Posts Tagged CIMT

[ARTICLE] Assessment of the Efficacy of ReoGo-J Robotic Training Against Other Rehabilitation Therapies for Upper-Limb Hemiplegia After Stroke: Protocol for a Randomized Controlled Trial – Full Text

Background: Stroke patients experience chronic hemiparesis in their upper extremities leaving negative effects on quality of life. Robotic therapy is one method to recover arm function, but its research is still in its infancy. Research questions of this study is to investigate how to maximize the benefit of robotic therapy using ReoGo-J for arm hemiplegia in chronic stroke patients.

Methods: Design of this study is a multi-center parallel group trial following the prospective, randomized, open-label, blinded endpoint (PROBE) study model. Participants and setting will be 120 chronic stroke patients (over 6 months post-stroke) will be randomly allocated to three different rehabilitation protocols. In this study, the control group will receive 20 min of standard rehabilitation (conventional occupational therapy) and 40 min of self-training (i.e., sanding, placing and stretching). The robotic therapy group will receive 20 min of standard rehabilitation and 40 min of robotic therapy using ReoGo®-J device. The combined therapy group will receive 40 min of robotic therapy and 20 min of constraint-induced movement therapy (protocol to improve upper-limb use in ADL suggests). This study employs the Fugl-Meyer Assessment upper-limb score (primary outcome), other arm function measures and the Stroke Impact Scale score will be measured at baseline, 5 and 10 weeks of the treatment phase. In analysis of this study, we use the mixed effects model for repeated measures to compare changes in outcomes between groups at 5 and 10 Weeks. The registration number of this study is UMIN000022509.

Conclusions: This study is a feasible, multi-site randomized controlled trial to examine our hypothesis that combined training protocol could maximize the benefit of robotic therapy and best effective therapeutic strategy for patients with upper-limb hemiparesis.


Severe, persistent paresis occurs in over 40% of stroke patients (1) and is reported to significantly decrease their quality of life (2). Thus, much research has been conducted to develop interventions, with many specifically targeting upper extremity hemiplegia. Among the many examples of neuroscience-based rehabilitation (neuro-rehabilitation) strategies, there is strong evidence supporting robotic therapy, constraint-induced movement therapy (CIMT), and task-oriented training (34).

Robotic therapy is considered an effective intervention for mild to severe hemiplegic arm (56), and is cost-effective for chronic stroke patients in terms of both manpower and medical costs (78). However, its effects may be limited for some patients. Some researchers have found that robotic therapy effectively improves arm function as measured by the Fugl-Meyer Assessment (FMA) (9) and Action research arm test (ARAT) (10), but does not improve the use of the affected arm in activities of daily living (ADL) as measured by the Motor activity log (MAL)-14 (11) and by analysis of data from an accelerometer attached to the affected arm (61214).

On the contrary, CIMT is the most well-established intervention for improving the use of the affected arm in ADL (15). CIMT consists of three components: (1) a repeated task-oriented approach, (2) a behavioral approach to transfer the function gained during training to actual life (also called the “transfer package”), and (3) constraining use of the affected arm. Some researchers consider the transfer package the most important component of CIMT. In fact, research has shown that usage of the affected arm in daily life is significantly different between patients treated with and without the transfer package component (1617). However, many therapists question whether CIMT could benefit their patients because of the shortage of sites possessing the clinical resources to provide the intervention for the long duration required for effectiveness (18).

Therefore, there is an urgent need to establish an effective therapeutic approach, especially for upper-limb hemiplegia during the chronic stage of stroke recovery for which there are few clinical resources (In Japan, the insurance system only allows 260 min per month). Therefore, we will compare the efficacy of several therapy methods. As a control, we will monitor changes in arm function in patients undergoing a short, standard rehabilitation by a therapist and standard self-training (control group). This will be compared to similar self-training including robotic therapy with the ReoGo-J device as an adjuvant therapy (RT group). Finally, the robotic therapy will be compared to combined therapy including robotic therapy and CIMT (CT group). Through these comparisons, we will investigate the effect of robotic therapy, both alone and in combination with CIMT, which we hypothesize will complement each other in chronic stroke rehabilitation. Here, we report the structure and protocol of a multi-center, randomized controlled trial.[…]


Continue —> Frontiers | Assessment of the Efficacy of ReoGo-J Robotic Training Against Other Rehabilitation Therapies for Upper-Limb Hemiplegia After Stroke: Protocol for a Randomized Controlled Trial | Neurology

, , , , , , , , ,

Leave a comment

[Abstract] Towards an Immersive Virtual Reality Game for Smarter Post-Stroke Rehabilitation


Traditional forms of physical therapy and rehabilitation are often based on therapist observation and judgment, coincidentally this process oftentimes can be inaccurate, expensive, and non-timely. Modern immersive Virtual Reality systems provide a unique opportunity to make the therapy process smarter. In this paper, we present an immersive virtual reality stroke rehabilitation game based on a widely accepted therapy method, Constraint-Induced Therapy, that was evaluated by nine post-stroke participants. We implement our game as a dynamically adapting system that can account for the user’s motor abilities while recording real-time motion capture and behavioral data. The game also can be used for tele-rehabilitation, effectively allowing therapists to connect with the participant remotely while also having access to +90Hz real-time biofeedback data. Our quantitative and qualitative results suggest that our system is useful in increasing affordability, accuracy, and accessibility of post-stroke motor treatment.

via Towards an Immersive Virtual Reality Game for Smarter Post-Stroke Rehabilitation – IEEE Conference Publication

, , , , , , , , , , ,

Leave a comment

[BLOG POST] Repetition Improves Stroke Recovery Time – Saebo

In all stages of growth and development, repetition is key to successful long-term learning and information retention. Repetition is especially beneficial for stroke survivors who seek to regain motor function, strength, and coordination. Consistent repetition that re-establishes communication between the damaged parts of the brain and the body is crucial in stroke rehabilitation.

The brain is our most complex organ and scientists still don’t fully understand it, but we have extensive evidence of one amazing capability called “neuroplasticity.” Neuroplasticity is the brain’s ability to form new synapses, or connections between neurons, especially in response to a brain injury. The nervous system compensates for damage by reorganizing the neurons that remain intact. To form new connections, the involved neurons must be stimulated through consistent activity. Fully understanding this process—and why it works—motivates and clarifies the essential role of repetition in post-stroke rehabilitation.

Neuroplasticity Is The Ability To Heal

For our bodies to perform even the simplest tasks, networks of nerve cells, or neurons, must act in tandem to stimulate the correct parts of our bodies. However, when a stroke causes damage to an area of the brain, damaged neurons become unable to send out signals to the corresponding regions of the body. Although a stroke survivor may appear to have suffered damage to an area of the body—for example, the right arm and leg might be paralyzed—the issue actually stems from damage in the brain.

Amazingly, the brain compensates for these losses through various regenerative strategies. A common process, neuroplasticity, is something that the brain undergoes whenever we learn a new piece of information. As our environments and daily routines change throughout life, we create new synapses, or neural connections. During a healing process, the brain is even more engaged when building these new networks. Synaptic pathways are restructured to work around damaged neurons and may even relocate to entirely different areas of the brain.

Under the right circumstances, the brain can even create new neurons in a process known as neurogenesis. Any healing process requires a healthy body, to support the regeneration of cells, and neurogenesis is no different—the regenerating areas of the brain must be healthy, with the proper blood and oxygen supply, and must be activated consistently. Stroke survivors can encourage neurogenesis through frequent therapy, as well as at-home practice. Careful, diligent practice also ensures that new synapses and neurons do not lead to additional issues or symptoms.

Research has shown that stroke survivors who use repetition to promote neuroplasticity enjoy significant progress in their recovery. In one study, patients who initially struggled with grasp-and-release exercises demonstrated increased cortical reorganization after adhering to a repetitive rehabilitation regimen.

Visualize Progress And Challenge Yourself

We are only just beginning to discover the magnitude of the brain’s capabilities. Not only can the brain heal itself through proper support and repetitive exercises, but it can also respond positively to diligent and focused visualization of those same exercises. People who visualize a process can strengthen the involved synapses without performing the actual, physical motion. Visualization is a great introduction to rehabilitation for those who cannot physically complete the motions. In the early stages of regaining motor function or range-of-motion in an affected limb, it is important for stroke survivors to apply themselves to visualization with the same commitment as they would a physical exercise.

Ia 1995 study, synapses strengthened in participants who imagined completing a particular piano exercise. Even though they were not performing any physical motions, their brains still registered and retained the musical information. This principle is vital for those in the early stages of stroke recovery. Visualization bridges the gap between the motivational difficulties inherent to the early stages of rehabilitation and the more physically intense practices later on in recovery.

The transition between visualization and physical performance can be challenging. Supportive tools such as the SaeboMAS provide support to the affected limb while relieving stress from the joints and muscles involved in the exercise. By guiding the arm through its first physical motions, SaeboMAS helps the brain transition from visualization to independent task completion. Tools like SaeboMAS also encourage consistency in motion, a crucial factor when attempting such intensely repetitive action.

Once you master a repetitive action, it’s important to continue challenging yourself with an exercise routine. This is against human nature because once a task feels easy, we feel that we have succeeded; however, repetitions while on autopilot are far less beneficial than when the individual is actively focused on performing each repetition. It takes self-discipline to continue increasing the difficulty of an exercise but you can derive motivation from the support of a therapist, friends or family.

CIMT—or Constraint Induced Movement Therapy— allows for personal adjustments to the difficulty of an exercise. It’s common for those healing from motor function difficulties to avoid challenging the affected limb, overcompensating with the healthy limb to the point that the affected limb begins to deteriorate further due to non-use. Once the patient can comfortably rely on the affected limb, CIMT introduces “shaping” or “adaptive task practice”: the deconstruction of complex physical tasks into manageable steps that are added one at a time. This gradual addition of challenges deters the patient from switching to autopilot during long, repetitive sets.

A motivated and clear mindset is crucial, therefore the exercises themselves must follow a natural progression to become more challenging, while not being too frustrating. This balance comes from respecting each motion—no matter how small—as an important building block in the healing process. By remaining present in the repetitions, the brain picks up on more detailed messages from the body about what it needs. Any associated soreness or pain should be discussed with professionals to ensure that exercises are promoting healing and not inadvertently causing further damage.

Practice With Purpose

As mindfulness increases, it will become clearer which exercises are right for each particular day, depending on how the body feels. By honoring your body as your guide, you will improve your motivation and the physical progression of neuroplasticity. However, sensing what is best for the body is a tricky practice. Harder tasks may challenge a wider variety of neural networks, speeding up the healing process even when the exercise itself feels less successful.

Overall, it’s better to challenge the brain by moving beyond repetition that no longer inspires further improvement. Start small by mastering simpler tasks and skills, then immediately move on to slightly harder versions of those actions. Always maintain the same level of consistency, but with added restraint or weight. Without added challenges, the progress made through rehabilitation can be lost. It may help to view this healing process as a long-term, ongoing journey with the goal of fully rebuilding and re-strengthening connections that would otherwise be lost.

Canadian psychologist Dr. Donald Hebb claimed that “neurons that fire together, wire together,” in his 1949 book, “The Organization of Behavior.” Long before today’s societal focus on mindfulness, Dr. Hebb recognized the occurrence of neurological regrowth when an activity or thought process is repeated diligently. This observation is pertinent to unlearning less helpful habits or thought patterns, as well. If someone in rehabilitation develops a bad habit, such as injuring a healthy limb through overuse, the brain can unlearn these habits through careful repetition.

Mindfulness Leads To Motivation

The benefits of mindfulness are open to all kinds of learning. Intentional focus during practice is the only way to ensure the brain is fully present and supported for neuroplasticity and neurogenesis. During visualization, each movement should be imagined with extreme specificity as well; awareness that is too unspecific can lead to apathy and lack of concentration. Visualization can be motivating, pushing the person in rehabilitation past the plateau stage—a dispiriting time in the process in which progress stalls. Overall, the trick is to keep exercises from becoming routine. When each day is different or challenging in a new way, the brain stays engaged in ways more conducive to synaptic rehabilitation.

You Need To Move

The most important mantra for post-stroke recovery is to keep moving. Once an intention or goal has been set, consistent movement is the key to warding off muscular atrophy. As mentioned earlier, even before physical movement is possible, exercises can be completed in the brain through visualization. Begin as soon as possible after the injury to take full advantage of early neurogenesis before entering the plateau phase. Whether visualizing or physically completing an action, repetition  is the most important factor in long-term recovery.

How Much Is Enough?

The question remains, how many repetitions are enough to regain full health during stroke rehabilitation? The number of repetitions required to establish a neural pathway depends on multiple factors:

  • the type of exercise
  • the area of the body
  • the current health of the muscles, nerves, and joints

Consistent, dedicated repetition is the most important priority. Without this, the brain cannot complete the rebuilding of the neurons, networks, and capabilities it lost during the stroke.

Quality of repetitions is just as important as quantity. Practice is helpful only while remaining mindful and fully present. Concentration also bolsters motivation, especially when progress plateaus.

Together, mindfulness and repetition move those in rehabilitation past initial discomfort more quickly by strengthening the affected muscles and neurons. We now know that visualization and drive have a psychosomatic effect, speeding up rehabilitation while the brain is most susceptible to healing. Visit the Saebo blog for more information about healing after a stroke.

All content provided on this blog is for informational purposes only and is not intended to be a substitute for professional medical advice, diagnosis, or treatment. Always seek the advice of your physician or other qualified health provider with any questions you may have regarding a medical condition. If you think you may have a medical emergency, call your doctor or 911 immediately. Reliance on any information provided by the Saebo website is solely at your own risk.

via Repetition Improves Stroke Recovery Time | Saebo

, , , , , , , ,

Leave a comment

[BLOG POST] Constraint-Induced Movement Therapy After Stroke – Saebo

Constraint-Induced Movement Therapy After Stroke-blog


When a stroke causes a person to lose the use of one of their limbs, they can easily get frustrated, stop trying to use it at all, and start relying solely on the unaffected limb. This is called learned non-use; it means that the stroke survivor has learned to stop using an affected limb because of its lack of response.

Learned non-use makes it even more difficult for the patient to recover movement and function. This is why many physical therapists and occupational therapists use a technique called constraint-induced movement therapy (or CIMT) to help their patients recover as much movement and function as possible in affected limbs.


What is Constraint-Induced Movement Therapy (CIMT)?


CIMT is practiced most widely with hands and fingers. It consists of placing a mitt over the patient’s functional hand and forcing them to use the stroke-affected limb for several hours a day. The patient performs a repetitive movement so that the brain can repair the pathways.

This therapy technique uses two parts and is done for two weeks. The first part is to restrain the non-affected limb for 90 percent of the patient’s waking time. The second part is to get the patient to practice a specific movement for six hours a day, using shaping. Shaping, also known as adaptive task practice or ATP, is a method of training that involves breaking down tasks into manageable components and changing one parameter of the task at a time. Shaping improves motor relearning and problem-solving. This intensive program is meant to support the brain in making new pathways for movement in the affected limb.

CIMT is useful for both patients with chronic hemiparesis and those recovering from acute stroke. It helps patients of the chronic hemiparesis group overcome learned non-use. For patients recovering from acute stroke, CIMT contributes to preventing learned non-use in the first place. In both cases, CIMT is an effective tool in neurorehabilitation.

There is a somewhat less-intense version of CIMT, called modified CIMT (or mCIMT). It involves the exact same activities, i.e. restraint of the unaffected limb and practice of repetitive movements in the affected limb, but without the 90 percent of waking time and six-hours-per-day schedule of regular CIMT. However, the therapeutic factors remain the same: restraint of the unaffected limb and movement practice in the affected limb are what help with learned non-use and movement recovery.


How CIMT Works


Several neuroimaging and transcranial magnetic stimulation studies have shown that CIMT can stimulate the brain into quickly reorganizing itself, especially in the areas of the cortex that control the affected limb. In other words, CIMT changes the brain so the patient can recover use of the affected limb.

Randomized controlled trials of CIMT have shown that in patients with some active wrist and hand movement, constraint-induced movement therapy had a positive impact on movement and function.

Specifically, the EXCITE trial, held between 2001 and 2003 at several universities, showed that CIMT helped patients with mild to moderate limb impairment learn to increase their use of the affected limb, effectively fighting learned non-use. The positive results lasted for as long as two years.


Saebo and CIMT


Several Saebo items can help with CIMT. The first is the SaeboGlove used for patients with difficulty opening the hands, weak hands and/or mild spasticity. For patients that have more than mild spasticity, the SaeboFlex is indicated. If the patient needs assistance with opening and closing fingers during CIMT therapy, both devices provide support via a spring or tensioner system which imitates the releasing motion once a person tries to let go of an object.

The SaeboMAS and SaeboMAS mini can also be used for CIMT. In the MAS the patient’s arm is unweighted, reducing tone in the hand allowing for more distal control. When the shoulder exerts itself, tone in the hand increases due to more effort taking place by the patient.

If the patient’s fingers are generally clenched into a fist but can be stretched open passively, using the SaeboStretch glove prior to CIMT will help the patient recover some range of motion. Depending on the severity of the case, many clients can reduce the tightness in the hand usually within several weeks to several months.

A Saebo-trained physical or occupational therapist uses Saebo therapy in conjunction with CIMT to promote stroke recovery, effectively fighting learned non-use and supporting neurorehabilitation.

Patients with mild to moderate impairment can benefit a lot from Saebo therapy and CIMT. The Saebo orthoses support the patient in gaining strength and range of motion, while CIMT fights learned non-use and promotes changes in the brain that lead to movement and function recovery in affected limbs.

All content provided on this blog is for informational purposes only and is not intended to be a substitute for professional medical advice, diagnosis, or treatment. Always seek the advice of your physician or other qualified health provider with any questions you may have regarding a medical condition. If you think you may have a medical emergency, call your doctor or 911 immediately. Reliance on any information provided by the Saebo website is solely at your own risk.

via Constraint-Induced Movement Therapy After Stroke | Saebo

, , , , ,

Leave a comment

%d bloggers like this: