Posts Tagged chronic

[Abstract] Electrically Assisted Movement Therapy in Chronic Stroke Patients With Severe Upper Limb Paresis: A Pilot, Single-Blind, Randomized Crossover Study

 

Abstract

Objective

To evaluate the effects of electrically assisted movement therapy (EAMT) in which patients use functional electrical stimulation, modulated by a custom device controlled through the patient’s unaffected hand, to produce or assist task-specific upper limb movements, which enables them to engage in intensive goal-oriented training.

Design

Randomized, crossover, assessor-blinded, 5-week trial with follow-up at 18 weeks.

Setting

Rehabilitation university hospital.

Participants

Patients with chronic, severe stroke (N=11; mean age, 47.9y) more than 6 months poststroke (mean time since event, 46.3mo).

Interventions

Both EAMT and the control intervention (dose-matched, goal-oriented standard care) consisted of 10 sessions of 90 minutes per day, 5 sessions per week, for 2 weeks. After the first 10 sessions, group allocation was crossed over, and patients received a 1-week therapy break before receiving the new treatment.

Main Outcome Measures

Fugl-Meyer Motor Assessment for the Upper Extremity, Wolf Motor Function Test, spasticity, and 28-item Motor Activity Log.

Results

Forty-four individuals were recruited, of whom 11 were eligible and participated. Five patients received the experimental treatment before standard care, and 6 received standard care before the experimental treatment. EAMT produced higher improvements in the Fugl-Meyer scale than standard care (P<.05). Median improvements were 6.5 Fugl-Meyer points and 1 Fugl-Meyer point after the experimental treatment and standard care, respectively. The improvement was also significant in subjective reports of quality of movement and amount of use of the affected limb during activities of daily living (P<.05).

Conclusions

EAMT produces a clinically important impairment reduction in stroke patients with chronic, severe upper limb paresis.

Source: Electrically Assisted Movement Therapy in Chronic Stroke Patients With Severe Upper Limb Paresis: A Pilot, Single-Blind, Randomized Crossover Study – Archives of Physical Medicine and Rehabilitation

, , , , , , ,

Leave a comment

[Abstract] Effects of Virtual Reality Training using Xbox Kinect on Motor Function in Stroke Survivors: A Preliminary Study

Background

Although the Kinect gaming system (Microsoft Corp, Redmond, WA) has been shown to be of therapeutic benefit in rehabilitation, the applicability of Kinect-based virtual reality (VR) training to improve motor function following a stroke has not been investigated. This study aimed to investigate the effects of VR training, using the Xbox Kinect-based game system, on the motor recovery of patients with chronic hemiplegic stroke.

Methods

This was a randomized controlled trial. Twenty patients with hemiplegic stroke were randomly assigned to either the intervention group or the control group. Participants in the intervention group (n = 10) received 30 minutes of conventional physical therapy plus 30 minutes of VR training using Xbox Kinect-based games, and those in the control group (n = 10) received 30 minutes of conventional physical therapy only. All interventions consisted of daily sessions for a 6-week period. All measurements using Fugl–Meyer Assessment (FMA-LE), the Berg Balance Scale (BBS), the Timed Up and Go test (TUG), and the 10-meter Walk Test (10mWT) were performed at baseline and at the end of the 6 weeks.

Results

The scores on the FMA-LE, BBS, TUG, and 10mWT improved significantly from baseline to post intervention in both the intervention and the control groups after training. The pre-to-post difference scores on BBS, TUG, and 10mWT for the intervention group were significantly more improved than those for the control group (P <.05).

Conclusions

Evidence from the present study supports the use of additional VR training with the Xbox Kinect gaming system as an effective therapeutic approach for improving motor function during stroke rehabilitation.

Source: Effects of Virtual Reality Training using Xbox Kinect on Motor Function in Stroke Survivors: A Preliminary Study – Journal of Stroke and Cerebrovascular Diseases

, , , , ,

Leave a comment

[ARTICLE] Video Game Rehabilitation for Outpatient Stroke (VIGoROUS): protocol for a multi-center comparative effectiveness trial of in-home gamified constraint-induced movement therapy for rehabilitation of chronic upper extremity hemiparesis – Full Text

 

Abstract

Background

Constraint-Induced Movement therapy (CI therapy) is shown to reduce disability, increase use of the more affected arm/hand, and promote brain plasticity for individuals with upper extremity hemiparesis post-stroke. Randomized controlled trials consistently demonstrate that CI therapy is superior to other rehabilitation paradigms, yet it is available to only a small minority of the estimated 1.2 million chronic stroke survivors with upper extremity disability. The current study aims to establish the comparative effectiveness of a novel, patient-centered approach to rehabilitation utilizing newly developed, inexpensive, and commercially available gaming technology to disseminate CI therapy to underserved individuals. Video game delivery of CI therapy will be compared against traditional clinic-based CI therapy and standard upper extremity rehabilitation. Additionally, individual factors that differentially influence response to one treatment versus another will be examined.

Methods

This protocol outlines a multi-site, randomized controlled trial with parallel group design. Two hundred twenty four adults with chronic hemiparesis post-stroke will be recruited at four sites. Participants are randomized to one of four study groups: (1) traditional clinic-based CI therapy, (2) therapist-as-consultant video game CI therapy, (3) therapist-as-consultant video game CI therapy with additional therapist contact via telerehabilitation/video consultation, and (4) standard upper extremity rehabilitation. After 6-month follow-up, individuals assigned to the standard upper extremity rehabilitation condition crossover to stand-alone video game CI therapy preceded by a therapist consultation. All interventions are delivered over a period of three weeks. Primary outcome measures include motor improvement as measured by the Wolf Motor Function Test (WMFT), quality of arm use for daily activities as measured by Motor Activity Log (MAL), and quality of life as measured by the Quality of Life in Neurological Disorders (NeuroQOL).

Discussion

This multi-site RCT is designed to determine comparative effectiveness of in-home technology-based delivery of CI therapy versus standard upper extremity rehabilitation and in-clinic CI therapy. The study design also enables evaluation of the effect of therapist contact time on treatment outcomes within a therapist-as-consultant model of gaming and technology-based rehabilitation.

Background

Clinical practice guidelines recommend outpatient rehabilitation for stroke survivors who remain disabled after discharge from inpatient rehabilitation [1]. Although these guidelines recommend that the majority of stroke survivors receive at least some outpatient rehabilitation [2], many cannot access long-term care [3]. Among those individuals who do undergo outpatient rehabilitation, the standard of care for upper extremity rehabilitation is suboptimal.

In an observational study of 312 rehabilitation sessions (83 occupational and physical therapists at 7 rehabilitation sites), Lang and colleagues [4] found that functional rehabilitation (i.e., movement that accomplishes a functional task, such as eating, as opposed to strength training or passive movement) was provided in only 51% of the sessions of upper extremity rehabilitation, with only 45 repetitions per session on average. This is concerning given that empirically-validated interventions incorporate higher doses of active motor practice [5, 6, 7]. Additionally, functional upper extremity movements are most likely to generalize to everyday tasks [8], an aspect of recovery that is critically important to patients and their families [9, 10, 11]. Yet, passive movement and non-goal-directed exercise are more frequently administered [4].

There appear to be at least two critical elements required for successful upper extremity motor rehabilitation: 1) motor practice that is sufficiently intense and 2) techniques to carryover motor improvements to functional activities. Carry-over techniques to increase a person’s use of the more affected upper extremity for daily activities are extremely important for rehabilitation and appear necessary for structural brain change [12, 13, 14, 15]. When rehabilitation incorporates these techniques, there is substantially improved improvement in self-perceived quality of arm use for daily activities [12, 16]. Carry-over techniques enable the patient to overcome the conditioned suppression of movement (learned nonuse) characteristic of chronic hemiparesis [17]. Techniques include structured self-monitoring, a treatment contract, daily home practice of specific functional motor skills, and guided problem-solving to overcome perceived barriers to using the extremity [18].

Constraint-Induced Movement therapy (CI therapy) has strong empirical backing [5, 19] and combines high-repetition functional practice of the more affected arm with behavioral techniques to enhance carry-over [13, 18]. CI therapy produces consistently superior motor performance and retention of gains versus standard upper extremity rehabilitation [20, 21], particularly when it includes the critically important carry-over (transfer package) techniques [12]. When compared to other equally intensive interventions (i.e., equal hours of training on functional tasks), CI therapy with carry-over (transfer package) techniques has also shown enhanced carry-over of clinical gains to daily activities [12, 13, 22, 23, 24] that are retained for at least 2 years [19, 25, 26, 27, 28].

Despite its inclusion in best practice recommendations [29, 30], CI therapy is available to only a very small minority of those who could benefit from it in the US. CI therapy is not typically covered by insurance and the 30+ hours of assessment and physical training cost upwards of $6000. Access barriers for the patient include limited transportation and insurance coverage, whereas therapists may have difficulty accommodating the CI therapy schedule [31, 32]. Access barriers aside, CI therapy has also been plagued by a variety of misconceptions regarding use of restraint and the transfer package. Most iterations of CI therapy employ use of a restraint mitt to promote use of the affected arm, which is viewed by many patients and clinicians as excessively prohibitive [32]. Yet, literature demonstrates that restraint is not specifically required to achieve positive outcomes [33, 34]. Moreover, the transfer package, a component found to be critical [13, 14], is omitted from the majority of research studies on CI therapy [35].

To address transportation barriers, a telerehabilitation model of CI therapy delivery (AutoCITE) has been tested. AutoCITE is a large specialized motor apparatus (not commercially available, cost not established) that was installed in patients’ homes to enable therapeutic manipulation of actual objects with continuous video monitoring via Internet. This telerehabilitation approach demonstrated efficacy approximately equivalent to that of in-clinic CI therapy [36, 37, 38], thus establishing the feasibility of utilizing technology to deliver CI therapy remotely. However, this system involved specialized equipment at a high cost and did not become available outside a research setting.

To more fully address the barriers to accessing CI therapy and to counter the misconceptions surrounding CI therapy, a patient-centered treatment approach was developed that incorporated the high-repetition practice and carry-over strategies from CI therapy, while reforming non-patient-centric elements of the protocol that lack strong empirical support (i.e., the restraint). To deliver engaging high-repetition practice, a Kinect-based video game was created that can accommodate a wide range of motor disability, can be customized to each user, and automatically progresses in difficulty as the individual’s performance improves (termed “shaping” in the CI therapy literature). A player’s body movements drive game play (there is no external controller), which makes the game easy to use for those who may be unfamiliar with technology. To date, such high-repetition practice through motor gaming [39] has shown initial promise compared to traditional clinic-based approaches [40]. To promote increased use of the weaker arm, a smart watch biofeedback application is utilized in lieu of the restraint mitt. This application counts movements made with the weaker arm and provides alerts when a period of inactivity is detected. Previous approaches for providing CI therapy in the home and reducing the amount of therapist effort have been carried out [36, 37, 38, 41]. These approaches automated the delivery of training and permitted remote supervision of the training via an Internet-based audio-visual link, but did not embed the training within the context of a video game, rely on manipulation of virtual objects, or incorporate a patient-centric substitute for the mitt.

Initial evidence from a pilot trial of this system (Borstad A, Crawfis R, Phillips K, Pax Lowes L, Worthen-Chaudhari L, Maung D, et al.: In-home delivery of constraint induced movement therapy via virtual reality gaming is safe and feasible: a pilot study, submitted) suggests that improvements in motor speed, as measured by Wolf Motor Function Test (WMFT) performance time [42], an outcome of prime importance to stroke survivors, are approximately equivalent to those reported in the traditional CI therapy literature [5, 13, 19, 25]. Qualitative data reveal that the technology is accepted irrespective of age, technological expertise, ethnicity, or cultural background. Thus, this technology has the potential to address the main barriers to adoption of CI therapy, while reducing the cost of care. A randomized clinical trial is now required to provide Level 1 evidence of the comparative effectiveness of this novel model of CI therapy delivery. Data from this trial will enable individuals with motor disability to evaluate whether a home-based video game therapy has the potential to help them meet their rehabilitation goals compared to in-clinic CI therapy and traditional approaches. By combining novel gaming elements with the transfer package from CI therapy, this trial will also address a major limitation of rehabilitation gaming interventions that have been tried to date: extremely limited emphasis on carry-over of training to daily activities.

The primary objective of this trial is to compare the effectiveness of two video game-based models of CI therapy versus traditional clinic-based CI therapy versus standard upper extremity rehabilitation for improving upper extremity motor function. One video gaming group will match the number of total hours spent on the CI therapy transfer package, but will involve fewer days of therapist-client interaction (4 versus 10); the other will match the number of interactions with a therapist to that of clinic-based CI therapy using video consultation between in-person sessions and, as such, will involve more therapist contact hours spent focusing on the transfer package. The secondary objective of this project is to promote personalized medicine by examining individual factors that may differentially influence response to one treatment versus another.

Continue —>  Video Game Rehabilitation for Outpatient Stroke (VIGoROUS): protocol for a multi-center comparative effectiveness trial of in-home gamified constraint-induced movement therapy for rehabilitation of chronic upper extremity hemiparesis | BMC Neurology | Full Text

Fig. 1 Screen capture of the Recovery Rapids gaming environment

, , , , , , , , , , ,

Leave a comment

[ARTICLE] Immediate effects of ankle eversion taping on dynamic and static balance of chronic stroke patients with foot drop – Full Text PDF

Abstract

[Purpose] This study evaluates the immediate effect of ankle eversion taping on dynamic and static balance of chronic stroke patients with foot drop.

[Subjects and Methods] This study was conducted with nine subjects who were diagnosed with stroke. A cross-over randomized design was used. Each subject performed three interventions in a random order. Subjects were randomly assigned to an ankle everion taping, placebo taping, and no
taping. For dynamic and static balance, ability was measured using BIO Rescue. Limit of stability, sway length and sway speed for one minute were measured. [Results] The Limit of Stability, Sway length and Sway speed differed significantly among the three different taping methods.

[Conclusion] We conclude that ankle eversion taping that uses kinesiology tape instantly increases the dynamic and static balance ability of chronic stroke patients with foot drop.

INTRODUCTION
Generally, stroke patients have severe disabilities such as hemiplegia, abnormal walking, and reduced balance ability. In particular, the decrease of balance ability causes a lot of difficulty in performing activities of daily living, and in severe cases, stroke patients may be exposed to the risk of falling2) . Therefore, restoration of balance ability is one of the most important clinical goals in the rehabilitation of stroke patients3) . Generally, lack of balance ability is caused by various causes, such as spasticity4) , muscle strength weakness4) , and hemiplegia5) , but foot drop, which is caused by stiffness of plantar flexors, weakness of dorsiflexors, and increased spasticity, is one of the most important causes6) . Therefore, foot drop treatment is often a common approach used to restore balance ability clinically, and the most representative treatments are the Functional Electrical Stimulation (FES) and Ankle Foot Orthosis (AFO)7).  Recently, a robotic device8) is used to correct foot drop in some cases, but the three treatment methods mentioned above (FES, AFO, and a robotic device) are expensive, inconvenient to carry, and not aesthetically good in appearance.

To overcome these drawbacks, taping that is easily applicable and inexpensive is widely used as an alternative treatment method. The purpose of this study was to evaluate the immediate effects of application of ankle eversion taping using kinesiology tapes on the dynamic and static balance of patients with foot drop after stroke. […]

Full Text PDF

, , , ,

Leave a comment

[ARTICLE] Interindividual differences in motor network connectivity and behavioral response to iTBS in stroke patients – Full Text

Highlights

Multimodal assessment of motor system integrity for predicting iTBS-aftereffects

Effective connectivity of M1 predicts behavioral iTBS-aftereffects

No association between iTBS-aftereffects and BOLD activity or RMT/AMT/SICI

Effects of brain stimulation strongly influenced by connectivity of stimulated region

Abstract

Cerebral plasticity-inducing approaches like repetitive transcranial magnetic stimulation (rTMS) are of high interest in situations where reorganization of neural networks can be observed, e.g., after stroke. However, an increasing number of studies suggest that improvements in motor performance of the stroke-affected hand following modulation of primary motor cortex (M1) excitability by rTMS shows a high interindividual variability. We here tested the hypothesis that in stroke patients the interindividual variability of behavioral response to excitatory rTMS is related to interindividual differences in network connectivity of the stimulated region. Chronic stroke patients (n = 14) and healthy controls (n = 12) were scanned with functional magnetic resonance imaging (fMRI) while performing a simple hand motor task. Dynamic causal modeling (DCM) was used to investigate effective connectivity of key motor regions. On two different days after the fMRI experiment, patients received either intermittent theta-burst stimulation (iTBS) over ipsilesional M1 or control stimulation over the parieto-occipital cortex. Motor performance and TMS parameters of cortical excitability were measured before and after iTBS. Our results revealed that patients with better motor performance of the affected hand showed stronger endogenous coupling from supplemental motor area (SMA) onto M1 before starting the iTBS intervention. Applying iTBS to ipsilesional M1 significantly increased ipsilesional M1 excitability and decreased contralesional M1 excitability as compared to control stimulation. Individual behavioral improvements following iTBS specifically correlated with neural coupling strengths in the stimulated hemisphere prior to stimulation, especially for connections targeting the stimulated M1. Combining endogenous connectivity and behavioral parameters explained 82% of the variance in hand motor performance observed after iTBS. In conclusion, the data suggest that the individual susceptibility to iTBS after stroke is influenced by interindividual differences in motor network connectivity of the lesioned hemisphere.

1. Introduction

Recovery of function after stroke is driven by reorganization of neural networks in both the lesioned and unaffected hemispheres (Cramer, 2008). However, spontaneous recovery after stroke often remains incomplete (Kolominsky-Rabas et al., 2006). One strategy to improve the functional outcome of patients suffering from brain lesions is to modulate cerebral plasticity by means of non-invasive brain stimulation such as, e.g., repetitive transcranial magnetic stimulation (rTMS) (Ridding and Rothwell, 2007). Although to date a direct proof is missing, increasing evidence exist that rTMS-effects are mediated by changes in synaptic transmission (Funke and Benali, 2011 ;  Hoogendam et al., 2010). One specific strategy to ameliorate motor impairments in stroke patients is to enhance cortical excitability of the motor cortex in the lesioned hemisphere (Khedr et al., 2005). An effective protocol of rTMS to induce such increase in excitability of the motor cortex following a relatively short (i.e., 3.5 min) stimulation period is intermittent theta-burst stimulation (iTBS) (Huang et al., 2005).

Consequently, proof-of-principle studies have been able to demonstrate that iTBS applied to ipsilesional M1 improve hand motor function in stroke patients (Ackerley et al., 2010Hsu et al., 2012 ;  Talelli et al., 2007b). A major issue, however, with rTMS (including iTBS) induced cerebral plasticity is high inter-individual variability of the effects induced in both healthy subjects (Daskalakis et al., 2006Hamada et al., 2013 ;  Muller-Dahlhaus et al., 2008) and stroke patients (Ameli et al., 2009 ;  Grefkes and Fink, 2012). For example, Hamada et al. (2013) demonstrated that application of iTBS in healthy subjects leads to an increase of motor-cortical excitability in only 52% subjects, while the other half responded in an opposite way with a decrease of excitability. Likewise, Ameli et al. (2009) reported that in patients suffering from cortical strokes, only half of them showed behavioral improvements after 10 Hz rTMS while the other half even deteriorated with their stroke affected hands. Such opposed stimulation after-effects are likely to contribute to absent overall effects across the entire group (Hamada et al., 2013).

Apart from known sources of response variability following iTBS like age (Freitas et al., 2011), genetic polymorphisms of the brain-derived neurotrophic factor (Cheeran et al., 2008 ;  Kleim et al., 2006) and technical aspects such as the direction of current flow, the intensity of stimulation and the number of pulses applied (Gamboa et al., 2010Gentner et al., 2008 ;  Talelli et al., 2007a), clinical factors like lesion location, degree of neurological impairment and time since stroke are also likely to impact on the response to rTMS (Grefkes and Fink, 2012). For example, several studies demonstrated that patients with subcortical lesions have a higher probability to improve after rTMS than patients with cortical lesions (Ameli et al., 2009 ;  Hsu et al., 2012). Moreover, the pathomechanisms underlying stroke-induced motor deficits do not only depend on direct tissue damage due to ischemia, but might also comprise network disturbances remote from the stroke lesion (Grefkes and Fink, 2011 ;  Grefkes and Fink, 2014). Thus, changes in network interactions are likely to constitute another important factor for the evolution of rTMS-aftereffects as TMS does not only interfere with neural tissue of the stimulated hemisphere but also with neural activity levels of regions that are interconnected with the stimulation site (Bestmann et al., 2005).

Hence, there is good reason to assume that specific inter-individual differences (or abnormalities post-stroke) in network connectivity might – at least in part – influence response to rTMS. Support for this hypothesis stems from studies with patients suffering from dystonia in which reduced functional connectivity between premotor cortex and M1 was indicative for responding to rTMS (Huang et al., 2010 ;  Quartarone et al., 2003). Furthermore, changes in motor-evoked potential (MEP) amplitudes following rTMS have been shown to be associated with higher effective connectivity between supplementary motor area (SMA), ventral premotor cortex (vPMC) and M1 of the stimulated hemisphere (Cardenas-Morales et al., 2014).

Therefore, in stroke patients, the variability of the individual response to plasticity-inducing intervention might depend on how the stimulation interacts with the pre-existing connectivity in a given functional network, e.g., the motor system. In order to identify factors that are associated with a positive behavioral effect in response to intermittent theta burst stimulation (here: iTBS) applied to ipsilesional M1, we used a multimodal approach consisting of clinical scales, electrophysiological parameters measured using single- and paired-pulse TMS, as well as functional magnetic resonance imaging (fMRI) and dynamic causal modeling (DCM) to assess effective connectivity of the cortical motor network. We reasoned that the systems level perspective offered by DCM might be useful for identifying predictors that indicate whether or not a patient will respond to non-invasive brain stimulation given that (i) focal brain stimulation also impacts on activity levels of areas connected to the stimulation site (Bestmann et al., 2003 ;  Grefkes et al., 2010) and (ii) recovery of motor function depends on changes in the entire motor network rather than changes in M1 only (Rehme et al., 2012 ;  Ward et al., 2003). Here, especially the coupling strengths between ipsilesional M1 and premotor areas might be indicative for the behavioral after-effect of iTBS given the role of these connections in motor performance in both healthy subjects and stroke (Pool et al., 2013Pool et al., 2014 ;  Rehme et al., 2011a). […]

Continue —>  Interindividual differences in motor network connectivity and behavioral response to iTBS in stroke patients

Fig. 4

Fig. 4. Neural activity when patients and controls moved the affected or unaffected hand. Fist closures were conducted at a fixed movement frequency of 0.8 Hz and at a frequency adjusted to individual performance levels. Compared to controls, patients featured enhanced activity in both hemispheres during movements of the affected hand. Movements of the unaffected hand yielded a similar activation pattern in patients and controls. T-values are represented by the color bar. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

 

 

, , , , , , , ,

Leave a comment

[ARTICLE] Using Xbox kinect motion capture technology to improve clinical rehabilitation outcomes for balance and cardiovascular health in an individual with chronic TBI – Full Text

Abstract

Background

Motion capture virtual reality-based rehabilitation has become more common. However, therapists face challenges to the implementation of virtual reality (VR) in clinical settings. Use of motion capture technology such as the Xbox Kinect may provide a useful rehabilitation tool for the treatment of postural instability and cardiovascular deconditioning in individuals with chronic severe traumatic brain injury (TBI). The primary purpose of this study was to evaluate the effects of a Kinect-based VR intervention using commercially available motion capture games on balance outcomes for an individual with chronic TBI. The secondary purpose was to assess the feasibility of this intervention for eliciting cardiovascular adaptations.

Methods

A single system experimental design (n = 1) was utilized, which included baseline, intervention, and retention phases. Repeated measures were used to evaluate the effects of an 8-week supervised exercise intervention using two Xbox One Kinect games. Balance was characterized using the dynamic gait index (DGI), functional reach test (FRT), and Limits of Stability (LOS) test on the NeuroCom Balance Master. The LOS assesses end-point excursion (EPE), maximal excursion (MXE), and directional control (DCL) during weight-shifting tasks. Cardiovascular and activity measures were characterized by heart rate at the end of exercise (HRe), total gameplay time (TAT), and time spent in a therapeutic heart rate (TTR) during the Kinect intervention. Chi-square and ANOVA testing were used to analyze the data.

Results

Dynamic balance, characterized by the DGI, increased during the intervention phase χ 2 (1, N = 12) = 12, p = .001. Static balance, characterized by the FRT showed no significant changes. The EPE increased during the intervention phase in the backward direction χ 2 (1, N = 12) = 5.6, p = .02, and notable improvements of DCL were demonstrated in all directions. HRe (F (2,174) = 29.65, p = < .001) and time in a TTR (F (2, 12) = 4.19, p = .04) decreased over the course of the intervention phase.

Conclusions

Use of a supervised Kinect-based program that incorporated commercial games improved dynamic balance for an individual post severe TBI. Additionally, moderate cardiovascular activity was achieved through motion capture gaming. Further studies appear warranted to determine the potential therapeutic utility of commercial VR games in this patient population.

Trial registration

Clinicaltrial.gov ID – NCT02889289

Background

The last two decades demonstrated an exponential trend in the implementation of virtual reality (VR) in clinical settings [1]. Researchers and clinicians alike are enticed by the potential of this technology to enhance neuroplasticity secondary to rehabilitation interventions. Currently, Nintendo Wii, Sony PlayStation, and Microsoft Xbox offer commercially developed semi-immersive VR platforms which are used for rehabilitation [2]. Several studies report positive effects of these commercial technologies for improving balance, coordination and strength [345]. In 2010, Microsoft introduced a novel infrared camera that works on the Xbox platform called Kinect. The Kinect camera replaces hand held remote controls through the use of whole body motion capture technology.

Whole body motion capture VR allows a unique opportunity for individuals to experience a heightened sense of realism during task-specific therapeutic activities. However, clinicians need to be able to match a game’s components to an individual’s functional deficits. Seamon et al. [6] provided a clinical demonstration of how the Kinect platform can be used with Gentiles taxonomy for progressively challenging postural stability and influencing motor learning in a patient with progressive supranuclear palsy. Similarly, Levac et al. [7] developed a clinical framework titled, “Kinecting with Clinicians” (KWiC) to broadly address implementation barriers. The KWiC resource describes mini-games from Kinect Adventures on the Xbox 360 in order to provide a comprehensive document for clinicians to reference. Clinicians can use KWiC to base game selection and play on their client’s goals and the therapist’s plan of care for that individual.

In parallel with knowledge translation research, several studies found postural control improvements in multiple diagnostic groups including individuals with chronic stroke [8910], Friedrich’s Ataxia [11], multiple sclerosis [12], Parkinson’s disease [13], and mild to moderate traumatic brain injury (TBI) [14] when using Kinect based rehabilitation. Additional research shows that exercising with the Kinect system can reach an appropriate intensity for cardiovascular adaptation. For example, Neves et al. [15] and Salonini et al. [16] reported increases in exercise heart rate and blood pressure in healthy individuals and children with cystic fibrosis while playing Kinect games. Similarly, Kafri et al. [17] reported the ability of individuals post-stroke to reach levels of light to moderate intensity using Kinect games.

Individuals with TBI are likely to have a peak aerobic capacity 65–74% to that of healthy control subjects [18]. There is limited research on cardiovascular training after severe TBI [18]. However, Bateman et al. [19] demonstrated that individuals with severe TBI can improve cardiovascular fitness during a 12-week program participants exercised at an intensity equal to 60–80% of their maximum heart rate 3 days per week. Commercial Xbox Kinect games, such as Just Dance 3, have been shown to improve cardiovascular outcomes for individuals with chronic stroke [20]. However, there is a lack of research investigating the efficacy of motion capture VR on cardiovascular health for individuals with chronic severe TBI. Walker et al. [21] makes the recommendation for rehabilitation programs to go beyond independence in basic mobility and to develop treatment strategies to address high-level physical activities. The high rates of sedentary behavior in individuals across all severities of TBI could be attributed the lack of addressing these limitations in activity.

Postural instability is the second most frequent, self-reported limitation, 5 years post injury for individuals with severe TBI [22]. It is unknown whether use of motion capture VR in individuals with severe, chronic TBI can address neuromotor impairments related to high-level activities such as maintaining postural control during walking. Similarly, there is a need to determine if training with VR motion capture can attain necessary intensity levels for inducing cardiovascular adaptation. Due to this knowledge gap and heterogencity of individuals post TBI, feasibility of investigatory interventions should be explored prior to examining effectiveness with randomized control trials. Single system experimental design (SSED) provides a higher level of rigor compared to case studies based on the ability to compare outcomes across phase conditions with the participant acting as their own control. The value of SSED within rehabilitation has been noted by other investigators [2324] making it an attractive design for practitioners aiming to gain insight into novel clinical interventions prior to large scale clinical trials. The purpose of this proof of concept and feasibility study was to evaluate the effectiveness of commercially available Xbox One Kinect games as a treatment modality for the rehabilitation of balance and cardiovascular fitness for a veteran with chronic severe TBI. Additionally, we provide herein a description of the Kinect games to assist providers with clinical implementation. […]

Continue —>  Using Xbox kinect motion capture technology to improve clinical rehabilitation outcomes for balance and cardiovascular health in an individual with chronic TBI | Archives of Physiotherapy | Full Text

 

Fig. 1 Dynamic gait index (DGI) scores across phases with celeration line analyses. Two-standard deviation (2 SD) celeration line was used for chi-square analysis between baseline and intervention phases as no trend present in baseline phase. The celeration line was carried through the retention phase for Chi-square analysis due to presence of upward trend in intervention phase

, , , , , , , ,

Leave a comment

[ARTICLE] Repetitive reaching training combined with transcranial Random Noise Stimulation in stroke survivors with chronic and severe arm paresis is feasible: a pilot, triple-blind, randomised case series – Full Text

Abstract

Background

Therapy that combines repetitive training with non-invasive brain stimulation is a potential avenue to enhance upper limb recovery after stroke. This study aimed to investigate the feasibility of transcranial Random Noise Stimulation (tRNS), timed to coincide with the generation of voluntary motor commands, during reaching training.

Methods

A triple-blind pilot RCT was completed. Four stroke survivors with chronic (6-months to 5-years) and severe arm paresis, not taking any medications that had the potential to alter cortical excitability, and no contraindications to tRNS or MRI were recruited. Participants were randomly allocated to 12 sessions of reaching training over 4-weeks with active or sham tRNS delivered over the lesioned hemisphere motor representation. tRNS was triggered to coincide with a voluntary movement attempt, ceasing after 5-s. At this point, peripheral nerve stimulation enabled full range reaching. To determine feasibility, we considered adverse events, training outcomes, clinical outcomes, corticospinal tract (CST) structural integrity, and reflections on training through in-depth interviews from each individual case.

Results

Two participants received active and two sham tRNS. There were no adverse events. All training sessions were completed, repetitive practice performed and clinically relevant improvements across motor outcomes demonstrated. The amount of improvement varied across individuals and appeared to be independent of group allocation and CST integrity.

Conclusion

Reaching training that includes tRNS timed to coincide with generation of voluntary motor commands is feasible. Clinical improvements were possible even in the most severely affected individuals as evidenced by CST integrity.

Trial registration

This study was registered on the Australian and New Zealand Clinical Trials Registry (ANZCTR) http://www.ANZCTR.org.au/ACTRN12614000952640.aspx. Registration date 4 September 2014, first participant date 9 September 2014

Background

It is estimated that 30% of stroke survivors have severe upper limb impairment [1], whereby the functional capacity of the paretic arm is diminished to the extent that it cannot be moved against gravity [2]. For these individuals, who do not have sufficient movement with which to work, the provision of effective therapy can be challenging. The associated consequences are poor prospects for recovery [3], limited rehabilitation opportunities [4], and ultimately reduced quality of life (QoL) [5]. Yet, if task-oriented practice can be made possible by some means, there exists the potential to promote motor recovery, and in turn make a significant positive impact upon individual QoL and alleviate burden of care. In seeking to achieve levels of task-oriented practice beyond those that are possible through traditional therapy alone, attention has therefore turned to enabling technologies, including “assistive” devices, and adjuvant methods such as peripheral nerve and brain stimulation.

Best evidence syntheses [67] suggest that goal-directed movements can be assisted by minimizing the mechanical degrees of freedom to be controlled, in combination with the augmentation of voluntary muscle activity via peripheral nerve stimulation of target muscles, or the use of mechanical actuators. To encourage positive changes in motor performance, the capacity to increase task difficulty through small, yet incremental progressions and provision of meaningful real-time visual and auditory feedback have also been highlighted [89]. The authors have previously sought to implement these principles, using the Sensorimotor Active Rehabilitation Training of the Arm (SMART Arm) device to promote functional recovery in severely impaired stroke survivors [8910]. It has been shown that 4-weeks (12-h) of community-based training of reaching in people greater than 6-months post stroke improved upper limb function (and increased reaching distance) [8], enhanced the specificity of muscle recruitment (elevated ratio of biceps to triceps activation during reaching) [11], and accentuated corticospinal reactivity (decreased motor evoked potential [MEP] onset latency) [12]. Of particular interest in the context of the current study is the observation that not all individuals achieved functional gains. In these cases, the intrinsic neurobiological reserve of the injured brain may have been insufficient for repetitive training alone to drive recovery of motor function.

A variety of non-invasive brain stimulation (NIBS) techniques are now being used with the aim of altering the excitability of brain networks that have the potential to be engaged during the execution of motor tasks. The most commonly applied NIBS techniques are transcranial-direct current stimulation (tDCS) and repetitive-transcranial magnetic stimulation (rTMS) [13]. In general, the application of these techniques is predicated on the assumption that by altering the state of circuits within (contralateral) primary motor cortex (M1) in a manner that produces sustained increases in the excitability of corticospinal projections to the impaired limb (or by decreasing the excitability of circuits in the M1 ipsilateral to the impaired limb), therapeutic gains will be realised. The fact that these approaches have limited efficacy in severely impaired stroke survivors notwithstanding [14], there exist other forms of therapeutic NIBS that are motivated by a different premise.

It is well established that in some circumstances, the addition of random interference or noise, enhances the detection of weak stimuli, or the information content of a signal (e.g., trains of action potentials) [15]. In light of this phenomenon, it has been proposed that the application of transcranial random noise stimulation (tRNS) may boost the adaptive potential of cortical tissue [16]. The present investigation is motivated by the conjecture that: if the delivery of random noise stimulation is timed to occur simultaneously with the generation of voluntary motor commands, it may serve to amplify functional adaptations invoked by the intrinsic neural activity.

Implemented through a triple-blind pilot randomised control design, the specific aim of this study was to establish the feasibility of delivering tRNS, timed to coincide with the generation of the voluntary motor commands, in the context of reaching movements performed by individuals with chronic and severe upper limb paresis after stroke. Recognising that the response to any therapeutic intervention is constrained by the state of pathways that can convey signals from the brain to the periphery, diffusion-weighted magnetic resonance imaging (DW-MRI) was performed to characterize the structural integrity of the descending corticospinal tract (CST) projections for each participant.

Continue —>  Repetitive reaching training combined with transcranial Random Noise Stimulation in stroke survivors with chronic and severe arm paresis is feasible: a pilot, triple-blind, randomised case series | Journal of NeuroEngineering and Rehabilitation | Full Text

Fig. 1 Representation of the training setup including horizontal reaching track, trunk restraint, visual feedback, transcranial random noise stimulation application, and electrical stimulation application to lateral head of triceps

 

Fig. 2 Corticospinal tract streamline reconstructions: the corticospinal tract is indicated for each of the four participants, displayed on coronal (x view) slices of T1 weighted anatomical scans with direction encoded fractional anisotropy (FA) colour maps superimposed. Images are shown in radiological format (ie. right on the image is the patient’s left side). The reconstructed streamlines for the corticospinal tract are also superimposed, and indicated by red circles. The posterior limb of the internal capsule (PLIC) within the corticospinal tract was the region of interest that was delineated manually for each scan, using anatomical landmarks. No tracts were detected in the PLIC region in the right hemisphere for P03, or the left hemisphere for P04

, , , , , , , , , , ,

Leave a comment

[ARTICLE] The Use of Functional Electrical Stimulation on the Upper Limb and Interscapular Muscles of Patients with Stroke for the Improvement of Reaching Movements: A Feasibility Study

Introduction: Reaching movements in stroke patients are characterized by decreased amplitudes at the shoulder and elbow joints and greater displacements of the trunk, compared to healthy subjects. The importance of an appropriate and specific contraction of the interscapular and upper limb (UL) muscles is crucial to achieving proper reaching movements. Functional electrical stimulation (FES) is used to activate the paretic muscles using short-duration electrical pulses.

Objective: To evaluate whether the application of FES in the UL and interscapular muscles of stroke patients with motor impairments of the UL modifies patients’ reaching patterns, measured using instrumental movement analysis systems.

Design: A cross-sectional study was carried out.

Setting: The VICON Motion System® was used to conduct motion analysis.

Participants: Twenty-one patients with chronic stroke.

Intervention: The Compex® electric stimulator was used to provide muscle stimulation during two conditions: a placebo condition and a FES condition.

Main outcome measures: We analyzed the joint kinematics (trunk, shoulder, and elbow) from the starting position until the affected hand reached the glass.

Results: Participants receiving FES carried out the movement with less trunk flexion, while shoulder flexion elbow extension was increased, compared to placebo conditions.

Conclusion: The application of FES to the UL and interscapular muscles of stroke patients with motor impairment of the UL has improved reaching movements.

Introduction

Reaching movements in stroke patients are characterized by decreased amplitudes at the shoulder and elbow joints compared to healthy subjects (16). The movement pattern of patients with stroke is highly related to their level of motor function impairment, which becomes modified due to the lack of inter-articular coordination (1). There is a decrease in the range of motion at the elbow joint with a tendency toward flexion, which avoids correct extension of the upper limb (UL), hampering the ability to perform appropriate reaching movements. Excessive shoulder abduction is also observed as a compensatory movement when there is a lack of appropriate shoulder flexion (7).

In the case of the trunk, greater trunk displacements have been observed in patients with stroke, forward displacements, and torsion movements, which are related to deficits in elbow extension, and shoulder flexion and adduction, as compensatory mechanisms that occur during reaching movements or other activity. Patients are able to develop new motor strategies to achieve their goal despite UL deficits (17). There is a greater involvement of the trunk and scapula during the execution of reaching movements due to the creation of new movement strategies to compensate for the deficiencies (8).

The scientific literature has shown that stroke patients need to create new movement strategies. This involves the development of pathological synergies to carry out the desired movements. An example of this is the excessive movements of the trunk and scapula to compensate the deficiencies resulting from the pathology (7). Proper activation of the interscapular muscles depends on the position of the trunk. Stroke patients, due to the deficits affecting their trunk and scapular movement patterns, are under unfavorable conditions for being able to perform appropriate and selective activation of these muscles, which has a negative impact on the movement of the UL (911).

Regarding the UL muscles involved in reaching movements, a deficit in muscle control and activation has been observed (51213). The synergistic contraction of the shoulder flexor and extensor muscles during reach becomes deteriorated due to muscle weakness and; therefore, the resulting movement is deficient (14). Furthermore, spastic muscle patterns may also prevent the correct performance of UL movements (1518).

Functional electrical stimulation (FES) is a form of treatment that seeks to activate the paretic muscles using short-duration electrical pulses applied via surface electrodes through the skin (19). The use of FES and neuroprostheses has spanned almost four decades (2021). The use of FES as a neuroprosthesis consists of self-treatment at home by means of a neuroprosthetic neuromuscular stimulation system. The objective of this modality is to assist the performance of an activity of daily living (ADL) (22). Recently, functional and clinical improvements have been reported with the therapeutic application of FES, in which stimulation was used to increase voluntary movement after stroke (2223). Therapeutic FES modalities have been used to recruit UL muscles, improving weakness, the dyscoordination of single and multiple joints movements, and spasticity (24).

Most studies employing therapeutic FES for paretic UL rehabilitation are based on stimulation of the shoulder, elbow, and wrist muscles without recruitment of the interscapular muscles (2528). The importance of an appropriate and specific contraction of the interscapular musculature during UL movement is necessary to adapt the position of the scapulothoracic joint to the degree of movement of the glenohumeral joint. This musculature has a stabilizing function upon the entire glenohumeral complex, which is necessary for a correct reaching movement (2931). In healthy subjects, the posture of the trunk has been shown to influence changes in scapular movement and interscapular muscle activity during UL elevation (2932). The motor control of shoulder movement influences the correct and proper activation and synchronization of these muscles (33).

In this study, we tested the ability of a FES system to assist the UL movement of stroke patients based on the stimulation of interscapular, shoulder, elbow, wrist, and finger muscles. To our knowledge, no empirical study to date directly addresses this question. The authors hypothesized that participants receiving FES to the UL and interscapular muscles would be able to perform the movement with less trunk anteroposterior tilt and major shoulder flexion and elbow extension. The aim of this feasibility study was to evaluate whether the application of FES to the UL and interscapular muscles of stroke patients with UL motor impairment would be able to modify their reaching patterns, measured using instrumental movement analysis systems.[…]

Continue —> Frontiers | The Use of Functional Electrical Stimulation on the Upper Limb and Interscapular Muscles of Patients with Stroke for the Improvement of Reaching Movements: A Feasibility Study | Neurology

Figure 1. Patient with the functional electrical stimulation device.

, , , , , , , , , , , ,

Leave a comment

[Abstract] Hand strengthening exercises in chronic stroke patients: Dose-response evaluation using electromyography

Abstract

Study Design

Cross-sectional.

Purpose of the Study

This study evaluates finger flexion and extension strengthening exercises using elastic resistance in chronic stroke patients.

Methods

Eighteen stroke patients (mean age: 56.8 ± 7.6 years) with hemiparesis performed 3 consecutive repetitions of finger flexion and extension, using 3 different elastic resistance levels (easy, moderate, and hard). Surface electromyography was recorded from the flexor digitorum superficialis (FDS) and extensor digitorum (ED) muscles and normalized to the maximal electromyography of the non-paretic arm.

Results

Maximal grip strength was 39.2 (standard deviation: 12.5) and 7.8 kg (standard deviation: 9.4) in the nonparetic and paretic hand, respectively. For the paretic hand, muscle activity was higher during finger flexion exercise than during finger extension exercise for both ED (30% [95% confidence interval {CI}: 19-40] vs 15% [95% CI: 5-25] and FDS (37% [95% CI: 27-48] vs 24% [95% CI: 13-35]). For the musculature of both the FDS and ED, no dose-response association was observed for resistance and muscle activity during the flexion exercise (P > .05).

Conclusion

The finger flexion exercise showed higher muscle activity in both the flexor and extensor musculature of the forearm than the finger extension exercise. Furthermore, greater resistance did not result in higher muscle activity during the finger flexion exercise. The present results suggest that the finger flexion exercise should be the preferred strengthening exercise to achieve high levels of muscle activity in both flexor and extensor forearm muscles in chronic stroke patients. The finger extension exercise may be performed with emphasis on improving neuromuscular control.

Level of Evidence

4b.

, , , , , , , , , ,

Leave a comment

[Abstract] Hand strengthening exercises in chronic stroke patients: Dose-response evaluation using electromyography

Abstract

Study Design

Cross-sectional.

Purpose of the Study

This study evaluates finger flexion and extension strengthening exercises using elastic resistance in chronic stroke patients.

Methods

Eighteen stroke patients (mean age: 56.8 ± 7.6 years) with hemiparesis performed 3 consecutive repetitions of finger flexion and extension, using 3 different elastic resistance levels (easy, moderate, and hard). Surface electromyography was recorded from the flexor digitorum superficialis (FDS) and extensor digitorum (ED) muscles and normalized to the maximal electromyography of the non-paretic arm.

Results

Maximal grip strength was 39.2 (standard deviation: 12.5) and 7.8 kg (standard deviation: 9.4) in the nonparetic and paretic hand, respectively. For the paretic hand, muscle activity was higher during finger flexion exercise than during finger extension exercise for both ED (30% [95% confidence interval {CI}: 19-40] vs 15% [95% CI: 5-25] and FDS (37% [95% CI: 27-48] vs 24% [95% CI: 13-35]). For the musculature of both the FDS and ED, no dose-response association was observed for resistance and muscle activity during the flexion exercise (P > .05).

Conclusion

The finger flexion exercise showed higher muscle activity in both the flexor and extensor musculature of the forearm than the finger extension exercise. Furthermore, greater resistance did not result in higher muscle activity during the finger flexion exercise. The present results suggest that the finger flexion exercise should be the preferred strengthening exercise to achieve high levels of muscle activity in both flexor and extensor forearm muscles in chronic stroke patients. The finger extension exercise may be performed with emphasis on improving neuromuscular control.

Level of Evidence

4b.

Source: Hand strengthening exercises in chronic stroke patients: Dose-response evaluation using electromyography – Journal of Hand Therapy

, , , , , , , , , ,

Leave a comment

%d bloggers like this: