike. That’s pretty hard. It may be more useful to be able tell people there is a 5 percent chance of a thunderstorm this week, but a 90 percent chance next week. That kind of information lets you prepare.”

Source:
https://www.ucsf.edu/

via Monthly cycles of brain activity linked to seizures in patients with epilepsy

, , , , , , , , , , , ,

Leave a comment

[ARTICLE] Gym-based exercise was more costly compared with home-based exercise with telephone support when used as maintenance programs for adults with chronic health conditions: cost-effectiveness analysis of a randomised trial – Full Text

Abstract

Question

What is the comparative cost-effectiveness of a gym-based maintenance exercise program versus a home-based maintenance program with telephone support for adults with chronic health conditions who have previously completed a short-term, supervised group exercise program?

Design

A randomised, controlled trial with blinded outcome assessment at baseline and at 3, 6, 9 and 12 months. The economic evaluation took the form of a trial-based, comparative, incremental cost-utility analysis undertaken from a societal perspective with a 12-month time horizon.

Participants

People with chronic health conditions who had completed a 6-week exercise program at a community health service.

Interventions

One group of participants received a gym-based exercise program and health coaching for 12 months. The other group received a home-based exercise program and health coaching for 12 months with telephone follow-up for the first 10 weeks.

Outcome measures

Healthcare costs were collected from government databases and participant self-report, productivity costs from self-report, and health utility was measured using the European Quality of Life Instrument (EQ-5D-3L).

Results

Of the 105 participants included in this trial, 100 provided sufficient cost and utility measurements to enable inclusion in the economic analyses. Gym-based follow-up would cost an additional AUD491,572 from a societal perspective to gain 1 quality-adjusted life year or 1 year gained in perfect health compared with the home-based approach. There was considerable uncertainty in this finding, in that there was a 37% probability that the home-based approach was both less costly and more effective than the gym-based approach.

Conclusion

The gym-based approach was more costly than the home-based maintenance intervention with telephone support. The uncertainty of these findings suggests that if either intervention is already established in a community setting, then the other intervention is unlikely to replace it efficiently.

Introduction

Chronic conditions that are related to physical inactivity, such as coronary heart disease, type II diabetes and stroke, are estimated to result in direct healthcare costs of over AUD377 million per year in Australia.1 ;  2 Implementing strategies to increase physical activity in adults with chronic health conditions may be an effective way of reducing the economic impact in Australia. Short-term (ie, 4 to 6 week) supervised interventions, such as cardiac and pulmonary phase II rehabilitation programs, have been shown to be effective in improving quality of life and reducing morbidity and healthcare costs.3 ;  4However, there is evidence to suggest that once the program is completed, adherence to exercise declines along with the health benefits obtained.5 Hence, there is a need to provide interventions to promote long-term exercise adherence after the completion of a short-term exercise program.

A recent review of this field identified two commonly investigated approaches to improve ongoing exercise adherence for adults with chronic health conditions: home-based exercise programs with telephone follow-up, and gym-based exercise programs.6 That review and meta-analysis found no difference in exercise adherence rates between these interventions. Furthermore, it identified no economic evaluations examining the comparative efficiency of the two approaches.

There is an ongoing need to identify efficient means of promoting adherence to exercise in the long term, in order to improve the quality of life of adults with chronic health conditions. The aim of the current study was to examine the economic efficiency of home-based maintenance with telephone follow-up compared with gym-based maintenance exercise amongst adults with a variety of chronic conditions who had completed a short-term supervised exercise program led by a health professional.

Therefore, the study question for this economic analysis of that randomised trial was:

What is the comparative cost-effectiveness of a gym-based maintenance exercise program versus a home-based maintenance program with telephone support for adults with chronic health conditions who have previously completed a short-term, supervised group exercise program?

[…]

Continue —> Gym-based exercise was more costly compared with home-based exercise with telephone support when used as maintenance programs for adults with chronic health conditions: cost-effectiveness analysis of a randomised trial

, , , , ,

Leave a comment

%d bloggers like this: