Posts Tagged Cognitive deficits

[Abstract] The Effect of Noninvasive Brain Stimulation on Poststroke Cognitive Function: A Systematic Review

Abstract

Introduction. Cognitive impairment after stroke has been associated with lower quality of life and independence in the long run, stressing the need for methods that target impairment for cognitive rehabilitation. The use of noninvasive brain stimulation (NIBS) on recovery of language functions is well documented, yet the effects of NIBS on other cognitive domains remain largely unknown. Therefore, we conducted a systematic review that evaluates the effects of different stimulation techniques on domain-specific (long-term) cognitive recovery after stroke. 

Methods. Three databases (PubMed, EMBASE, and PsycINFO) were searched for articles (in English) on the effects of NIBS on cognitive domains, published up to January 2018. 

Results. A total of 40 articles were included: randomized controlled trials (n = 21), studies with a crossover design (n = 9), case studies (n = 6), and studies with a mixed design (n = 4). Most studies tested effects on neglect (n = 25). The majority of the studies revealed treatment effects on at least 1 time point poststroke, in at least 1 cognitive domain. Studies varied highly on the factors time poststroke, number of treatment sessions, and stimulation protocols. Outcome measures were generally limited to a few cognitive tests. 

Conclusion. Our review suggests that NIBS is able to alleviate neglect after stroke. However, the results are still inconclusive and preliminary for the effect of NIBS on other cognitive domains. A standardized core set of outcome measures of cognition, also at the level of daily life activities and participation, and international agreement on treatment protocols, could lead to better evaluation of the efficacy of NIBS and comparisons between studies.

https://journals.sagepub.com/doi/abs/10.1177/1545968319834900

, , , , , ,

Leave a comment

[Poster] Repetitive Transcranial Magnetic Stimulation (rTMS) application in cognitive deficits after Traumatic Brain Injury (TBI)/concussion

Objective: The objective of this study is to review current literature for the efficacy of Repetitive Transcranial Magnetic Stimulation (rTMS) treatment for cognitive deficits after Traumatic Brain Injury (TBI)/concussion.

Background: TBI is a major public health problem and can cause substantial disability. TBI can lead to Post Concussive Syndrome (PCS) which consists of neuro-motor, cognitive, behavioral/affective, and emotional symptoms. Cognitive deficits can significantly impact functionality. The outcome of neuropsychopharmacological treatment is limited, with risk for side effects. TMS is a form of non-invasive neuromodulation which is FDA-approved for treatment-resistant depression. However, there is limited understanding about its application in addressing cognitive deficits after TBI. We therefore sought to examine current research pertaining to the application of TMS in post-TBI cognitive deficits.

Methods: We searched the PubMed research database with the specific terms “TMS in cognitive deficits after TBI”, “rTMS” and “post concussive syndrome.” We assessed clinical trials where cognition was measured either as a primary or secondary variable. Case studies/reports were excluded.

Results: One non-controlled, pilot study was found that assessed cognition after TMS as a secondary variable in TBI. The aim of the study was to assess safety, tolerability and efficacy of repetitive TMS for treatment of PCS after mild TBI (mTBI). Patients who had sustained mTBI over three months prior and had a PCS Symptom Scale score of over 21 were selected. Repetitive TMS (rTMS) was used as the intervention with 20 sessions of rTMS using a figure-8 coil attached to MagPro stimulator. Cognitive symptoms were assessed using subjective self-report scales and objective tests for attention and speed of processing domains. Neuropsychological tests that were used include Trails A & B, Ruff’s 2 & 7 Automatic speed test, Stroop test, Language test for phonemic, and category fluency, Rey AVLT test. The study showed a reduction in overall severity of PCS symptoms but no significant changes on the cognitive symptoms questionnaire or on the majority of neuropsychological test scores.

Conclusion: Despite the limitation in this study with the lack of a control group, there appears to be a good signal for the clinical application of TMS for post-concussive syndrome after TBI/concussion. A more robust, large well-controlled study may be very reasonable approach in the future to evaluate efficacy of rTMS.

References

1. Koski L1, Kolivakis T, Yu C, Chen JK, Delaney S, Ptito A. Noninvasive brain stimulation for persistent postconcussion symptoms in mild traumatic brain injury. J Neurotrauma. 2015 Jan 1;32(1):38-44. https://doi.org/10.1089/neu.2014.3449.

2. Bashir S1, Vernet M, Yoo WK, Mizrahi I, Theoret H, Pascual-Leone A. Changes in cortical plasticity after mild traumatic brain injury. Restor Neurol Neurosci. 2012;30(4):277-82. https://doi.org/10.3233/RNN-2012-110207.

3. Demirtas-Tatlidede A1, Vahabzadeh-Hagh AM, Bernabeu M, Tormos JM, Pascual-Leone A.Noninvasive brain stimulation in traumatic brain injury. J Head Trauma Rehabil. 2012 Jul-Aug;27(4):274-92. https://doi.org/10.1097/HTR.0b013e318217df55.

4. Neville IS, Hayashi CY, El Hajj SA, Zaninotto AL, Sabino JP, Sousa LM Jr, Nagumo MM, Brunoni AR, Shieh BD, Amorim RL, Teixeira MJ, Paiva WS. Repetitive Transcranial Magnetic Stimulation (rTMS) for the cognitive rehabilitation of traumatic brain injury (TBI) victims: study protocol for a randomized controlled trial. Trials. 2015 Oct 5;16:440. https://doi.org/10.1186/s13063-015-0944-2.

via Repetitive Transcranial Magnetic Stimulation (rTMS) application in cognitive deficits after Traumatic Brain Injury (TBI)/concussion – Brain Stimulation: Basic, Translational, and Clinical Research in Neuromodulation

, , , , ,

Leave a comment

[BLOG POST] Combating Struggles with Acquired Brain Injury

The physical, neurological and emotional challenges that may arise from an acquired brain injury (ABI) are vast. Different causes and injuries create consequences that vary among individuals. Therapists need to be perceptive in order to both address struggles and provide avenues for constructive thinking.

One of the largest hurdles therapists encounter in rehabilitation with individuals who have suffered an ABI is the patient often lacks insight into their own deficits. Their injured brain signals they are fine and can successfully perform activities they used to do before injury, when in fact they may be struggling with anything from orientation and memory to executive function. This is challenging for family members and caregivers and is also is a barrier for treatment if the patient does not come to terms with these new deficits. Although insight typically improves to some degree as the patient progresses, giving the right level and amount of explanation about what has happened and future planning is helpful.

A thorough evaluation should be completed early on to identify cognitive deficits. Once strengths and deficits are identified, treatment can begin. Include tasks to promote gains in deficit areas such as memory and attention, such as deductive and/or abstract reasoning tasks, working memory tasks or word-retrieval activities. Also think about how strengths can be utilized to assist in this processIf a patient’s reading comprehension is better than auditory comprehension, printed information should be used to improve their ability to comprehend spoken information.

Combat common struggles by demonstrating compensatory strategies that aid the individual in participating in life activities. For patients experiencing memory and organization deficits, be prepared with a list of smart phone apps and functions they can use to set alerts for appointments, manage tasks, make lists, etc.

Fatigue is common in individuals recovering from a brain injury. Their brain is working “overtime” to make sense of things, and performing tasks successfully may take a great deal of conscious thought and effort. Assist patients in creating a schedule to work on their cognitive exercises and/or stay active in doing their daily activities, and include rest to help the brain recover. Once the brain begins to fatigue, there is a decrease in function. The patient will notice activities and tasks become harder, and head pain may also occur. This should signal the patient that it’s time to rest.

Lastly, there are things the brain injury survivor can focus on that will help their recovery, including:

  • Accepting their new persona
  • Allowing themselves to make mistakes
  • Striving to keep a positive attitude
  • Remembering they can continue to improve

Continued improvements may be the most important point in keeping your patient motivated. In years past, it was commonly accepted that after a window of about three years, the brain would not have any further recovery. It is now known that neuroplasticity allows for continued recovery over time with focused effort. Different parts of the brain can establish neuropathways and take over functions lost through damage to other parts of the brain.

Area Manager Jean Herauf, SLP has 30+ years’ experience, more than 20 of them with RehabVisions. Jean is active in her clinic’s local brain injury support group and has attended numerous courses over the years, and read a good deal on ABI.

Source: Combating Struggles with Acquired Brain Injury – RehabVisions

, , , , ,

Leave a comment

[SCHOLARLY PAPER] Cognitive Deficits Following Stroke – Full Text PDF

Summary

The rehabilitation of survivors of stroke places heavy demands on NHS resources. Studies investigating the efficacy of stroke rehabilitation have produced equivocal results.

In this paper we focus on the effects of cognitive deficits on motor functioning (in particular, disorders of praxis and attention) and report some results of particular relevance to physiotherapists. For instance, a symmetrical approach to treatment may not only improve motor function but may also help reduce the severity of unilateral neglect (ie encouraging the patient to orient visually to the affected side should improve the ability to attend to and to be aware of the affected side of space. Motor cues are more likely to be effective than visual cues if motor performance is required, and in particular cueing is,most likely to be effective if it is initiated by a patient rather than a therapist.

Simultaneous bi-lateral exercises should be avoided unless attempts are made to overcome any effect of extinction, where a patient may attend only to the unaffected limb. In addition, cases of dyspraxia show that palogical functioning may be transferred between the hemispheres. Sequential bi-lateral exercises are to be preferred; the effect of the intact limb performing a pattern of movement may provide the visual experience of what the movement should be, and there also may be actjvation of homologous motor areas via the corpus callosum which may facilite the normal movement pattern.

Full Text PDF 

 

, , , , , , ,

Leave a comment

[WEB SITE] Combating Struggles with Acquired Brain Injury – RehabVisions

Posted: 6/10/15
RehabVisions

The physical, neurological and emotional challenges that may arise from an acquired brain injury (ABI) are vast. Different causes and injuries create consequences that vary among individuals. Therapists need to be perceptive in order to both address struggles and provide avenues for constructive thinking.

One of the largest hurdles therapists encounter in rehabilitation with individuals who have suffered an ABI is the patient often lacks insight into their own deficits. Their injured brain signals they are fine and can successfully perform activities they used to do before injury, when in fact they may be struggling with anything from orientation and memory to executive function. This is challenging for family members and caregivers and is also is a barrier for treatment if the patient does not come to terms with these new deficits. Although insight typically improves to some degree as the patient progresses, giving the right level and amount of explanation about what has happened and future planning is helpful.

A thorough evaluation should be completed early on to identify cognitive deficits. Once strengths and deficits are identified, treatment can begin. Include tasks to promote gains in deficit areas such as memory and attention, such as deductive and/or abstract reasoning tasks, working memory tasks or word-retrieval activities. Also think about how strengths can be utilized to assist in this process. If a patient’s reading comprehension is better than auditory comprehension, printed information should be used to improve their ability to comprehend spoken information.

Combat common struggles by demonstrating compensatory strategies that aid the individual in participating in life activities. For patients experiencing memory and organization deficits, be prepared with a list of smart phone apps and functions they can use to set alerts for appointments, manage tasks, make lists, etc.

Fatigue is common in individuals recovering from a brain injury. Their brain is working “overtime” to make sense of things, and performing tasks successfully may take a great deal of conscious thought and effort. Assist patients in creating a schedule to work on their cognitive exercises and/or stay active in doing their daily activities, and include rest to help the brain recover. Once the brain begins to fatigue, there is a decrease in function. The patient will notice activities and tasks become harder, and head pain may also occur. This should signal the patient that it’s time to rest.

Lastly, there are things the brain injury survivor can focus on that will help their recovery, including:

  • Accepting their new persona
  • Allowing themselves to make mistakes
  • Striving to keep a positive attitude
  • Remembering they can continue to improve

Continued improvements may be the most important point in keeping your patient motivated. In years past, it was commonly accepted that after a window of about three years, the brain would not have any further recovery. It is now known that neuroplasticity allows for continued recovery over time with focused effort. Different parts of the brain can establish neuropathways and take over functions lost through damage to other parts of the brain.

Area Manager Jean Herauf, SLP has 30+ years’ experience, more than 20 of them with RehabVisions. Jean is active in her clinic’s local brain injury support group and has attended numerous courses over the years, and read a good deal on ABI.

Source: Combating Struggles with Acquired Brain Injury – RehabVisions

, , , ,

Leave a comment

[WEB SITE] Driver Rehabilitation and Personal Transportation: The Vital Link to Independence

INTRODUCTION

In technically advanced societies, driving has become an integral part of daily living for all aspects of adult life. For people with disabilities, whose mobility has become severely curtailed, driving represents the ultimate freedom; the means by which to attain their highest level of independence and autonomy over their lives.

On the other hand, medical and health professionals have a responsibility towards society as a whole as well as towards the person with a disability to ensure that the best advice is given regarding safe control of an automobile. Weighing up the issues involved is often a difficult task for medical and health professionals. It calls for sensitivity and diplomacy and an understanding of the disability and its progression. As well as medical and functional information, knowledge of the person’s level of insight and the likelihood of their displaying responsible behavior, as a direct result of their disability, or originating from their actual personality traits will have a bearing on the final recommendations regarding the advisability of driving. Despite extensive research, no firm conclusions have been drawn on which specific cognitive deficits may constitute a barrier to driving. However, literature shows a consensus of the need for assessment to be carried out on several levels, including medical, psychological, functional and, if deemed safe to do so, an on road drive. The difficulty of separating individual skills as predictors of actual performance is recognized by Evans (1) who nonetheless comments that “perhaps a distinction should be made between perceptual-motor skills and total performance”.

In comparison to the attention given to assessing brain injured drivers, little emphasis has been found in the literature regarding the driving safety of those with physical disabilities, but without brain injuries. Those studies which do focus on physical disability demonstrate that, given the correct vehicle adaptations, driving safety is not compromised (2-5).

This chapter aims to provide an introduction to the issues involved in driver assessment for a wide range of disability types. It outlines several models of driving skill theory, examines the steps to be followed when assessing driving skill and discusses aspects of behavior and environment which impinge on the person’s ability to drive safely.

Continue –> front matter.

, , , , , ,

Leave a comment

[WEB SITE] Cognitive Problems After Traumatic Brain Injury

What is cognition?

Cognition is the act of knowing or thinking. It includes the ability to choose, understand, remember and use information. Cognition includes:

  • Attention and concentration.
  • Processing and understanding information.
  • Memory.
  • Communication.
  • Planning, organizing, and assembling.
  • Reasoning, problem-solving, decision-making, and judgment.
  • Controlling impulses and desires and being patient…

GoTo WEBSITE –> Cognitive Problems After Traumatic Brain Injury.

, ,

Leave a comment

PDF: Cognitive Rehabilitation Following Traumatic Brain Injury: Assessment to Treatment

Cognitive rehabilitation following traumatic brain injury: Assessment to Treatment

 

 

, , , , , ,

Leave a comment

%d bloggers like this: