Posts Tagged cognitive assessment

[Case Report] Improving neuropsychiatric symptoms following stroke using virtual reality – Full Text

Abstract

Rationale: Post-stroke cognitive impairment occurs frequently in patients with stroke, with a 20% to 80% prevalence. Anxiety is common after stroke, and is associated with a poorer quality of life. The use of standard relaxation techniques in treating anxiety in patients undergoing post-stroke rehabilitation have shown some positive effects, whereas virtual reality seems to have a role in the treatment of anxiety disorders, especially when associated to neurological damage.

Patients concerns: A 50-year-old woman, smokers, affected by hypertension and right ischemic stroke in the chronic phase (i.e., after 12 months by cerebrovascular event), came to our observation for a severe anxiety state and a mild cognitive deficit, mainly involving attention and visuo-executive processes, besides a mild left hemiparesis.

Diagnosis: Anxiety in a patient with ischemic stroke.

Interventions: Standard relaxation techniques alone in a common clinical setting or the same psychological approach in an immersive virtual environment (i.e., Computer Assisted Rehabilitation Environment – CAREN).

Outcomes: The patient’s cognitive and psychological profile, with regard to attention processes, mood, anxiety, and coping strategies, were evaluated before and after the 2 different trainings. A significant improvement in the functional and behavioral outcomes were observed only at the end of the combined approach.

Lessons: The immersive virtual reality environment CAREN might be useful to improve cognitive and psychological status, with regard to anxiety symptoms, in post-stroke individuals.

1 Introduction

Stroke is a neurological syndrome caused by a focal disruption in the cerebral blood flow due to occlusion (ischemic stroke) or rupture of a blood vessel (hemorrhagic stroke). Stroke is the leading cause of disability worldwide and the third cause of death in the western countries.[1]Following stroke, especially in right hemisphere lesions, several psychological changes may arise, being depression and anxiety the most common.[2] The right hemisphere plays an important role in verbal communication, as it is mostly responsible for speech prosody and its emotional aspects.[3] Moreover, previous studies indicate that post-stroke anxiety is also common and persistent,[4,5] and this is attributable to a feeling of impotence and uncertainty about the future. Some personality factors, as coping strategies, can contribute to reduce or increase the anxiety’s level. The prevalence of post-stroke cognitive dysfunctions varies from 23% to 55% within three months from the stroke onset, and declines to a percentage between 11% and 31% after 1 year.[6,7] It has been found that after stroke most of the patients may have enduring difficulties in specific cognitive domains, such as attention process and concentration, memory abilities, spatial awareness, perception, praxis and executive functioning.[8,9] Thus, a proper psychometric evaluation should be the mainstay of post-stroke patient’s treatment. Limited evidences showed the relationship between cognition processes, emotions and anxiety. Anxiety disorders frequently coexist with depression, and may be more common in women and younger stroke survivors.[10]

Patients with a ‘probable anxiety disorder’ at 3-months had a poorer quality of life at 1, 3, and 5-years post-stroke after adjusting for age, gender, and stroke severity. Moreover, anxiety symptoms persisted for up to 10 years.[11]

Relaxation techniques can be considered a useful tool, determining a positive emotional and psychological well-being.[12,13] Among the different relaxation techniques, diaphragmatic breathing (DB), progressive muscle relaxation,[12,13] and autogenic relaxing training[14] are characterized by a significant positive association between physical and cognitive dimensions. The use of these techniques in treating anxiety in patients undergoing post-stroke rehabilitation have shown some positive effects.[15]

In the last years, virtual reality (VR) and interactive video gaming are emerging as promising treatment approaches in stroke rehabilitation, both for cognitive rehabilitation and mood/anxiety disorder treatment.[16] VR can provide exposure to nature for those living in isolated confined environments, and it has been demonstrated to reduce stress and improving mood.[17] Virtual Reality Therapy with an Interactive Semi-Immersive Program (i.e., Bts-Nirvana System) can be considered a useful complementary treatment to potentiate functional recovery, with regard to attention, visual-spatial deficits, and motor function in patients affected by stroke.[18] Moreover, relaxation and respiratory techniques in a semi-immersive virtual reality environment, using Bts-Nirvana, may be a promising tool in improving attention process, coping strategies, and anxiety in individuals with neurological disorders, including stroke.[19]

Aim of this case study is to evaluate the effects of a combined rehabilitative approach, using conventional relaxation and respiratory techniques in a virtual immersive rehabilitative environment, that is, Computer Assisted Rehabilitation ENvironment (CAREN), in a patient with chronic stroke.[…]

 

Continue —>  Improving neuropsychiatric symptoms following stroke using v… : Medicine

Figure 1 It shows the combined rehabilitative approach with the CAREN System. CAREN = Computer Assisted Rehabilitation ENvironment.
Source
Improving neuropsychiatric symptoms following stroke using virtual reality: A case report
Medicine98(19):e15236, May 2019.

, , , , ,

Leave a comment

[Abstract] Cognitive rehabilitation in patients with traumatic brain injury: A narrative review on the emerging use of virtual reality

Highlights

About 10% of TBI patients have a severe brain damage with severe motor and cognitive dysfunctions.

New cognitive interventions, including VR training, can be useful in TBI.

VR creates a positive, motivating and enjoyable learning experience for the TBI patients.

Abstract

Traumatic brain injury (TBI) is a clinical condition characterized by brain damage due to an external, rapid and violent force. TBI causes attention, memory, affectivity, behaviour, planning, and executive dysfunctions, with a significant impact on the quality of life of the patient and of his/her family. Cognitive and motor rehabilitation programs are essential for clinical recovery of TBI patients, improving functional outcomes and the quality of life. Various researches have underlined the possible effectiveness of innovative techniques, with regard to virtual reality (VR), during the different phases of rehabilitation after TBI. This review aims to evaluate the role of VR tools in cognitive assessment and rehabilitation in individuals affected by TBI. Studies performed between 2010 and 2017 and fulfilling the selected criteria were found on PubMed, Scopus, Cochrane and Web of Sciences databases. The search combined the terms VR, assessment, rehabilitation and TBI. Our review has shown that VR has the potential to provide an effective assessment and rehabilitation tool for the treatment of cognitive and behavioral impairment on TBI patients.

via Cognitive rehabilitation in patients with traumatic brain injury: A narrative review on the emerging use of virtual reality – Journal of Clinical Neuroscience

, , , ,

Leave a comment

[BLOG POST] CogniFit App, medical innovation and neuropsychological testing at your fingertips

 

  • CogniFit’s team of neuropsychologists, researchers and developers have introduced new features to the CogniFit application for iOS and Android.
  • Updating this medical app technology aims to help the diagnostic process and prevention of cognitive impairments through monitoring the cognitive health of any user in real time.
  • Now, anyone can perform assessments from their mobile device, study their brain function and accurately measure the risk index of major cognitive disorders such as ADHD, dyslexia, dyscalculia, depression, insomnia, Parkinson’s, chemofog, etc.

CogniFit App, medical innovation and neuropsychological testing at your fingertips

CogniFit, a leading developer of medical technologies for cognitive assessment and brain stimulation, has released an update of its App for iOS and Android. It includes new functionalities and incorporates complete neuropsychological batteries that digitally allow studying the cognitive functioning of children from 7 years old, young, adults or seniors. Users will know their cognitive status in less than 30-40 minutes.

This medical application is fully accessible. Any user can download CogniFit’s mobile application for iOS or Android and easily manage any of the cognitive tests.

“The innovative technology used in CogniFit’s App makes it a tool aimed at imrpoving preventive medicine. A health program focused on helping to improve different diagnosis and reduce medical expenses. The aim has been to unite knowledge and use the most reliable, advanced technology to assist in the diagnosis process and prevention and therefore to take a step towards the future.”- Carlos Rodríguez CTO at CogniFit.

Cognitive results are automatically generated after any of the clinical tests and providing comprehensible and valuable information about a wide range of cognitive skills in areas of memoryattention-concentrationplanningcoordinationexecutive functions or reasoning.

The results report, which is fully detailed, provides an in-depth understanding of a person’s cognitive status, strengths and weaknesses and can help determine whether the cognitive symptoms they experience are normal or may reflect a neurological disorder. The results can help assist detection, and provide valuable information and action guidelines, which are the basis for identifying support strategies.

“Sometimes these symptoms go unnoticed, as they can be very subtle, so these neuropsychological evaluations are a step forward in their ability to detect the risk index of multiple cognitive pathologies at an early stage”- explains Patricia Fernández, CogniFit neuropsychologist and assessment specialist.

CogniFit App, medical innovation and neuropsychological testing at your fingertips

The CogniFit App allows you to analyze huge databases. The platform learns from each interaction and has developed an advanced interface that provides valuable information.

CogniFit technology is available to anyone with a smartphone or computer with an internet connection. This technological advance will allow more and more people to assess themselves, thus improving the quality of life of many people.

SaS (Software as a Service) is transforming medical and psychological assistance. Remote monitoring of a patient’s cognitive health through CogniFit ensures better patient care, helps optimize treatment outcomes and reduces the time and health care expense.

In education, it enables non-specialized teachers and professors to identify potential risks and anticipate learning difficulties, helping to reduce school failure. This technology helps the education system to face the digital challenge and brain-based learning, providing tools that can help improve the competitiveness and agility of the system.

CogniFit cognitive assessment batteries have also become a critical support for the transportation or vehicle industry, helping to offer more competitive services, minimize costs and help reduce accidents. These advantages can be transferred to other environments such as insurance companies, human resources, etc.

“We have sought to simplify and create an accessible application to create a bridge in the gaps between the user, school, business, or health professionals by offering graphs and comphrensible information for everyone. We are seeing a great deal of support, more and more patients, users, hospitals, schools and companies from different sectors are using these tools to evaluate cognitive health and brain functioning. We have seen how these advances are transformed into economic advantages for the institutions that apply them.” 

Explains Carlos Rodriguez, CTO of CogniFit.

Like a neuropsychologist, CogniFit asks the user a series of simple questions aimed at detecting the main diagnostic criteria, signs, and symptoms. It continues with a battery of digital tasks, clinical scales, and tests validated for the user’s age, aimed at accurately assessing the main cognitive aspects (memory, attention-concentration, planning, coordination, executive functions or reasoning). In this way, we will be able to know the complete cognitive profile and the risk index of suffering from the main cognitive disorders.

These tools oriented towards pre-diagnosis are helping to transform the way people access the health or education system, bringing important benefits to medical teams, researchers, companies, schools, insurance companies, etc.

Carlos Rodríguez adds that “technology is more and more present in society, and it takes on a special role in health and education. For us in this sector we need to meet the challenges that both areas entail.”

via CogniFit App, medical innovation and neuropsychological testing at your fingertips – CogniFit’s Blog

, , , , , ,

Leave a comment

[WEB SITE] Cognitive Assessment: Neurocognitive Assessment Battery Online for the detection of cognitive deterioration (CAB).

General Cognitive Assessment Battery (CAB)

Innovative online neuropsychological test. Study brain function and complete a comprehensive online screening. Precisely evaluate a wide range of abilities and detect cognitive well-being (high-moderate-low). Identify strengths and weaknesses in the areas of memory, concentration/attention, executive functions, planning, and coordination.

WHO IS IT FOR?

    • For my own evaluation
    • For a family member
    • For my patients
    • For my students
    • For a research study

TOTAL PRICE 49.95

 

Cognitive assessment battery to study brain function and cognitive performance

  • Assess current state of the user’s cognitive skills
  • For children 7 years and older and adults.
  • The complete battery lasts about 30-40 minutes.

The General Cognitive Assessment Battery (CAB) from CogniFit is a leading professional tool that makes it possible to get study the brain function of children 7 years and older and adults in depth, using online cognitive tasks. The results from this neuropsychological tool are useful for understanding the user’s cognitive state, strengths, and weaknesses. This can help determine whether or not the cognitive changes that the user may be experiencing are normal, or if they reflect some kind of neurological disorder. Any private or professional user can easily use this cognitive assessment.

This normalized cognitive test is completely online and lasts about 30-40 minutes. After completing the evaluation, a report will automatically be generated with the user’s neurocognitive profile. This report gathers useful information and presents data in an easy-to-understand format to make it possible to understand the functioning of different cognitive skills. It also provides valuable information that can help detect the risk of some disorder or problem, recognize its severity, and identify support strategies for each case.

We recommend using this neuropsychological assessment to better understand cognitive function, or cognitive, physical, psychological, or social well-being, and where there are symptoms or difficulties related o concentration/attention, memory, reasoning, planning, or coordination. We recommend using this complete cognitive test to complement a professional diagosis, and never to substitute a clinical consultation.[…]

 

Visit Site —> Cognitive Assessment: Neurocognitive Assessment Battery Online for the detection of cognitive deterioration (CAB).

, , , , , , , , , , , ,

Leave a comment

[ARTICLE] Using the Oxford Cognitive Screen to Detect Cognitive Impairment in Stroke Patients: A Comparison with the Mini-Mental State Examination – Full Text

Background: The Oxford Cognitive Screen (OCS) was recently developed with the aim of describing the cognitive deficits after stroke. The scale consists of 10 tasks encompassing five cognitive domains: attention and executive function, language, memory, number processing, and praxis. OCS was devised to be inclusive and un-confounded by aphasia and neglect. As such, it may have a greater potential to be informative on stroke cognitive deficits of widely used instruments, such as the Mini-Mental State Examination (MMSE) or the Montreal Cognitive Assessment, which were originally devised for demented patients.

Objective: The present study compared the OCS with the MMSE with regards to their ability to detect cognitive impairments post-stroke. We further aimed to examine performance on the OCS as a function of subtypes of cerebral infarction and clinical severity.

Methods: 325 first stroke patients were consecutively enrolled in the study over a 9-month period. The OCS and MMSE, as well as the Bamford classification and NIHSS, were given according to standard procedures.

Results: About a third of patients (35.3%) had a performance lower than the cutoff (<22) on the MMSE, whereas 91.6% were impaired in at least one OCS domain, indicating higher incidences of impairment for the OCS. More than 80% of patients showed an impairment in two or more cognitive domains of the OCS. Using the MMSE as a standard of clinical practice, the comparative sensitivity of OCS was 100%. Out of the 208 patients with normal MMSE performance 180 showed impaired performance in at least one domain of the OCS. The discrepancy between OCS and MMSE was particularly strong for patients with milder strokes. As for subtypes of cerebral infarction, fewer patients demonstrated widespread impairments in the OCS in the Posterior Circulation Infarcts category than in the other categories.

Conclusion: Overall, the results showed a much higher incidence of cognitive impairment with the OCS than with the MMSE and demonstrated no false negatives for OCS vs MMSE. It is concluded that OCS is a sensitive screen tool for cognitive deficits after stroke. In particular, the OCS detects high incidences of stroke-specific cognitive impairments, not detected by the MMSE, demonstrating the importance of cognitive profiling.

Introduction

Stroke is the second most common cause of death and the third most common source of disability (12). Its prevalence and incidence increases with age representing the leading cause of disability in the elderly (2). Patients with stroke have cognitive deficits in a very high proportion of cases [e.g., Ref. (1)], although variables estimates are reported. The differences are likely due to variability in sample characteristics, assessment methods, definitions of impairment, and time interval since stroke onset (1). As cognitive assessment is time consuming, physicians often use smart tools to assess cognitive impairment in stroke survivors that need little time but are often of limited use to highlight cognitive dysfunction, typically yielding relatively low-prevalence rates, below 25% (34). On the opposite, more detailed neuropsychological assessments of domain-specific cognitive impairments consume more time but are better at detecting cognitive impairment, highlighting higher occurrences, ranging from 35 to 92% (58). Language, spatial attention, memory, praxis, executive function, and speed of processing are the main impaired cognitive domains (5). Moreover, psychiatric comorbidities such as depression and delirium often occur after a stroke (9). Cognitive deficits interfere with rehabilitation and represent a negative prognostic factor (1011), impacting on activities of daily living, quality of life, and return to work (12).

Stroke guidelines recommend the importance of early cognitive diagnosis in order to plan tailored rehabilitation programs (13). Tools, such as the Mini-Mental State Examination [MMSE; (14)] and the Montreal Cognitive Assessment [MoCA; (15)], are widely used as a practical solution to briefly assess cognition post-stroke. However, these instruments were devised for evaluation of patients with dementia and only provide a “domain-general” cognitive score with a single cutoff for impairment. The present study describes the use of a newly devised instrument, the Oxford Cognitive Screen (OCS), against one of these two reference tools, namely the MMSE; in a parallel study, we examined the effectiveness of the OCS against the MoCA (16).

Interest in using the MMSE as a comparison chiefly stems from its wide use; indeed, it is one of the most widely tests used in clinical practice. Early reviews emphasized the reliability and construct validity of the MMSE to capture moderate-to-severe cognitive impairment (17). However, the limits of the MMSE are also well-known particularly in the assessment of stroke patients (1819). In spite of this, the MMSE is still one of the instruments which is most widely used nowadays in clinical settings to detect global cognitive impairment in patients with stroke (2030). In particular, it is used as a diagnostic index in the stroke units to plan the rehabilitation interventions as well as in the identification of cognitive profiles after non-dementia cerebro-vascular events (21293133).

The key problem in using the MMSE to assess stroke sequelae is that it does not explicitly assess common post-stroke domain-specific impairments such as neglect, executive function, apraxia, and aphasia. Indeed, performance on the MMSE can be confounded by co-occurring difficulties in these domains. For example, a patient with expressive aphasia will maximally score 4 points (out of a maximum 30) as the large majority of tasks require spoken language. This would lead to a potential misclassification of patients as “dementia” where there is a specific language impairment. Similarly, specific cognitive impairments may be “missed” in patients with stroke. This lack of specificity contrasts the indications of several clinical guidelines which emphasize the need to assess performance across different domains of cognition after stroke [e.g., Ref. (234)].

The OCS was recently developed with the specific aim of describing the cognitive deficits after stroke (35); OCS was devised to be inclusive and un-confounded by aphasia and neglect. It can be administered within 15 min, can be delivered at the bedside, is easy to administer and score, can be used in relatively acute phase (after 3 days from onset) and provides a “snapshot” of a patient’s cognitive profile useful to define the rehabilitative program. The possibility to have separate cutoff for each of the tasks used allows obtaining a cognitive pinpointing strengths and weaknesses of individual stroke patients.

The scale consists of 10 tasks encompassing five cognitive domains: attention and executive function, language, memory, number processing, and praxis. Furthermore, it includes a brief evaluation of visual field defects. Administration is simple and brief (ca. 15 min) making it also suitable for immobilized patients. Demeyere et al. (16) provided initial data on a sample of stroke patients indicating the ability of the scale to detect differentiated profiles across the various domains and also reported a greater sensitivity of OCS over MoCA.

In order to assess whether this new instrument provides a sensitive and practical first line assessment supporting wider adoption, the present study aimed to compare the OCS with the MMSE in detecting cognitive symptoms after stroke, thereby providing further data on the sensitivity and specificity of the OCS in the identification of cognitive deficits in a relatively large sample of first stroke patients. We also examined OCS performance as a function of subtypes of cerebral infarction [based on the Bamford classification; (36)] and clinical severity [based on the National Institutes of Health Stroke Scale, NIHSS; (37)]. […]

 

Continue —-> Frontiers | Using the Oxford Cognitive Screen to Detect Cognitive Impairment in Stroke Patients: A Comparison with the Mini-Mental State Examination | Neurology

, , , , , ,

Leave a comment

[WEB SITE] Center for BrainHealth Tool Provides Unique Insight for Those with Traumatic Brain Injury.

Tuesday, February 3, 2015

A new study reveals that individuals with traumatic brain injury (TBI) have significantly more difficulty with gist reasoning than traditional cognitive tests. Using a unique cognitive assessment developed by researchers at theCenter for BrainHealth at The University of Texas at Dallas, findings published Friday in the Journal of Clinical and Experimental Neuropsychology indicate that an individual’s ability to “get the gist or extract the essence of a message” after a TBI more strongly predicts his or her ability to effectively hold a job or maintain a household than previously revealed by traditional cognitive tests alone. The study also further validates the Center for BrainHealth’s gist reasoning assessment as an informative tool capable of estimating a broad range of daily life skills.

“Gist reasoning characterizes a meaningful complex cognitive capacity. Assessing how well one understands and expresses big ideas from information they are exposed, commonly known as an ability to “get the gist”, is window into real life functionality. I do not know of any other paper and pencil test that can tell us both,” explained Asha Vas, Ph.D., research scientist at the Center for BrainHealth and lead study author. “Although performance on traditional cognitive tests is informative, widely-used measures do not paint the full picture. Adults with TBI often fare average or above on these structured measures. All too often, adults with brain injury have been told that they ought to be fine; in reality, they are not doing and thinking like they used to prior to the injury and struggle managing everyday life responsibilities years after the injury. Gist reasoning could be a sensitive tool to connect some of those dots as to why they are having trouble with real-life functionality despite falling into the range of “normal” on other cognitive tests.”

Study participants included 70 adults ages 25-55: 30 suffered a TBI one year or longer prior to the study and 40 were healthy controls. The TBI group and matched controls were of similar socioeconomic status, educational backgrounds, and IQ. Researchers administered a series of standard cognitive assessments, including working memory, inhibition, and switching. Researchers also gave the gist reasoning assessment, which studies the number of gist-based ideas (not explicitly stated facts) participants are able to abstract from multiple complex texts. Daily life functionality in TBI participants was evaluated using a self-rated questionnaire that included topics such as problem solving at work, managing finances, organizing grocery lists at home, and social interactions.

Although the two groups had similar IQ, reading comprehension and speed of processing scores, nearly 70% of the TBI group scored lower on gist reasoning compared to controls. The TBI survivors’ decreased gist-reasoning performance showed a direct correlation with difficulties at work and at home. Interestingly the cumulative score of all standard cognitive tests only predicted daily function with 45% accuracy in individuals with TBI. Adding the gist reasoning measure boosted accuracy to 58%.

“TBI needs to be treated as a chronic condition. While acute recovery care is essential, long-term monitoring and effective interventions are necessary to mitigate persistent or later-emerging deficits and ensure maximum brain regeneration and cognitive performance,” said Sandra Chapman,Ph.D., founder and chief director at the Center for BrainHealth and Dee Wyly Distinguished University Professor in the School of Behavioral and Brain Sciences at UT Dallas. “We don’t want anyone who has survived a TBI to think that if gist reasoning and day-to-day life is challenging today that it will always be that way, because gist reasoning can be improved. In an earlier study conducted at the Center for BrainHealth, we found that individuals with TBI can improve gist reasoning. This is very promising outcome, because increased gist reasoning is associated with improved functionality and greater brain blood flow, a sign of increased brain health.”

The researchers theorize that gist reasoning impairments could reflect losses in flexible and innovative thinking and that losses in these areas hinder optimal daily life functioning, including job performance and social relationships. “Deficits of this nature may manifest in a lessened ability to problem solve in unexpected situations and understand others’ point of view,” Vas said.The Center is currently conducting multiple projects to study the effectiveness of high performance brain training strategies in individuals with TBI and other populations, to help improve brain function across the lifespan and enrich daily life.

This research was made possible by a Friends of BrainHealth Distinguished New Scientist Award.

Source: Center for BrainHealth

, , ,

Leave a comment

[WEB SITE] Get the gist? Tool provides unique insight for those with traumatic brain injury – Featured Research

A new study reveals that individuals with traumatic brain injury (TBI) have significantly more difficulty with gist reasoning than traditional cognitive tests. Using a unique cognitive assessment developed by researchers at the Center for BrainHealth at The University of Texas at Dallas, findings published Friday in the Journal of Clinical and Experimental Neuropsychology indicate that an individual’s ability to “get the gist or extract the essence of a message” after a TBI more strongly predicts his or her ability to effectively hold a job or maintain a household than previously revealed by traditional cognitive tests alone. The study also further validates the Center for BrainHealth’s gist reasoning assessment as an informative tool capable of estimating a broad range of daily life skills.

“Gist reasoning characterizes a meaningful, complex cognitive capacity. Assessing how well one understands and expresses big ideas from information they are exposed, commonly known as an ability to “get the gist,” is window into real life functionality. I do not know of any other paper and pencil test that can tell us both,” explained Asha Vas, Ph.D., research scientist at the Center for BrainHealth and lead study author. “Although performance on traditional cognitive tests is informative, widely-used measures do not paint the full picture. Adults with TBI often fare average or above on these structured measures. All too often, adults with brain injury have been told that they ought to be fine; in reality, they are not doing and thinking like they used to prior to the injury and struggle managing everyday life responsibilities years after the injury. Gist reasoning could be a sensitive tool to connect some of those dots as to why they are having trouble with real-life functionality despite falling into the range of “normal” on other cognitive tests.”

Study participants included 70 adults ages 25-55: 30 suffered a TBI one year or longer prior to the study and 40 were healthy controls. The TBI group and matched controls were of similar socioeconomic status, educational backgrounds, and IQ. Researchers administered a series of standard cognitive assessments, including working memory, inhibition, and switching. Researchers also gave the gist reasoning assessment, which studies the number of gist-based ideas (not explicitly stated facts) participants are able to abstract from multiple complex texts. Daily life functionality in TBI participants was evaluated using a self-rated questionnaire that included topics such as problem solving at work, managing finances, organizing grocery lists at home, and social interactions.

Although the two groups had similar IQ, reading comprehension and speed of processing scores, nearly 70% of the TBI group scored lower on gist reasoning compared to controls. The TBI survivors’ decreased gist-reasoning performance showed a direct correlation with difficulties at work and at home. Interestingly the cumulative score of all standard cognitive tests only predicted daily function with 45% accuracy in individuals with TBI. Adding the gist reasoning measure boosted accuracy to 58%.

“TBI needs to be treated as a chronic condition. While acute recovery care is essential, long-term monitoring and effective interventions are necessary to mitigate persistent or later-emerging deficits and ensure maximum brain regeneration and cognitive performance,” said Sandra Chapman,Ph.D., founder and chief director at the Center for BrainHealth and Dee Wyly Distinguished University Professor in the School of Behavioral and Brain Sciences at UT Dallas. “We don’t want anyone who has survived a TBI to think that if gist reasoning and day-to-day life is challenging today that it will always be that way, because gist reasoning can be improved. In an earlier study conducted at the Center for BrainHealth, we found that individuals with TBI can improve gist reasoning. This is very promising outcome, because increased gist reasoning is associated with improved functionality and greater brain blood flow, a sign of increased brain health.”

The researchers theorize that gist reasoning impairments could reflect losses in flexible and innovative thinking and that losses in these areas hinder optimal daily life functioning, including job performance and social relationships. “Deficits of this nature may manifest in a lessened ability to problem solve in unexpected situations and understand others’ point of view,” Vas said. The Center is currently conducting multiple projects to study the effectiveness of high performance brain training strategies in individuals with TBI and other populations, to help improve brain function across the lifespan and enrich daily life.

via Get the gist? Tool provides unique insight for those with traumatic brain injury — ScienceDaily.

, ,

Leave a comment

%d bloggers like this: