Posts Tagged CI Therapy

[Abstract] Predicting Improved Daily Use of the More Affected Arm Poststroke Following Constraint-Induced Movement Therapy

Abstract

Background

Constraint-induced movement therapy (CI therapy) produces, on average, large and clinically meaningful improvements in the daily use of a more affected upper extremity in individuals with hemiparesis. However, individual responses vary widely.

Objective

The study objective was to investigate the extent to which individual characteristics before treatment predict improved use of the more affected arm following CI therapy.

Design

This study was a retrospective analysis of 47 people who had chronic (> 6 months) mild to moderate upper extremity hemiparesis and were consecutively enrolled in 2 CI therapy randomized controlled trials.

Methods

An enhanced probabilistic neural network model predicted whether individuals showed a low, medium, or high response to CI therapy, as measured with the Motor Activity Log, on the basis of the following baseline assessments: Wolf Motor Function Test, Semmes-Weinstein Monofilament Test of touch threshold, Motor Activity Log, and Montreal Cognitive Assessment. Then, a neural dynamic classification algorithm was applied to improve prognostic accuracy using the most accurate combination obtained in the previous step.

Results

Motor ability and tactile sense predicted improvement in arm use for daily activities following intensive upper extremity rehabilitation with an accuracy of nearly 100%. Complex patterns of interaction among these predictors were observed.

Limitations

The fact that this study was a retrospective analysis with a moderate sample size was a limitation.

Conclusions

Advanced machine learning/classification algorithms produce more accurate personalized predictions of rehabilitation outcomes than commonly used general linear models.

 

via Predicting Improved Daily Use of the More Affected Arm Poststroke Following Constraint-Induced Movement Therapy | Physical Therapy | Oxford Academic

, , , , , , , ,

Leave a comment

[Abstract] Protocol for a Randomized Controlled Trial of CI Therapy for Rehabilitation of Upper Extremity Motor Deficit

Constraint-induced movement therapy (CI therapy) has been shown to reduce disability for individuals with upper extremity (UE) hemiparesis following different neurologic injuries. This article describes the study design and methodological considerations of the Bringing Rehabilitation to American Veterans Everywhere (BRAVE) Project, a randomized controlled trial of CI therapy to improve the motor deficit of participants with chronic and subacute traumatic brain injury. Our CI therapy protocol comprises 4 major components:

  1.  intensive training of the more-affected UE for target of 3 hour/day for 10 consecutive weekdays,
  2.  a behavioral technique termed shaping during training,
  3.  a “transfer package,” 0.5 hour/day, of behavioral techniques to transfer therapeutic gains from the treatment setting to the life situation, and
  4. prolonged restraint of use of the UE not being trained.

The primary endpoint is posttreatment change on the Motor Activity Log, which assesses the use of the more-affected arm outside the laboratory in everyday life situations. Data from a number of secondary outcome measures are also being collected and can be categorized as physical, genomic, biologic, fitness, cognitive/behavioral, quality of life, and neuroimaging measures.

via Protocol for a Randomized Controlled Trial of CI Therapy for… : The Journal of Head Trauma Rehabilitation

, , , , , , , , ,

Leave a comment

[WEB SITE] Constraint Induced Movement Therapy

WHAT IS CIMT?

taub2Constraint-Induced Movement therapy (CIMT/ CIT) or CI therapy is a new therapeutic approach to rehabilitation of hand and arm movement after stroke, cerebral palsy, brachial plexus injury, multiple sclerosis (MS) and traumatic brain injury (TBI). CI therapy consists of a family of treatments that teach the brain to “rewire” itself following a neurological injury. CI therapy is based on research by Prof. Edward Taub and his collaborators at the University of Alabama at Birmingham, USA that showed that patients can learn to improve movement of the weaker part of their bodies.CIMT is a 2-3 week treatment program that includes restraint of the non-affected hand for most of the waking hours and intensive practice of the affected one for specific hours per day. Practice is focused on everyday activities that are important for the patient and takes place in the clinic and at home. The daily home-based program is tailor made to match each person’s

HOW CIMT WORKS

CIMT includes restraint of the non-affected hand and intensive, everyday practice to the affected arm and hand.

CIMT’s functional effects have been observed as early as on the 3rd-4th day of the program. Improvements have been recorded to last for years after termination of therapy; the reason for this is that CIMT eventually increases the spontaneous use of the affected hand. That is directly linked to research studies showing that CIMT is the only rehabilitation technique to markedly change the organization of activity in the brain and remodel brain structures.

EFFECTIVENESS

CIMT is the only rehabilitative technique that is evidence based to substantially improve arm and hand movement in both adults and children in a 2-3 week period. A large, supporting body of research studies is available, some of which are large sampled randomized controlled trials. The most important finding from research studies and clinical observations is that improvements last for months or years after termination of the CIMT program.

CONDITIONS CIMT IS SUITABLE FOR

CIMT is suitable for adults and children that face movement difficulties (mostly) with their one arm and hand. This might have been the result of a central or peripheral neurological damage.

Although CIMT has been primarily designed for hemiplegia (muscle weakness and movement difficulties of the one side of the body), it can also be effective in quadriplegia when the one side of the body is the one that causes the main dysfunction. In general, CIMT is suitable for any case that non-use of the one arm/ hand affects the person’s independency in everyday activities.

To determine whether CIMT might be suitable for you, our therapists will apply a thorough functional evaluation.

The usual conditions that we treat are the following:

Cerebral Palsy

Cerebral palsy (CP) is the result of damage to the premature brain, either during pregnancy, birth or early infant years. CP can lead to muscle weakness, incoordination of movements and affected muscle tone. CP can affect all four limbs (quadriplegia), lower limbs only (diplegia) or one side of the body (hemiplegia). CIMT is suitable for hemiplegic CP and specific quadriplegic cases.

READ MORE

Cerebrovascular Accident (Stroke)

A stroke usually results in movement difficulties in one side of the body (hemiplegia). Early after the incident, movement of the affected hand is clumsy and inefficient leading to unconscious avoidance of this part of the body and use of the healthy hand throughout most everyday activities. This compensation leads to further functional decrements as the muscles lose more of their strength, being underused.

READ MORE

Brachial plexus injury-BPI (Obstetrical Palsy)

The brachial plexus is responsible for sensory and movement innervation of the entire upper limb. Lesions of the brachial plexus can lead to severe functional impairment. Obstetrical Palsy is a special type of BPI that occurs during the birthing process and affects all or part of the infant’s arm and hand.

READ MORE

Multiple Sclerosis (MS)

Multiple Sclerosis is a chronic, auto-immune condition which means that for some unidentified reason the body triggers an inflammatory response affecting the nerves in the brain and/ or spinal cord. This can affect a person’s movements as the brain is unable to effectively transmit the messages to the nerves supplying the muscles. Movements may be slower and uncoordinated leading to functional problems with one or both arms during everyday activities.

READ MORE

Traumatic Brain Injury (TBI)

Traumatic brain injury may occur in the area of the brain responsible for controlling movements in the arm and hand, leading to hemiplegia. It is known that people who have arm and hand weakness are more likely to compensate during functional activities by using their stronger arm. The reason for this is that movement of the weaker arm and hand may be slower or demanding greater effort, thus causing frustration. This condition progressively results in “forgetting” use of the weaker hand and spontaneously using only the healthy hand to accomplish everyday activities. This compensation leads to further functional decrements as the muscles lose more of their strength, being underused.

READ MORE

 

For more visit site —>  Constraint Induced Movement Therapy | Constraint Induced Movement Therapy

, , , , , , , , , ,

Leave a comment

[ARTICLE] Video Game Rehabilitation for Outpatient Stroke (VIGoROUS): protocol for a multi-center comparative effectiveness trial of in-home gamified constraint-induced movement therapy for rehabilitation of chronic upper extremity hemiparesis – Full Text

 

Abstract

Background

Constraint-Induced Movement therapy (CI therapy) is shown to reduce disability, increase use of the more affected arm/hand, and promote brain plasticity for individuals with upper extremity hemiparesis post-stroke. Randomized controlled trials consistently demonstrate that CI therapy is superior to other rehabilitation paradigms, yet it is available to only a small minority of the estimated 1.2 million chronic stroke survivors with upper extremity disability. The current study aims to establish the comparative effectiveness of a novel, patient-centered approach to rehabilitation utilizing newly developed, inexpensive, and commercially available gaming technology to disseminate CI therapy to underserved individuals. Video game delivery of CI therapy will be compared against traditional clinic-based CI therapy and standard upper extremity rehabilitation. Additionally, individual factors that differentially influence response to one treatment versus another will be examined.

Methods

This protocol outlines a multi-site, randomized controlled trial with parallel group design. Two hundred twenty four adults with chronic hemiparesis post-stroke will be recruited at four sites. Participants are randomized to one of four study groups: (1) traditional clinic-based CI therapy, (2) therapist-as-consultant video game CI therapy, (3) therapist-as-consultant video game CI therapy with additional therapist contact via telerehabilitation/video consultation, and (4) standard upper extremity rehabilitation. After 6-month follow-up, individuals assigned to the standard upper extremity rehabilitation condition crossover to stand-alone video game CI therapy preceded by a therapist consultation. All interventions are delivered over a period of three weeks. Primary outcome measures include motor improvement as measured by the Wolf Motor Function Test (WMFT), quality of arm use for daily activities as measured by Motor Activity Log (MAL), and quality of life as measured by the Quality of Life in Neurological Disorders (NeuroQOL).

Discussion

This multi-site RCT is designed to determine comparative effectiveness of in-home technology-based delivery of CI therapy versus standard upper extremity rehabilitation and in-clinic CI therapy. The study design also enables evaluation of the effect of therapist contact time on treatment outcomes within a therapist-as-consultant model of gaming and technology-based rehabilitation.

Background

Clinical practice guidelines recommend outpatient rehabilitation for stroke survivors who remain disabled after discharge from inpatient rehabilitation [1]. Although these guidelines recommend that the majority of stroke survivors receive at least some outpatient rehabilitation [2], many cannot access long-term care [3]. Among those individuals who do undergo outpatient rehabilitation, the standard of care for upper extremity rehabilitation is suboptimal.

In an observational study of 312 rehabilitation sessions (83 occupational and physical therapists at 7 rehabilitation sites), Lang and colleagues [4] found that functional rehabilitation (i.e., movement that accomplishes a functional task, such as eating, as opposed to strength training or passive movement) was provided in only 51% of the sessions of upper extremity rehabilitation, with only 45 repetitions per session on average. This is concerning given that empirically-validated interventions incorporate higher doses of active motor practice [5, 6, 7]. Additionally, functional upper extremity movements are most likely to generalize to everyday tasks [8], an aspect of recovery that is critically important to patients and their families [9, 10, 11]. Yet, passive movement and non-goal-directed exercise are more frequently administered [4].

There appear to be at least two critical elements required for successful upper extremity motor rehabilitation: 1) motor practice that is sufficiently intense and 2) techniques to carryover motor improvements to functional activities. Carry-over techniques to increase a person’s use of the more affected upper extremity for daily activities are extremely important for rehabilitation and appear necessary for structural brain change [12, 13, 14, 15]. When rehabilitation incorporates these techniques, there is substantially improved improvement in self-perceived quality of arm use for daily activities [12, 16]. Carry-over techniques enable the patient to overcome the conditioned suppression of movement (learned nonuse) characteristic of chronic hemiparesis [17]. Techniques include structured self-monitoring, a treatment contract, daily home practice of specific functional motor skills, and guided problem-solving to overcome perceived barriers to using the extremity [18].

Constraint-Induced Movement therapy (CI therapy) has strong empirical backing [5, 19] and combines high-repetition functional practice of the more affected arm with behavioral techniques to enhance carry-over [13, 18]. CI therapy produces consistently superior motor performance and retention of gains versus standard upper extremity rehabilitation [20, 21], particularly when it includes the critically important carry-over (transfer package) techniques [12]. When compared to other equally intensive interventions (i.e., equal hours of training on functional tasks), CI therapy with carry-over (transfer package) techniques has also shown enhanced carry-over of clinical gains to daily activities [12, 13, 22, 23, 24] that are retained for at least 2 years [19, 25, 26, 27, 28].

Despite its inclusion in best practice recommendations [29, 30], CI therapy is available to only a very small minority of those who could benefit from it in the US. CI therapy is not typically covered by insurance and the 30+ hours of assessment and physical training cost upwards of $6000. Access barriers for the patient include limited transportation and insurance coverage, whereas therapists may have difficulty accommodating the CI therapy schedule [31, 32]. Access barriers aside, CI therapy has also been plagued by a variety of misconceptions regarding use of restraint and the transfer package. Most iterations of CI therapy employ use of a restraint mitt to promote use of the affected arm, which is viewed by many patients and clinicians as excessively prohibitive [32]. Yet, literature demonstrates that restraint is not specifically required to achieve positive outcomes [33, 34]. Moreover, the transfer package, a component found to be critical [13, 14], is omitted from the majority of research studies on CI therapy [35].

To address transportation barriers, a telerehabilitation model of CI therapy delivery (AutoCITE) has been tested. AutoCITE is a large specialized motor apparatus (not commercially available, cost not established) that was installed in patients’ homes to enable therapeutic manipulation of actual objects with continuous video monitoring via Internet. This telerehabilitation approach demonstrated efficacy approximately equivalent to that of in-clinic CI therapy [36, 37, 38], thus establishing the feasibility of utilizing technology to deliver CI therapy remotely. However, this system involved specialized equipment at a high cost and did not become available outside a research setting.

To more fully address the barriers to accessing CI therapy and to counter the misconceptions surrounding CI therapy, a patient-centered treatment approach was developed that incorporated the high-repetition practice and carry-over strategies from CI therapy, while reforming non-patient-centric elements of the protocol that lack strong empirical support (i.e., the restraint). To deliver engaging high-repetition practice, a Kinect-based video game was created that can accommodate a wide range of motor disability, can be customized to each user, and automatically progresses in difficulty as the individual’s performance improves (termed “shaping” in the CI therapy literature). A player’s body movements drive game play (there is no external controller), which makes the game easy to use for those who may be unfamiliar with technology. To date, such high-repetition practice through motor gaming [39] has shown initial promise compared to traditional clinic-based approaches [40]. To promote increased use of the weaker arm, a smart watch biofeedback application is utilized in lieu of the restraint mitt. This application counts movements made with the weaker arm and provides alerts when a period of inactivity is detected. Previous approaches for providing CI therapy in the home and reducing the amount of therapist effort have been carried out [36, 37, 38, 41]. These approaches automated the delivery of training and permitted remote supervision of the training via an Internet-based audio-visual link, but did not embed the training within the context of a video game, rely on manipulation of virtual objects, or incorporate a patient-centric substitute for the mitt.

Initial evidence from a pilot trial of this system (Borstad A, Crawfis R, Phillips K, Pax Lowes L, Worthen-Chaudhari L, Maung D, et al.: In-home delivery of constraint induced movement therapy via virtual reality gaming is safe and feasible: a pilot study, submitted) suggests that improvements in motor speed, as measured by Wolf Motor Function Test (WMFT) performance time [42], an outcome of prime importance to stroke survivors, are approximately equivalent to those reported in the traditional CI therapy literature [5, 13, 19, 25]. Qualitative data reveal that the technology is accepted irrespective of age, technological expertise, ethnicity, or cultural background. Thus, this technology has the potential to address the main barriers to adoption of CI therapy, while reducing the cost of care. A randomized clinical trial is now required to provide Level 1 evidence of the comparative effectiveness of this novel model of CI therapy delivery. Data from this trial will enable individuals with motor disability to evaluate whether a home-based video game therapy has the potential to help them meet their rehabilitation goals compared to in-clinic CI therapy and traditional approaches. By combining novel gaming elements with the transfer package from CI therapy, this trial will also address a major limitation of rehabilitation gaming interventions that have been tried to date: extremely limited emphasis on carry-over of training to daily activities.

The primary objective of this trial is to compare the effectiveness of two video game-based models of CI therapy versus traditional clinic-based CI therapy versus standard upper extremity rehabilitation for improving upper extremity motor function. One video gaming group will match the number of total hours spent on the CI therapy transfer package, but will involve fewer days of therapist-client interaction (4 versus 10); the other will match the number of interactions with a therapist to that of clinic-based CI therapy using video consultation between in-person sessions and, as such, will involve more therapist contact hours spent focusing on the transfer package. The secondary objective of this project is to promote personalized medicine by examining individual factors that may differentially influence response to one treatment versus another.

Continue —>  Video Game Rehabilitation for Outpatient Stroke (VIGoROUS): protocol for a multi-center comparative effectiveness trial of in-home gamified constraint-induced movement therapy for rehabilitation of chronic upper extremity hemiparesis | BMC Neurology | Full Text

Fig. 1 Screen capture of the Recovery Rapids gaming environment

, , , , , , , , , , ,

Leave a comment

[WEB SITE] CIMT – Constraint Induced Movement Therapy – Adults

Young adult tackles a dexterity challenge

What is CIMT?

Constraint Induced Movement Therapy (“CIMT” or “CI Therapy”) is a form of rehabilitation of the arm and hand following a neurological event such as a stroke.

Constraint induced movement therapy is suitable for adults with hemiplegia, where one arm is weaker than the other. CIMT involves rehabilitation of the weaker arm while restraining the stronger arm. CIMT can make significant and lasting improvements to the amount and quality of use of the affected arm, which can have a major impact on your quality of life and function.

Constraint induced movement therapy has a large body of scientific research behind it and the effects of the treatment have been shown not only on the hand and arm, but on the brain itself.

A constraint induced movement therapy programme is short but intensive. Treatment is provided daily over a period of 2 to 3 weeks and led by a specialist physiotherapist or occupational therapist. You will wear a restraint “mitt” on your stronger hand for 90% of your waking hours throughout the programme, and take part in intensive therapy sessions as well as home practice.

Explore our website for more information, or contact us to speak directly with one of our CIMT therapists.

 

more —> Adults | CIMT | Constraint Induced Movement Therapy

, , , , , ,

Leave a comment

[WEB SITE] What is CIMT – Constraint Induced Movement Therapy

What is CIMT?

Constraint Induced Movement Therapy (“CIMT” or “CI Therapy”) is a form of rehabilitation of the arm and hand following a neurological event such as a stroke.

Constraint induced movement therapy is suitable for adults with hemiplegia, where one arm is weaker than the other. CIMT involves rehabilitation of the weaker arm while restraining the stronger arm. CIMT can make significant and lasting improvements to the amount and quality of use of the affected arm, which can have a major impact on your quality of life and function.

Constraint induced movement therapy has a large body of scientific research behind it and the effects of the treatment have been shown not only on the hand and arm, but on the brain itself.

A constraint induced movement therapy programme is short but intensive. Treatment is provided daily over a period of 2 to 3 weeks and led by a specialist physiotherapist or occupational therapist. You will wear a restraint “mitt” on your stronger hand for 90% of your waking hours throughout the programme, and take part in intensive therapy sessions as well as home practice.

Explore our website for more information, or contact us to speak directly with one of our CIMT therapists.

Source: What is CIMT | CIMT | Constraint Induced Movement Therapy

, , , , , ,

5 Comments

[POSTER] Delivery of Constraint-Induced Movement Therapy Through a Video Game for Individuals with Hemiparesis Post-Stroke

Purpose: Although effective treatments for motor disability have been developed for the 325,000 people each year who experience hemiparesis post-stroke, these individuals are underserved by the current rehabilitation system. For example, constraint-induced movement therapy (CI therapy) is a “gold standard” therapy, yet less than 1% of those who could benefit are offered the opportunity to receive the treatment. To address this disparity, our research team developed a 3D gaming system (using Microsoft Kinect) to deliver CI therapy in individuals’ homes. Reported here are the results of a pilot study testing the feasibility and initial efficacy of an in-home gaming model of CI therapy.

Methods: Two participants were instructed to play the game for a target 30 hours over the course of two weeks and received five one-hour consultation sessions with a therapist. Consistent with traditional CI therapy, participants wore a mitt on the less affected hand for approximately 10 hours per day to promote use of the more affected hand for daily activities.

Results: Participants played for 21.37 hours and 33.15 hours, respectively, totaling 24,467 and 61,147 movement repetitions. Participants showed clinically meaningful improvements on a highly standardized test of speed of movement (change in Wolf Motor Function Test rate metric=5.50 and 11.71).

Conclusion: This research provides strong evidence of feasibility and preliminary evidence of efficacy of an in-home gaming delivery model of CI therapy. This work could provide an engaging platform for addressing many of the barriers to quality upper extremity rehabilitation post-stroke.

via Delivery of Constraint-Induced Movement Therapy Through a Video Game for Individuals with Hemiparesis Post-Stroke.

, , , , , , , ,

Leave a comment

[WEB SITE] The Plasticity of the Brain: Guiding the Damaged Brain to Recover From Injury and the Healthy Brain to Improve Itself

…However, we developed a treatment at UAB termed CI therapy, or constraint-induced movement therapy, that can harness the capacity of the adult brain for neuroplastic change and produce large improvements in lost movement and speech many years after the damage that produced it. Moreover, the neuroplastic changes and large improvements in function were not less for older persons than for teenagers. We have applied CI therapy successfully to patients who had a stroke 50 years earlier, and we often work in our clinic with patients in their 80s and 90s…

via The Plasticity of the Brain: Guiding the Damaged Brain to Recover From Injury and the Healthy Brain to Improve Itself | Edward Taub, Ph.D..

, , ,

Leave a comment

%d bloggers like this: