Posts Tagged chronic

[Abstract] Hand strengthening exercises in chronic stroke patients: Dose-response evaluation using electromyography

Abstract

Study Design

Cross-sectional.

Purpose of the Study

This study evaluates finger flexion and extension strengthening exercises using elastic resistance in chronic stroke patients.

Methods

Eighteen stroke patients (mean age: 56.8 ± 7.6 years) with hemiparesis performed 3 consecutive repetitions of finger flexion and extension, using 3 different elastic resistance levels (easy, moderate, and hard). Surface electromyography was recorded from the flexor digitorum superficialis (FDS) and extensor digitorum (ED) muscles and normalized to the maximal electromyography of the non-paretic arm.

Results

Maximal grip strength was 39.2 (standard deviation: 12.5) and 7.8 kg (standard deviation: 9.4) in the nonparetic and paretic hand, respectively. For the paretic hand, muscle activity was higher during finger flexion exercise than during finger extension exercise for both ED (30% [95% confidence interval {CI}: 19-40] vs 15% [95% CI: 5-25] and FDS (37% [95% CI: 27-48] vs 24% [95% CI: 13-35]). For the musculature of both the FDS and ED, no dose-response association was observed for resistance and muscle activity during the flexion exercise (P > .05).

Conclusion

The finger flexion exercise showed higher muscle activity in both the flexor and extensor musculature of the forearm than the finger extension exercise. Furthermore, greater resistance did not result in higher muscle activity during the finger flexion exercise. The present results suggest that the finger flexion exercise should be the preferred strengthening exercise to achieve high levels of muscle activity in both flexor and extensor forearm muscles in chronic stroke patients. The finger extension exercise may be performed with emphasis on improving neuromuscular control.

Level of Evidence

4b.

Source: Hand strengthening exercises in chronic stroke patients: Dose-response evaluation using electromyography – Journal of Hand Therapy

, , , , , , , , , ,

Leave a comment

[WEB SITE] Spasticity, Motor Recovery, and Neural Plasticity after Stroke – Full Text

Spasticity and weakness (spastic paresis) are the primary motor impairments after stroke and impose significant challenges for treatment and patient care. Spasticity emerges and disappears in the course of complete motor recovery. Spasticity and motor recovery are both related to neural plasticity after stroke. However, the relation between the two remains poorly understood among clinicians and researchers. Recovery of strength and motor function is mainly attributed to cortical plastic reorganization in the early recovery phase, while reticulospinal (RS) hyperexcitability as a result of maladaptive plasticity, is the most plausible mechanism for post-stroke spasticity. It is important to differentiate and understand that motor recovery and spasticity have different underlying mechanisms. Facilitation and modulation of neural plasticity through rehabilitative strategies, such as early interventions with repetitive goal-oriented intensive therapy, appropriate non-invasive brain stimulation, and pharmacological agents, are the key to promote motor recovery. Individualized rehabilitation protocols could be developed to utilize or avoid the maladaptive plasticity, such as RS hyperexcitability, in the course of motor recovery. Aggressive and appropriate spasticity management with botulinum toxin therapy is an example of how to create a transient plastic state of the neuromotor system that allows motor re-learning and recovery in chronic stages.

Introduction

According to the CDC, approximately 800,000 people have a stroke every year in the United States. The continued care of seven million stroke survivors costs the nation approximately $38.6 billion annually. Spasticity and weakness (i.e., spastic paresis) are the primary motor impairments and impose significant challenges for patient care. Weakness is the primary contributor to impairment in chronic stroke (1). Spasticity is present in about 20–40% stroke survivors (2). Spasticity not only has downstream effects on the patient’s quality of life but also lays substantial burdens on the caregivers and society (2).

Clinically, poststroke spasticity is easily recognized as a phenomenon of velocity-dependent increase in tonic stretch reflexes (“muscle tone”) with exaggerated tendon jerks, resulting from hyperexcitability of the stretch reflex (3). Though underlying mechanisms of spasticity remain poorly understood, it is well accepted that there is hyperexcitability of the stretch reflex in spasticity (47). Accumulated evidence from animal (8) and human studies (918) supports supraspinal origins of stretch reflex hyperexcitability. In particular, reticulospinal (RS) hyperexcitability resulted from loss of balanced inhibitory, and excitatory descending RS projections after stroke is the most plausible mechanism for poststroke spasticity (19). On the other hand, animal studies have strongly supported the possible role of RS pathways in motor recovery (2036), while recent studies with stroke survivors have demonstrated that RS pathways may not always be beneficial (3738). The relation between spasticity and motor recovery and the role of plastic changes after stroke in this relation, particularly RS hyperexcitability, remain poorly understood among clinicians and researchers. Thus, management of spasticity and facilitation of motor recovery remain clinical challenges. This review is organized into the following sessions to understand this relation and its implication in clinical management.

• Poststroke spasticity and motor recovery are mediated by different mechanisms

• Motor recovery are mediated by cortical plastic reorganizations (spontaneous or via intervention)

• Reticulospinal hyperexcitability as a result of maladaptive plastic changes is the most plausible mechanism for spasticity

• Possible roles of RS hyperexcitability in motor recovery

• An example of spasticity reduction for facilitation of motor recovery […]

Continue —> Frontiers | Spasticity, Motor Recovery, and Neural Plasticity after Stroke | Neurology

, , , , , ,

Leave a comment

[Abstract] “A CLINICAL FRAMEWORK FOR FUNCTIONAL RECOVERY IN A PERSON WITH CHRONIC TRAUMATIC BRAIN INJURY: A CASE REPORT” |

Provisional Abstract:
Background and Purpose: This case report describes a task-specific program for gait and functional recovery in a young man with severe chronic traumatic brain injury (TBI).

Case Description: The individual was a 26-year-old man 4 years post TBI with severe motor impairments who had not walked outside of therapy since his injury. He had received extensive gait training prior to initiation of services. His goal was to recover the ability to walk.

Intervention: The primary focus of the interventions was the restoration of gait. A variety of interventions were used, including locomotor treadmill training, electrical stimulation, orthoses and specialized assistive devices. A total of 79 treatments were delivered over a period of 62 weeks.

Outcomes: At the conclusion of therapy, the client was able to walk independently with a gait trainer for over 3000 feet and walked in the community with the assistance of his mother using a rocker bottom crutch for distances of up to 350 feet.

Discussion: Given the chronicity of this individual’s injury, the magnitude of his functional improvements were unexpected. However, very intentional interventions were selected in the development of his treatment plan. His potential was realized by structuring practice of the salient task, i.e. walking, with adequate intensity and frequency.

Want to read the published article?
To be alerted when this article is published, please sign up for the Journal of Neurologic Physical Therapy eTOC.

Source: JUST ACCEPTED: “A CLINICAL FRAMEWORK FOR FUNCTIONAL RECOVERY IN A PERSON WITH CHRONIC TRAUMATIC BRAIN INJURY: A CASE REPORT” |

, , , ,

Leave a comment

[Abstract] Spasticity Management: The Current State of Transcranial Neuromodulation

Abstract

This narrative review aims to provide an objective view of the non-invasive neuromodulation (NINM) protocols available for treating spasticity, including repetitive transcranial magnetic stimulation (rTMS) and transcranial direct current stimulation (tDCS). On the basis of the relevant randomized controlled trials, we infer that NINM is more effective in reducing spasticity when combined with the conventional therapies than used as a stand-alone treatment. However, the magnitude of NINM aftereffects depends significantly on the applied hemisphere and the underlying pathology. Being in line with these arguments, low-frequency rTMS and cathodal-tDCS over the unaffected hemisphere are more effective in reducing spasticity than high-frequency rTMS and anodal-tDCS over the affected hemisphere in chronic post-stroke. However, most of the studies are heterogeneous in the stimulation setup, patient selection, follow-up duration, and the availability of the sham operation. Therefore, the available data on the usefulness of NINM in reducing spasticity need to be confirmed by further larger and multicentric randomized controlled trials to gather evidence on the efficiency of NINM regimens in reducing spasticity in various neurologic conditions.

Source: Spasticity Management: The Current State of Transcranial Neuromodulation

, , , , , , , ,

Leave a comment

[Abstract] The Impact of Shoulder Abduction Loading on Volitional Hand Opening and Grasping in Chronic Hemiparetic Stroke

Background. Up to 60% of individuals with moderate to severe chronic hemiparetic stroke experience excessive involuntary wrist/finger flexion that constrains functional hand movements including hand opening. It’s not known how stroke-induced brain injury impacts volitional hand opening and grasping forces as a result of the expression of abnormal coupling between shoulder abduction and wrist/finger flexion or the flexion synergy.

Objective. The goal of this study is to understand how shoulder abduction loading affects volitional hand opening and grasping forces in individuals with moderate to severe chronic hemiparetic stroke.

Methods. Thirty-six individuals (stroke, 26; control, 10) were recruited for this study. Each participant was instructed to perform maximal hand opening and grasping forces while the arm was either fully supported or lifted with a weight equal to 25% or 50% of the participant’s maximal shoulder abduction torque. Hand pentagon area, defined as the area formed by the tips of thumb and fingers, was calculated during hand opening. Forces were recorded during grasping.

Results. In individuals with moderate stroke, increasing shoulder abduction loading reduced the ability to maximally open the hand. In individuals with severe stroke, who were not able to open the hand, grasping forces were generated and increased with shoulder abduction loading. Stroke individuals also showed a reduced ability to control volitional grasping forces due to the enhanced expression of flexion synergy.

Conclusions. Shoulder abduction loading reduced the ability to volitionally open the hand and control grasping forces after stroke. Neural mechanisms and clinical implications of these findings are discussed.

Source: The Impact of Shoulder Abduction Loading on Volitional Hand Opening and Grasping in Chronic Hemiparetic Stroke – Mar 08, 2017

, , , , , , , , , ,

Leave a comment

[ARTICLE] Short-term effects of physiotherapy combining repetitive facilitation exercises and orthotic treatment in chronic post-stroke patients – Full Text PDF

Abstract.

[Purpose] This study investigated the short-term effects of a combination therapy consisting of repetitive facilitative exercises and orthotic treatment.

[Subjects and Methods] The subjects were chronic post-stroke patients (n=27; 24 males and 3 females; 59.3 ± 12.4 years old; duration after onset: 35.7 ± 28.9 months) with limited mobility and motor function. Each subject received combination therapy consisting of repetitive facilitative exercises for the hemiplegic lower limb and gait training with an ankle-foot orthosis for 4 weeks. The Fugl-Meyer assessment of the lower extremity, the Stroke Impairment Assessment Set as a measure of motor performance, the Timed Up & Go test, and the 10-m walk test as a measure of functional ambulation were evaluated before and after the combination therapy intervention.

[Results] The findings of the Fugl-Meyer assessment, Stroke Impairment Assessment Set, Timed Up & Go test, and 10-m walk test significantly improved after the intervention. Moreover, the results of the 10-m walk test at a fast speed reached the minimal detectible change threshold (0.13 m/s).

[Conclusion] Short-term physiotherapy combining repetitive facilitative exercises and orthotic treatment may be more effective than the conventional neurofacilitation therapy, to improve the lower-limb motor performance and functional ambulation of chronic post-stroke patients.

 

INTRODUCTION

The mobility of many stroke survivorsislimited, and most identify walking as a top priority for rehabilitation1) . One way to manage ambulatory difficulties is with an ankle-foot orthosis (AFO) or a foot-drop splint, which aims to stabilize the foot and ankle while weight-bearing and lift the toes while stepping1) . In stroke rehabilitation, various approaches, including robotic assistance, strength training, and task-related/virtual reality techniques, have been shown to improve motor function2) . The benefits of a high intensity stroke rehabilitation program are well established, and although no clear guidelines exist regarding the best levels of intensity in practice, the need for its incorporation into a therapy program is widely acknowledged2) . Repetitive facilitative exercises (RFE), which combine a high repetition rate and neurofacilitation, are a recently developed approach to rehabilitation of stroke-related limb impairment2–5) . In the RFE program, therapists use muscle spindle stretching and skin-generated reflexes to assist the patient’s efforts to move an affected joint5) . Previous studies have shown that an RFE program improved lower-limb motor performance (Brunnstrom Recovery Stage, foot tapping, and lower-limb strength) and the 10-m walk test in patients with brain damage3) . An AFO is an assistive device to help stroke patients with hemiplegia walk and stand. A properly prescribed AFO can improve gait performance and control abnormal kinematics arising from coordination deficits6) . Gait training with an AFO has been also reported to improve gait speed and balance in post-stroke patients7, 8) . Therefore, we hypothesized that short-term physiotherapy combining RFE and orthotic treatment would improve both lower-extremity motor performance and functional ambulation. The present study aimed to confirm the efficacy of a combination therapy consisting of RFE for the hemiplegic lower limb and gait training with AFO.

Download Full Text PDF

 

, , , , , , , ,

Leave a comment

[Abstract] Combined tDCS and Vision Restoration Training in Subacute Stroke Rehabilitation: A Pilot Study

Abstract

Background

Visual field defects after posterior cerebral artery stroke can be improved by vision restoration training (VRT), but when combined with transcranial direct current stimulation (tDCS) which alters brain excitability, vision recovery can be potentiated in the chronic stage. To date the combination of VRT and tDCS has not been evaluated in post-acute stroke rehabilitation.

Objective

To determine whether combined tDCS and VRT can be effectively implemented in the early recovery phase following a stroke, we wished to explore the feasibility, safety and efficacy of an early intervention.

Design

Open-label pilot study including a case series of seven tDCS/VRT versus a convenience sample of seven control patients (clinicalTrials.gov ID: NCT02935413).

Setting

Rehabilitation center

Subjects

Patients with homonymous visual field defects following a posterior cerebral artery stroke.

Methods

Seven homonymous hemianopia patients were prospectively treated with 10 sessions of combined tDCS (2mA, 10 daily sessions of 20 min) and VRT at 66 (±50) days on average post-stroke. Visual field recovery was compared with retrospective data of 7 controls, whose defect sizes and age of lesions were matched to the experimental subjects and who had received standard rehabilitation with compensatory eye movement and exploration training.

Results

All seven patients of the treatment group completed the treatment protocol. Safety and acceptance were excellent, and patients reported occasional skin itching beneath the electrodes as the only minor side effect. Irrespective of their treatment, both groups (treatment and control) showed improved visual fields as documented by an increased mean sensitivity threshold in dB (decibel) in standard static perimetry. Recovery was significantly greater (p<.05) in tDCS/VRT patients (36.73 ± 37.0%) than in controls (10.74 ± 8.86).

Conclusion

In this open-label pilot study, tDCS/VRT in sub-acute stroke was safe, with excellent applicability and acceptance of the treatment. Preliminary effectiveness calculations show that tDCS/VRT may be superior to standard vision training procedures. A confirmatory, larger-sample, controlled, randomized and double-blind trial is now underway to compare real- vs. sham-tDCS supported visual field training in the early vision rehabilitation phase.

This study was supported by the ERA-net neuron network “Restoration of Vision after Stroke (REVIS)”, (BMBF grant nr: 01EW1210).
clinicalTrials.gov ID: NCT02935413

Source: Combined tDCS and Vision Restoration Training in Subacute Stroke Rehabilitation: A Pilot Study

, , , , , , , , , ,

Leave a comment

[Abstract] A portable and cost-effective upper extremity rehabilitation system for individuals with upper limb motor deficits

Abstract

Long-term rehabilitation opportunities are critical for millions of individuals with chronic upper limb motor deficits striving to improve their motor performance through self-managed rehabilitation programs. However, there is minimal professional support of rehabilitation across the lifespan. In this paper, we introduce an upper extremity rehabilitation system, the Quality of Movement Feedback-Oriented Measurement System (QM-FOrMS), by integrating cost-effective portable sensors and clinically verified motion quality analysis towards individuals with upper limb motor deficits. Specifically, QM-FOrMS is comprised of an eTextile pressure sensitive mat, named Smart Mat, a sensory can, named Smart Can, and a mobile device. A personalizable and adaptive upper limb rehabilitation program is developed, including both unilateral and bilateral functional activities which can be selected from a list or custom designed to further tailor the program to the individual. Quantitative evaluation of the motor performance from the QM-FOrMS is derived from fine-grained kinematic measurements. We ran a pilot study with three groups, including five baseline subjects (i.e., healthy young adults), six older adults and four individuals with movement impairment. The experimental results show that QM-FOrMS can provide the detailed feature during the unattended rehabilitation exercise, and proposed metrics can distinguish the evaluation results across group.

Source: A portable and cost-effective upper extremity rehabilitation system for individuals with upper limb motor deficits – IEEE Xplore Document

, , , , , , , , , , ,

Leave a comment

[Review Article] Effect of Virtual Reality on Postural and Balance Control in Patients with Stroke: A Systematic Literature Review – Full Text PDF

Objective. To critically evaluate the studies that were conducted over the past 10 years and to assess the impact of virtual reality on static and dynamic balance control in the stroke population.

Method. A systematic review of randomized controlled trials published between January 2006 and December 2015 was conducted. Databases searched were PubMed, Scopus, and Web of Science. Studies must have involved adult patients with stroke during acute, subacute, or chronic phase. All included studies must have assessed the impact of virtual reality programme on either static or dynamic balance ability and compared it with a control group. The Physiotherapy Evidence Database (PEDro) scale was used to assess the methodological quality of the included studies.

Results. Nine studies were included in this systematic review. The PEDro scores ranged from 4 to 9 points. All studies, except one, showed significant improvement in static or dynamic balance outcomes group.

Conclusions. This review provided moderate evidence to support the fact that virtual reality training is an effective adjunct to standard rehabilitation programme to improve balance for patients with chronic stroke. The effect of VR training in balance recovery is less clear in patients with acute or subacute stroke. Further research is required to investigate the optimum training intensity and frequency to achieve the desired outcome

Download Full Text PDF

, , , ,

Leave a comment

[Abstract] Mirror therapy in chronic stroke survivors with severely impaired upper limb function: a randomized controlled trial. – PubMed

Abstract

BACKGROUND:

Mirror therapy (MT) has been proposed to improve the motor function of chronic individuals with stroke with mild to moderate impairment. With regards to severe upper limb paresis, MT has shown to provide limited motor improvement in the acute or sub-acute phase. However, no previous research has described the effects of MT in chronic individuals with stroke with severely impaired upper limb function.

AIM:

The aim of this study was to determine the effectiveness of MT on chronic stroke survivors with severe upper-limb impairment in comparison with passive mobilization.

DESIGN:

A randomized controlled trial.

SETTING:

Rehabilitative outpatient unit.

POPULATION:

A total of 31 chronic subjects poststroke with severely impaired upper limb function were randomly assigned to either an experimental group (N.=15), or a control group (N.=16).

METHODS:

Twenty-four intervention sessions were performed for both groups. Each session included 45-minute period of MT (experimental group) or passive mobilization (control group), administered three days a week. Participants were assessed before and after the intervention with the Wolf Motor Function Test, the Fugl-Meyer Assessment, and the Nottingham Sensory Assessment.

RESULTS:

Improvement in motor function was observed in both groups on the time (P=0.002) and ability (P=0.001) subscales of the Wolf Motor Function Test. No differences were detected in kinesthesis or stereognosis. However, the experimental group showed a significant improvement in tactile sensation that was mainly observed as an increased sensitivity to light touches.

CONCLUSIONS:

In comparison with passive mobilization, MT in chronic stroke survivors with severely impaired upper-limb function may provide a limited but positive effect on light touch sensitivity while providing similar motor improvement.

CLINICAL REHABILITATION IMPACT:

MT is a therapeutic approach that can be used in the rehabilitation of severely impaired upper limb in chronic stroke survivors, specifically to address light touch sensitivity deficits.

Source: Mirror therapy in chronic stroke survivors with severely impaired upper limb function: a randomized controlled trial. – PubMed – NCBI

, , , , , ,

Leave a comment

%d bloggers like this: