Posts Tagged CIMT

[VIDEO] FAQs about CIMT for adults –  Constraint Induced Movement Therapy

Source: FAQs | CIMT | Constraint Induced Movement Therapy

, ,

Leave a comment

[ARTICLE] Can Short-Term Constraint-Induced Movement Therapy Combined With Visual Biofeedback Training Improve Hemiplegic Upper Limb Function of Subacute Stroke Patients? – Full Text

Abstract

ObjectiveTo Investigate the synergic effects of short-term constraint-induced movement therapy (CIMT) and visual biofeedback training (VBT) in subacute stroke patients.

MethodsThirty-two subacute stroke patients were enrolled and randomly assigned to one of three groups: short-term CIMT with VBT, VBT only, and control groups. We applied CIMT for an hour daily during VBT instead of the ordinary restraint time, referred to as ‘short-term’ CIMT. Short-term CIMT with VBT group received simultaneous VBT with CIMT, whereas the VBT the only group received VBT without CIMT for an hour a day for 2 weeks. The control group received conventional occupational therapy (OT) alone. Patients underwent the Purdue Pegboard Test, the JAMAR grip strength test, the Wolf Motor Function Test, the Fugl-Meyer Assessment (upper extremity), Motricity index and the Korean version of Modified Barthel Index test to evaluate motor functions of the hemiplegic upper limb at baseline, post-treatment, and 2 weeks after treatment.

ResultsNo significant differences were observed between short-term CIMT with VBT and VBT only groups. Both groups showed significantly higher scores compared to the control group in the WMFT and FMA tests. However, the short-term CIMT with VBT group showed significant improvement (p<0.05) compared with the control group in both grasp and pad pinch at post-treatment and 2 weeks after treatment while the VBT only group did not.

ConclusionShort-term CIMT with VBT group did not show significant improvement of hemiplegic upper limb function of subacute stroke patients, compared to VBT only group. Larger sample sizes and different restraint times would be needed to clarify the effect.

INTRODUCTION

Most stroke survivors have upper limb motor impairments, along with difficulties in performing activities of daily living [1]. Currently, there are several known intervention treatments for functional recovery of the upper limb after stroke.

Constraint-induced movement therapy (CIMT) has been shown to enhance hemiplegic upper limb functions at both early and late stages of post-stroke [2]. The test was developed by Taub et al. [3] to improve the function of the affected upper limb by limiting the motion of the intact upper limb and induce affected upper limb movement [4, 5]. The original CIMT program consisted of 2 weeks of restraining the unaffected upper limb for 90% of waking hours combined with forced use of the affected upper limb for approximately 6 hours per day during task-oriented activities. However, Page et al. [6] reported that 68% of 208 stroke patients said that they were disinterested in participating in CIMT. One domestic research study showed that 12 out of 46 patients dropped out when they participated in CIMT lasting for 14 hours daily for 2 weeks. The most common reason for dropping out in this study was the lack of participation in training time [7]. Therefore, in a clinical setting, various modified CIMT methods have been developed to improve participation rates.

Recently visual biofeedback training (VBT) has been studied and introduced as a therapeutic option because VBT might improve motor performance by effectively tuning the control structure [8]. Also, Kim et al. [9] reported a significant effect of spatial target reaching training based on visual biofeedback of the upper limb function in hemiplegic subjects. In their previous article, VBT group showed more significant improvement than the control group in the Wolf Motor Function Test (WMFT) and the Fugl-Meyer Assessment (FMA).

Several other studies have also been developed that recognize the effect of CIMT combined with other treatments [10, 11, 12]. In these trials, unaffected upper limbs were restrained for several hours daily, even when participants were not taking other combined therapies. However, it is not easy to apply restraint for more than 5 to 6 hours daily in a clinical setting and longer restraint times can compromise a patient’s therapeutic compliance. To overcome these limitations, it is necessary to find out whether there is any modified therapies have any effects such as a reduced restraint time in CIMT during combined therapy.

In this study, we applied a new CIMT protocol in a clinical setting, while maintaining the existing concept of CIMT. Both CIMT and VBT were performed simultaneously for 1 hour daily for 2 weeks. CMT is hereafter referred to as ‘short-term’ CIMT. We examined the effects of short-term CIMT combined with VBT on gross and fine motor functions and daily functions in patients with subacute hemiplegic strokes. We hypothesized that study participant who received short-term CIMT with VBT would demonstrate more improved outcomes than patients who received VBT alone.

Continue —> KoreaMed Synapse

Fig. 3. The patient with right hemiparesis received ‘behavior simulation.’ The patient held a disc grip by finger flexors. (A) The patient tried to put the spoon in the bowl by forearm pronation. (B) On the other hand, the patient was required to supinate his forearm for getting the spoon to the mouth. There were three patients with left hemiparesis. (C) One received short-term CIMT and VBT simultaneously. (D) Another patient received only VBT. (E) Both patients participated in the catch balls’ game. The other patient received conventional occupational therapy. CIMT, constraint-induced movement therapy; VBT, visual biofeedback training.

, , , , , , ,

Leave a comment

[VIDEO] Lydia’s Story – Constraint Induced Movement Therapy (CIMT) – YouTube

, , , , , , , ,

Leave a comment

[ARTICLE] Sequencing bilateral robot-assisted arm therapy and constraint-induced therapy improves reach to press and trunk kinematics in patients with stroke – Full Text

Abstract

Background

The combination of robot-assisted therapy (RT) and a modified form of constraint-induced therapy (mCIT) shows promise for improving motor function of patients with stroke. However, whether the changes of motor control strategies are concomitant with the improvements in motor function after combination of RT and mCIT (RT + mCIT) is unclear. This study investigated the effects of the sequential combination of RT + mCIT compared with RT alone on the strategies of motor control measured by kinematic analysis and on motor function and daily performance measured by clinical scales.

Methods

The study enrolled 34 patients with chronic stroke. The data were derived from part of a single-blinded randomized controlled trial. Participants in the RT + mCIT and RT groups received 20 therapy sessions (90 to 105 min/day, 5 days for 4 weeks). Patients in the RT + mCIT group received 10 RT sessions for first 2 weeks and 10 mCIT sessions for the next 2 weeks. The Bi-Manu-Track was used in RT sessions to provide bilateral practice of wrist and forearm movements. The primary outcome was kinematic variables in a task of reaching to press a desk bell. Secondary outcomes included scores on the Wolf Motor Function Test, Functional Independence Measure, and Nottingham Extended Activities of Daily Living. All outcome measures were administered before and after intervention.

Results

RT + mCIT and RT demonstrated different benefits on motor control strategies. RT + mCIT uniquely improved motor control strategies by reducing shoulder abduction, increasing elbow extension, and decreasing trunk compensatory movement during the reaching task. Motor function and quality of the affected limb was improved, and patients achieved greater independence in instrumental activities of daily living. Force generation at movement initiation was improved in the patients who received RT.

Conclusion

A combination of RT and mCIT could be an effective approach to improve stroke rehabilitation outcomes, achieving better motor control strategies, motor function, and functional independence of instrumental activities of daily living.

Background

Stroke remains a leading cause of permanent motor disability worldwide [1]. Persistent impairment of the upper extremity (UE) occurs in up to two-thirds of patients after stroke [2]. UE paresis can lead to deficits in motor control [3], motor dysfunction [4], and participation in activities of daily living (ADL) [5]. Developing and providing effective therapeutic techniques to improve UE motor control and recovery is crucial.

Robot-assisted therapy (RT) is an emerging intervention approach that provides high-intensity, high-repetition, and task-specific training to enhance motor learning and control in patients with stroke [6, 7]. Systemic reviews have indicated that RT improves UE muscle strength and motor function of patients with moderate to severe motor impairment after stroke [8, 9]. A recent review suggested that the assessment of movement kinematics should be included in RT studies to identify modulation in motor control strategies [10]. Previous studies found that RT can improve motor control strategies in patients with stroke, including greater movement efficacy [11, 12, 13], better movement smoothness of the affected UE [13], and more use of the preplanned control strategy [13]. However, no consistent findings on patients’ participation in ADL were observed after RT [8, 14, 15, 16, 17]. How to optimize or transfer the treatment benefits of RT on motor function and motor control strategies into participation in ADL warrants further investigation. An approach using RT monotherapy may not optimally address this need.

Constraint-induced therapy (CIT), one most investigated approaches to rehabilitation, was developed to overcome the learned nonuse phenomenon and enhance functional use of the affected arm after stroke [18, 19]. Treatment components of CIT include repetitive and intensive task practice, behavioral shaping techniques, restraint of the unaffected UE, and transfer package [20, 21]. Modified and distributed CIT, which are not as intensive as the original CIT, have been developed and validated [20, 22, 23]. The benefits of the original CIT and its modified versions have been well demonstrated to improve motor function, arm-hand activities, and daily performance of patients with stroke [19, 24, 25].

Therapies that combine RT with other rehabilitation approaches have been developed to optimize the treatment effects of RT [26, 27, 28, 29]. The combination of RT and conventional therapy led to significant gains in arm function of patients, but different combination sequences showed benefits in different outcomes [27]. In addition, RT combined with repetitive task practice was effective in enhancing hand function and stroke recovery of patients [28]. To the best of our knowledge, only one study has investigated the treatment effects of sequencing the combination of RT and a modified form of CIT (mCIT) in patients with stroke [29]. The results indicated that the sequential combination of RT and mCIT led to better motor and functional ability measured by clinical scales compared with RT alone or conventional rehabilitation [29]. However, whether the changes in motor control strategies are responsible for the improvements in motor function after the sequential combination therapy remains unclear.

Kinematic analysis has been recommended as a sound measure to provide objective and sensitive evaluations on spatial and temporal characteristics of UE movements [8]. More importantly, kinematics can capture motor control strategies that cannot be detected by clinical scales [30]. Thus, kinematic analysis enables us to understand whether the behavioral improvement is due to a true change in the end point control and joint motion or is a result of compensation. Kinematic measures, along with clinical assessments, can better clarify the motor control strategies underlying the motor improvements of stroke patients [31, 32].

This study investigated the effects of the sequential combination of RT and mCIT (RT + mCIT), compared with RT alone, focusing on motor control strategies measured by kinematic analysis and on motor and ADL functions using clinical measures. We hypothesized that (1) RT + mCIT would lead to different benefits on the motor control strategies compared with and RT alone and that (2) RT + mCIT would contribute to better performances in ADL than RT alone.

Continue —> Sequencing bilateral robot-assisted arm therapy and constraint-induced therapy improves reach to press and trunk kinematics in patients with stroke | Journal of NeuroEngineering and Rehabilitation | Full Text

https://tbirehabilitation.files.wordpress.com/2016/12/12984_2016_138_fig1_html.gif?w=567&h=246

Fig. 1 Graphic representation of the angular strategy variables: (a) shoulder flexion (ShFlex) in the sagittal plane and elbow extension (ElbExt) in the sagittal plane; (b) shoulder abduction (ShAbd) in the frontal plane; and (c) trunk flexion in sagittal (TrunkFlex) plane

, , , , , , , , ,

Leave a comment

[WEB SITE] CIMT – Constraint Induced Movement Therapy – Adults

Young adult tackles a dexterity challenge

What is CIMT?

Constraint Induced Movement Therapy (“CIMT” or “CI Therapy”) is a form of rehabilitation of the arm and hand following a neurological event such as a stroke.

Constraint induced movement therapy is suitable for adults with hemiplegia, where one arm is weaker than the other. CIMT involves rehabilitation of the weaker arm while restraining the stronger arm. CIMT can make significant and lasting improvements to the amount and quality of use of the affected arm, which can have a major impact on your quality of life and function.

Constraint induced movement therapy has a large body of scientific research behind it and the effects of the treatment have been shown not only on the hand and arm, but on the brain itself.

A constraint induced movement therapy programme is short but intensive. Treatment is provided daily over a period of 2 to 3 weeks and led by a specialist physiotherapist or occupational therapist. You will wear a restraint “mitt” on your stronger hand for 90% of your waking hours throughout the programme, and take part in intensive therapy sessions as well as home practice.

Explore our website for more information, or contact us to speak directly with one of our CIMT therapists.

 

more —> Adults | CIMT | Constraint Induced Movement Therapy

, , , , , ,

Leave a comment

[Abstract] Constraining movement reveals motor capability in chronic stroke: An initial study

Abstract

Objective: To determine if persons with chronic stroke and decreased hip and knee flexion during swing can walk with improved swing-phase kinematics when the task demands constrained gait to the sagittal plane.

Design: A one-day, within-subject design comparing gait kinematics under two conditions: Unconstrained treadmill walking and a constrained condition in which the treadmill walking space is reduced to limit limb advancement to occur in the sagittal plane.

Setting: Outpatient physical therapy clinic.

Subjects: Eight individuals (mean age, 64.1 ±9.3, 2 F) with mild-moderate paresis were enrolled.

Main measures: Spatiotemporal gait characteristics and swing-phase hip and knee range of motion during unconstrained and constrained treadmill walking were compared using paired t-test and Cohen’s d (d) to determine effect size.

Results: There was a significant, moderate-to-large effect of the constraint on hip flexion (p < 0.001, d = –1.1) during initial swing, and hip (p < 0.05, d = –0.8) and knee (p < 0.001, d = –1.1) flexion during midswing. There was a moderate effect of constraint on terminal swing knee flexion (p = 0.238, d = –0.6). Immediate and significant changes in step width (p < 0.05, d = 0.9) and paretic step length (p < 0.05, d = –0.5) were noted in the constrained condition compared with unconstrained.

Conclusion: Constraining the treadmill walking path altered the gait patterns among the study’s participants. The immediate change during constrained walking suggests that patients with chronic stroke may have underlying movement capability that they do not preferentially utilize.

Source: Constraining movement reveals motor capability in chronic stroke: An initial study

, , , , , ,

Leave a comment

[WEB SITE] What is CIMT – Constraint Induced Movement Therapy

What is CIMT?

Constraint Induced Movement Therapy (“CIMT” or “CI Therapy”) is a form of rehabilitation of the arm and hand following a neurological event such as a stroke.

Constraint induced movement therapy is suitable for adults with hemiplegia, where one arm is weaker than the other. CIMT involves rehabilitation of the weaker arm while restraining the stronger arm. CIMT can make significant and lasting improvements to the amount and quality of use of the affected arm, which can have a major impact on your quality of life and function.

Constraint induced movement therapy has a large body of scientific research behind it and the effects of the treatment have been shown not only on the hand and arm, but on the brain itself.

A constraint induced movement therapy programme is short but intensive. Treatment is provided daily over a period of 2 to 3 weeks and led by a specialist physiotherapist or occupational therapist. You will wear a restraint “mitt” on your stronger hand for 90% of your waking hours throughout the programme, and take part in intensive therapy sessions as well as home practice.

Explore our website for more information, or contact us to speak directly with one of our CIMT therapists.

Source: What is CIMT | CIMT | Constraint Induced Movement Therapy

, , , , , ,

Leave a comment

[VIDEO] CMIT – YouTube

, ,

Leave a comment

[ARTICLE] Constraint-Induced Movement Therapy in Compared to Traditional Therapy in Chronic Post-stroke patients – Full Text PDF

Abstract

Introduction: Constraint-induced movement therapy (CIMT) forces the use of the affected side by restraining the unaffected side. The purpose of this article is to explore the changes of motor and functional performance after modified CIMT (mCIMT) in comparison with traditional rehabilitation (TR) in chronic post-stroke patients.

Material and Methods: A total of 12 patients randomly assigned into two treatment groups. Six patients in the mCIMT group received intensive training in a more affected limb for 2 hours daily, 5 days/week using shaping method over a period of 21 days. Participants less affected limb were restrained in arm – hand splint with a target of wearing it for 5 hours daily. The patients in TR group received bimanual and unilateral activities, stretching, strengthening and coordination exercises of the impaired side, tone modification and coordination exercises of the affected side. The focus was to increase independence in activities of daily living activities using affected side. The motor activity log (MAL), wolf motor function test (WMFT), and modified ashworth scale were measured at pre-test (1 day before training), posttest (1 day after training) and follow-up in 3 weeks after training.

Results: The Friedman test found significant differences between pre-test, post-test, and follow-up in MAL and WMFT in mCIMT group. Furthermore, mCIMT group showed significant decreased spasticity (P = 0.030) that measured by ash worth scale. The effect sizes between post-test and pre-test in the above-mentioned outcome measures were moderate to large in mCIMT, ranging from 0.3 to 0.76, but in TR group the effect size were small, ranging from 0 to 0.2.

Conclusion: Therefore, it seems that the mCIMT treatment was more effective than TR in improving some parameters.

Download the PDF file 

, , , , ,

Leave a comment

[ARTICLE] Adherence to modified constraint-induced movement therapy: the case for meaningful occupation – Full Text

Abstract

INTRODUCTION: Modified constraint-induced movement therapy (mCIMT) has been shown to improve function of an affected upper limb post stroke. However, factors influencing adherence of individuals undertaking a mCIMT protocol require further investigation.

AIM: To explore the experience of two participants undergoing a mCIMT protocol and examine factors influencing adherence to the protocol.

METHODS: A qualitative case study design was used. Two participants with upper limb hemiparesis following a stroke were recruited and received mCIMT (two hours of therapy, three days per week for a total of two weeks). During the treatment period, participants were also encouraged to wear the restraint mitt for four hours per day at home.

RESULTS: Participants reported increased confidence and self-esteem following participation, as well as improvements in bi-lateral upper limb function. Participants reported the mCIMT protocol as being highly frustrating. However, motivation to adhere to the protocol was positively influenced by the meaningfulness of the occupations attempted.

CONCLUSION: Although mCIMT can prove frustrating, meaningful occupations may act as a powerful motivator towards adherence to a mCIMT protocol. Further research is required.

WHAT GAP THIS FILLS

What is already known: The literature on the effectiveness of constraint-induced movement therapy (CIMT) and its modifications (mCIMT), to improve motor issues post stroke, is broad and conclusive. However, the demands and rigor of CIMT or mCIMT can influence compliance negatively.
What this study adds: This study offers an insight into the experience of undergoing mCIMT. In relation to client motivation and adherence to protocol, it highlights the importance of meaningful and psychologically rewarding occupations.

, , , , , , ,

Leave a comment

%d bloggers like this: