Posts Tagged cognitive

[Abstract] Virtual Reality and Cognitive Rehabilitation in People With Stroke: An Overview.

OBJECTIVE:This review evaluates the use of virtual reality (VR) tools in cognitive rehabilitation of stroke-affected individuals.
METHODS:Studies performed between 2010 and 2017 that fulfilled inclusion criteria were selected from PubMed, Scopus, Cochrane, and Web of Sciences databases. The search combined the terms “VR,” “rehabilitation,” and “stroke.”
RESULTS:Stroke patients experienced significant improvement in many cognitive domains (such as executive and visual-spatial abilities and speech, attention, and memory skills) after the use of VR training.
CONCLUSIONS:Rehabilitation using new VR tools could positively affect stroke patient cognitive outcomes by boosting motivation and participation.

via Virtual Reality and Cognitive Rehabilitation in People With Stroke: An Overview. – Abstract – Europe PMC

, , , , ,

Leave a comment

[Abstract] A randomized controlled trial of a walking training with simultaneous cognitive demand (dual‐task) in chronic stroke

Abstract

Background and purpose

The aim was to evaluate the tolerability of, adherence to and efficacy of a community walking training programme with simultaneous cognitive demand (dual‐task) compared to a control walking training programme without cognitive distraction.

Methods

Adult stroke survivors at least 6 months after stroke with a visibly obvious gait abnormality or reduced 2‐min walk distance were included in a two‐arm parallel randomized controlled trial of complex intervention with blinded assessments. Participants received a 10 week, bi‐weekly, 30 min treadmill programme at an aerobic training intensity (55%–85% heart rate maximum), either with or without simultaneous cognitive demands. Outcome was measured at 0, 11 and 22 weeks. The primary assessment involved 2‐min walk tests with and without cognitive distraction to investigate the dual‐task effect on walking and cognition; secondary results were the Short Form Health Survey 36, EuroQol‐5D‐5L, the Physical Activity Scale for the Elderly (PASE) and step activity.

Results

Fifty stroke patients were included; 43 received allocated training and 45 completed all assessments. The experimental group (n = 26) increased their mean (SD) 2‐min walking distance from 90.7 (8.2) to 103.5 (8.2) m, compared with 86.7 (8.5) to 92.8 (8.6) m in the control group, and their PASE score from 74.3 (9.1) to 89.9 (9.4), compared with 94.7 (9.4) to 77.3 (9.9) in the control group. Statistically, only the change in the PASE differed between the groups (P = 0.029), with the dual‐task group improving more. There were no differences in other measures.

Conclusions

Walking with specific additional cognitive distraction (dual‐task training) might increase activity more over 12 weeks, but the data are not conclusive.

 

via A randomized controlled trial of a walking training with simultaneous cognitive demand (dual‐task) in chronic stroke – Meester – – European Journal of Neurology – Wiley Online Library

, , , , , , ,

Leave a comment

[Abstract] Sham tDCS: A hidden source of variability? Reflections for further blinded, controlled trials

Abstract

Transcranial direct current stimulation (tDCS) is a non-invasive brain stimulation technique increasingly used to modulate neural activity in the living brain. In order to establish the neurophysiological, cognitive or clinical effects of tDCS,tDCS most studies compare the effects of active tDCS to those observed with a sham tDCS intervention. In most cases, sham tDCS consists in delivering an active stimulation for a few seconds to mimic the sensations observed with active tDCS and keep participants blind to the intervention. However, to date, sham-controlled tDCS studies yield inconsistent results, which might arise in part from sham inconsistencies. Indeed, a multiplicity of sham stimulation protocols is being used in the tDCS research field and might have different biological effects beyond the intended transient sensations. Here, we seek to enlighten the scientific community to this possible confounding factor in order to increase reproducibility of neurophysiological, cognitive and clinical tDCS studies.

via Sham tDCS: A hidden source of variability? Reflections for further blinded, controlled trials – Brain Stimulation: Basic, Translational, and Clinical Research in Neuromodulation

, , , , , , ,

Leave a comment

[Abstract] Rehabilitation Trajectories and Outcomes in Individuals With Mild Traumatic Brain Injury and Psychiatric Histories. – A TRACK-TBI Pilot Study

Abstract

Objective: To determine differences in rehabilitation trajectories and return to work(RTW) and social outcomes in individuals with mild traumatic brain injury (mTBI) with and without significant psychiatric histories at index hospitalization.

Setting: Three level 1 trauma centers participating in the Transforming Research and Clinical Knowledge in Traumatic Brain Injury (TRACK-TBI) consortium.

Participants: A total of 305 individuals with index mTBI enrolled in the TRACK-TBI pilot project.

Design: Secondary analysis of data from the TRACK-TBI pilot study.

Main Measures: Chart review and patient/family interview at emergency department (ED) admission, ED clinical data, ED discharge plan, functional interview data at 3- and 6-month outcomes, Trail Making Tests, the Wechsler Adult Intelligence Scale, Fourth Edition, Processing Speed Index, the California Verbal Learning Test, Second Edition, and the Craig Handicap Assessment and Reporting Technique.

Results: Controlling for neurological history and CT lesion at ED admission, participants with and without psychiatric histories did not differ in terms of treatment, return to work, or reported social function. Individuals with psychiatric histories demonstrated lower processing speed and reported reduced satisfaction with occupational function at outcome.

Conclusions: Individuals with mTBI and psychiatric histories may require specialized rehabilitation planning to address increased risk for cognitive difficulties and occupational dissatisfaction at outcome. CT lesion may independently influence outcomes.

via Rehabilitation Trajectories and Outcomes in Individuals With… : The Journal of Head Trauma Rehabilitation

, , , , , ,

Leave a comment

[Abstract] Rehabilitation of Cognitive Dysfunction Following Traumatic Brain Injury – Epilepsy Society

This article outlines key principles and considerations in the rehabilitation of cognitive challenges following mild, moderate, and severe traumatic brain injuries, with a focus on the needs of the service member and veteran population. The authors highlight specific evidence-based strategies and interventions and provide functional examples to support implementation. By emphasizing the array of tools and resources that have been designed to address cognitive challenges in the service member and veteran population, they focus on optimizing cognition to support successful community reintegration and the resumption of a full and meaningful life.

 

First page of article

via Rehabilitation of Cognitive Dysfunction Following Traumatic Brain Injury – Physical Medicine and Rehabilitation Clinics

, , , , , , ,

Leave a comment

[Systematic Review] Trends in robot-assisted and virtual reality-assisted neuromuscular therapy: a systematic review of health-related multiplayer games – Full Text

Abstract

Background

Multiplayer games have emerged as a promising approach to increase the motivation of patients involved in rehabilitation therapy. In this systematic review, we evaluated recent publications in health-related multiplayer games that involved patients with cognitive and/or motor impairments. The aim was to investigate the effect of multiplayer gaming on game experience and game performance in healthy and non-healthy populations in comparison to individual game play. We further discuss the publications within the context of the theory of flow and the challenge point framework.

Methods

A systematic search was conducted through EMBASE, Medline, PubMed, Cochrane, CINAHL and PsycINFO. The search was complemented by recent publications in robot-assisted multiplayer neurorehabilitation. The search was restricted to robot-assisted or virtual reality-based training.

Results

Thirteen articles met the inclusion criteria. Multiplayer modes used in health-related multiplayer games were: competitive, collaborative and co-active multiplayer modes. Multiplayer modes positively affected game experience in nine studies and game performance in six studies. Two articles reported increased game performance in single-player mode when compared to multiplayer mode.

Conclusions

The multiplayer modes of training reviewed improved game experience and game performance compared to single-player modes. However, the methods reviewed were quite heterogeneous and not exhaustive. One important take-away is that adaptation of the game conditions can individualize the difficulty of a game to a player’s skill level in competitive multiplayer games. Robotic assistance and virtual reality can enhance individualization by, for example, adapting the haptic conditions, e.g. by increasing haptic support or by providing haptic resistance. The flow theory and the challenge point framework support these results and are used in this review to frame the idea of adapting players’ game conditions.

Introduction

Robotic assistance and virtual reality in neuromuscular therapy

Neurological deficits can result in impaired motor function that affect a person’s quality of life. Researchers have been working to restore the nervous system and reduce the neurological deficits of people suffering from stroke, spinal cord injury, or traumatic brain injury [1]. For people with neurological deficits, impaired motor function is among the most prominent factors limiting the quality of life [2]. Motor neurorehabilitation can lead to permanent improvements in motor function [3]. Robotic assistance and virtual reality have the potential to enhance rehabilitation of neuromuscular deficits beyond the levels possible with conventional training strategies [45].

Game experience and task performance in multiplayer games

Robot- and virtual reality-assisted single-player games are well integrated in neurorehabilitation schedules. Recently, multiplayer games have been tested to complement neuromuscular therapy. Multiplayer games are expected to motivate the patients and increase the potential of robot- and virtual reality-assisted neuromuscular therapy.

Multiplayer games incorporate social interaction to promote the enjoyment of the involved players. The additional player adds new possibilities to the game environment, generally missed in single-player gaming against preprogrammed challenges or artificially controlled opponents. The multiplayer environment and related game mechanics can facilitate social interaction, ranging from conversation to haptic interaction. Due to the this added social interaction, the game experience is thought to be better in multiplayer compared to single-player gaming [6].

The mode of the game specifies whether the players compete or cooperate with one another [7]. In line with the flow theory, a competitive mode requires opponents of similar skill level to achieve enjoyment as the task difficulty experienced by one opponent [8]. Comparable skill levels prevent boredom or stress and result in a meaningful challenge level that leads to a flow state when training [9]. In such training conditions the players have a positive game experience.

In positive game experience players increase their game performance [910]. Increased game performance facilitates the general idea of serious games, i.e., playing for a primary purpose other than pure entertainment [11]. If enhanced game performance is achieved by increased physical activity, training intensity is also increased. In neuromuscular therapy, training intensity – alongside early treatment, user-centered, and task-oriented training – is one of the key factors in neurorehabilitation [1213]. Therefore, multiplayer gaming has great potential to further increase the benefits of robot-assisted neuromuscular and virtual reality-assisted therapy [1415].

[…]

 

Continue —> Trends in robot-assisted and virtual reality-assisted neuromuscular therapy: a systematic review of health-related multiplayer games | Journal of NeuroEngineering and Rehabilitation | Full Text

 

Fig. 4Difficulty adaptation based on individual condition setting in multiplayer games. Game experience (left) can be optimized by balancing the game performance (right). – Left: The initial game experience under nominal conditions relates to the skill level of the opponent and is non-optimal for differently skilled players (squares). Optimal game experience is perceived by the players when the condition adapts the difficulty towards the players’ skill level (circles). – Right: A common initial game performance state consists of a conditional task difficulty and its corresponding player specific game performance (square). Player specific difficulty adaptation can balance the game performances of the two players (circles)

, , , , , , , , ,

Leave a comment

[Factsheet] Understanding TBI: Part 2 – Brain injury impact on individuals functioning – Model Systems Knowledge Translation Center (MSKTC)

Father teaching child with blocks

Written by Thomas Novack, PhD and Tamara Bushnik, PhD in collaboration with the MSKTC

 

A traumatic brain injury interferes with the way the brain normally works. When nerve cells in the brain are damaged, they can no longer send information to each other in the normal way. This causes changes in the person’s behavior and abilities. The injury may cause different problems, depending upon which parts of the brain were damaged most.

There are three general types of problems that can happen after TBI: physical, cognitive and emotional/ behavioral problems. It is impossible to tell early on which specific problems a person will have after a TBI. Problems typically improve as the person recovers, but this may take weeks or months. With some severe injuries changes can take many years.

Structure and function of the brain

The brain is the control center for all human activity, including vital processes (breathing and moving) as well as thinking, judgment, and emotional reactions. Understanding how different parts of the brain work helps us understand how injury affects a person’s abilities and behaviors.

Left vs. Right Brain

  • The brain is divided into two halves (hemispheres). The left half controls movement and sensation in the right side of the body, and the right half controls movement and sensation in the left side. Thus, damage to the right side of the brain may cause movement problems or weakness on the body’s left side.
  • For most people, the left half of the brain is responsible for verbal and logical functions including language (listening, reading, speaking, and writing), thought and memory involving words.
  • The right half is responsible for nonverbal and intuitive functions such as putting bits of information together to make up an entire picture, recognizing oral and visual patterns and designs (music and art), and expressing and understanding emotions.

Brain Areas & Associated Functions

The brain is made up of six parts that can be injured in a head injury. The effect of a brain injury is partially determined by the location of the injury. Sometimes only a single area is affected, but in most cases of TBI multiple areas have been injured. When all areas of the brain are affected, the injury can be very severe.

Image of Brain with Lobe Information

Six parts Functions
Brain Stem
  • Breathing
  • Heart Rate
  • Swallowing
  • Reflexes for seeing and hearing
  • Controls sweating, blood pressure, digestion, temperature
  • Affects level of alertness
  • Ability to sleep
  • Sense of balance
Cerebellum
  • Coordination of voluntary movement
  • Balance and equilibrium
  • Some memory for reflex motor acts
Frontal Lobe
  • How we know what we are doing within our environment
  • How we initiate activity in response to our environment
  • Judgments we make about what occurs in our daily activities
  • Controls our emotional response
  • Controls our expressive language
  • Assigns meaning to the words we choose
  • Involves word associations
  • Memory for habits and motor activities
  • Flexibility of thought, planning and organizing
  • Understanding abstract concepts
  • Reasoning and problem solving
Parietal Lobe
  • Visual attention
  • Touch perception
  • Goal directed voluntary movements
  • Manipulation of objects
  • Integration of different senses
Occipital Lobes
  • Vision
Temporal Lobes
  • Hearing ability
  • Memory aquisition
  • Some visual perceptions such as face recognition and object identification
  • Categorization of objects
  • Understanding or processing verbal information
  • Emotion

Physical Problems

Most people with TBI are able to walk and use their hands within 6-12 months after injury. In most cases, the physical difficulties do not prevent a return to independent living, including work and driving.

In the long term the TBI may reduce coordination or produce weakness and problems with balance. For example, a person with TBI may have difficulty playing sports as well as they did before the injury. They also may not be able to maintain activity for very long due to fatigue.

Cognitive (Thinking) Problems

  • Individuals with a moderate-to-severe brain injury often have problems in basic cognitive (thinking) skills such as paying attention, concentrating, and remembering new information and events.
  • They may think slowly, speak slowly and solve problems slowly.
  • They may become confused easily when normal routines are changed or when things become too noisy or hectic around them.
  • They may stick to a task too long, being unable to switch to different task when having difficulties.
  • On the other hand, they may jump at the first solution they see without thinking it through.
  • They may have speech and language problems, such as trouble finding the right word or understanding others.
  • After brain injury, a person may have trouble with all the complex cognitive activities necessary to be independent and competent in our complex world. The brain processes large amounts of complex information all the time that allows us to function independently in our daily lives. This activity is called executive function because it means being the executive or being in charge of one’s own life.

Emotional/Behavioral Problems

Behavioral and emotional difficulties are common and can be the result of several causes:

  • First, the changes can come directly from damage to brain tissue. This is especially true for injuries to the frontal lobe, which controls emotion and behavior.
  • Second, cognitive problems may lead to emotional changes or make them worse. For example, a person who cannot pay attention well enough to follow a conversation may become very frustrated and upset in those situations.
  • Third, it is understandable for people with TBI to have strong emotional reactions to the major life changes that are caused by the injury. For example, loss of job and income, changes in family roles, and needing supervision for the first time in one’s adult life can cause frustration and depression.

Brain injury can bring on disturbing new behaviors or change a person’s personality. This is very distressing to both the person with the TBI and the family. These behaviors may include:

  • Restlessness
  • Acting more dependent on others
  • Emotional or mood swings
  • Lack of motivation
  • Irritability
  • Aggression
  • Lethargy
  • Acting inappropriately in different situations
  • Lack of self-awareness. Injured individuals may be unaware that they have changed or have problems. This can be due to the brain damage itself or to a denial of what’s really going on in order to avoid fully facing the seriousness of their condition.

Fortunately, with rehabilitation training, therapy and other supports, the person can learn to manage these emotional and behavioral problems.

Disclaimer

This information is not meant to replace the advice from a medical professional. You should consult your health care provider regarding specific medical concerns or treatment.

Source

Our health information content is based on research evidence whenever available and represents the consensus of expert opinion of the TBI Model Systems directors.

Our health information content is based on research evidence and/or professional consensus and has been reviewed and approved by an editorial team of experts from the TBI Model Systems.

Authorship

Understanding TBI was developed by Thomas Novack, PhD and Tamara Bushnik, PhD in collaboration with the Model System Knowledge Translation Center. Portions of this document were adapted from materials developed by the University of Alabama TBIMS, Baylor Institute for Rehabilitation, New York TBIMS, Mayo Clinic TBIMS, Moss TBIMS, and from Picking up the pieces after TBI: A guide for Family Members, by Angelle M. Sander, PhD, Baylor College of Medicine (2002).

via Understanding TBI: Part 2 – Brain injury impact on individuals functioning | Model Systems Knowledge Translation Center (MSKTC)

, , , , , , ,

Leave a comment

[ARTICLE] Course of Social Participation in the First 2 Years After Stroke and Its Associations With Demographic and Stroke-Related Factors – Full text

Background. Many persons with stroke experience physical, cognitive, and emotional problems that contribute to restrictions in social participation. There is, however, a lack of knowledge on the long-term course of participation over time post-stroke.

Objective. To describe the time course of participation up to 2 years post-stroke and to identify which demographic and stroke-related factors are associated with this time course.

Methods. This was a multicenter, prospective cohort study following 390 persons with stroke from hospital admission up to 2 years (at 2, 6, 12, and 24 months). Multilevel modeling with linear and quadratic time effects was used to examine the course of the frequency of vocational and social/leisure activities, experienced restrictions, and satisfaction with participation.

Results. The frequency of vocational activities increased up to 1 year post-stroke and leveled off thereafter. Older and lower-educated persons showed less favorable courses of participation than younger and higher-educated persons, respectively. The frequency of social/leisure activities decreased post-stroke. Participation restrictions declined up to 1 year post-stroke and leveled off thereafter. Persons dependent in activities of daily living (ADL) kept experiencing more restrictions throughout time than independent persons. Satisfaction with participation increased slightly over time.

Conclusions. Changes in participation occurred mostly in the first year post-stroke. Particularly older and lower-educated persons, and those dependent in ADL showed less favorable courses of participation up to 2 years post-stroke. Clinicians can apply these findings in identifying persons most at risk of long-term unfavorable participation outcome and, thus, target rehabilitation programs accordingly.

Stroke can lead to long-lasting physical problems such as mobility limitations,1cognitive problems such as attention or memory deficits,2 and emotional problems such as anxiety,3,4 depressive symptoms,35 and fatigue.4,6 The population of persons surviving a stroke7,8 increases, consistent with major improvements in acute stroke care (eg, stroke units, thrombolysis, and thrombectomy9,10), but this also means that more people have to deal with the long-lasting consequences of stroke.11,12 These consequences contribute to the deterioration of social participation post-stroke.1317 Importantly, persons with stroke view social participation (participation hereafter) as a central aspect of their recovery.18,19

Participation can be defined as involvement in a life situation such as paid work, family, or community life,17 which consists of actual performed activities,20 such as the frequency of observable actions and behaviors,2123 and the subjective experience of persons,20 such as experienced restrictions and satisfaction.2123

In previous studies, it was observed that the frequency of activities decreases in persons with stroke, relative to their premorbid levels.16,2428 This particularly applies to vocational activities (work, unpaid work, and household activities), but social activities decrease after stroke, too.28 Four months after discharge from outpatient rehabilitation, 50% of persons with stroke still experienced participation problems.29Social activity levels have been reported to be lower in persons with stroke at 1 year post-stroke than in healthy controls,30 a level that remained stable up to 3 years.31Past studies showed that only 39% of persons with stroke were satisfied with their lives as a whole after 1 year,16 which might be even lower up to 3 years post-stroke,32 especially in socially inactive persons.33

Although studies have shed some light on the course of participation over time post-stroke, it is difficult to get a good understanding of how levels of participation develop and change over time. This is a result of the use of cross-sectional designs,16,24,26,27,33 longitudinal designs limited to either only the first 6 months13,25,28,29 or only the long-term levels of participation after stroke,31,32,34studies only incorporating 2 time points,35 and many different participation measures, some measuring the frequency of activities and others the subjective experience of participation.36

Research into factors associated with participation post-stroke could lead to identifying possible risk factors of an unfavorable outcome. Earlier studies showed that demographic factors such as older age at stroke onset,14,37 lower levels of education,29,38 and female sex37 were related to a less favorable outcome in terms of participation, along with stroke-related factors such as dependence in activities of daily living (ADL),39,40 more severe stroke,37 and lower levels of cognitive functioning.26,29 However, these factors are yet to be examined in relation to the course of participation over time and as such to be identified as possible risk factors.

To get a more detailed and comprehensive understanding of participation over time, it is necessary to include repeated measurements of objective (ie, frequency of activities) as well as subjective (ie, experienced restrictions and satisfaction) aspects of participation. Furthermore, it is important to identify persons in the early stage after stroke, who are at risk of an unfavorable outcome in the long term. At this point in time, potential risk factors can be easily determined through available information, including demographics and stroke-related information, and rehabilitation care can be provided. Consequently, we studied participation over a 2-year follow-up in a clinical cohort of persons with stroke in order to answer the following research questions: how does participation develop over the first 2 years after stroke in terms of frequency, restrictions, and satisfaction? Moreover, which demographic and stroke-related factors are associated with this time course?[…]

 

Continue —> Course of Social Participation in the First 2 Years After Stroke and Its Associations With Demographic and Stroke-Related Factors – Daan P. J. Verberne, Marcel W. M. Post, Sebastian Köhler, Leeanne M. Carey, Johanna M. A. Visser-Meily, Caroline M. van Heugten, 2018

, , , , , ,

Leave a comment

[WEB SITE] How to keep your brain healthy and avoid cognitive fatigue

The Globe and Mail and Morneau Shepell have created the Employee Recommended Workplace Award to honour companies that put the health and well-being of their employees first. Read about the 2018 winners of the award at tgam.ca/workplaceaward.

Registration is now open for the 2019 Employee Recommended Workplace Awards at www.employeerecommended.com.

Morneau Shepell is hosting a free webinar on Thurs. Sept. 13 from 1 p.m. ET to 2 p.m. ET to discuss seven ways to improve mental health in your workplace. If you would like to participate, click here to register.

Think back to your school days, especially postsecondary school, and how your brain felt after cramming all night for a tough exam. Remember that? When you felt like your brain had been pushed to the limit and was no longer functioning properly? That is called cognitive fatigue.

Cognitive fatigue can be defined as a decrease is one’s cognitive abilities due to prolonged mental demands, brought on by excessive wear and tear on the brain. It’s not simply being sleep-deprived, although sleep is important and necessary for healthy brain functioning.

Sometimes the challenges we take on, such as work-related commitments and education goals, can be stressful, challenging and require a high level of cognitive demand over an extended period of time.

Daniel Goleman reports that cognitive exhaustion can occur due to extended periods of focus, and the brain, like any muscle, can be pushed to the point of exhaustion. When this happens, the brain’s capacity to perform to its full potential can be dramatically decreased.

Understanding cognitive fatigue can help us know the actions we can take to reduce the risk and increase our capacity to manage high-demand mental task when necessary. When we’re not aware that cognitive fatigue is happening, we can be at increased risk for being distracted, anxious and irritable.

This micro skill provides some ideas to mitigate risk for cognitive fatigue. The focus is on people who engage in some form of activity (such as work or school) that requires a high level of concentration over an extended period.

Awareness

People who have suffered a head injury or some form of mental illness can be at increased risk for experiencing cognitive fatigue. Research shows that cognitive fatigue can significantly impair physical performance that could put a person at increased risk for making mistakes.

Common signs of cognitive fatigue include a decrease in motivation, creativity and ability to analyze and think clearly. Someone who’s experiencing any of these symptoms may not be able to process what’s happening, so they need to learn the concept of cognitive fatigue and what actions to take if they’ve reached that point.

Accountability

Sometimes we may order more food at a restaurant than we can eat. The same can happen when we want to achieve something. We focus on the end goal and may not consider the ongoing effort or commitment we’ve made to achieve it.

To reduce the risk for cognitive fatigue, you need to not only be aware of your capacity and the potential for cognitive fatigue, you need to set realistic expectations. For example, you wouldn’t commit to running a marathon unless you trained and worked up to it. The mind needs the same consideration. If you want to do something in your career or education that will be a challenge, it’s helpful to make a commitment to train your brain and rest it like any other muscle. You want to develop it to be as strong as possible.

Action

Here are some actions you can take to reduce your risk for cognitive fatigue.

Prepare for challenges – Accept that for your brain to work to its full potential it needs to be trained and prepared. If you’re taking a course that requires lots of studying over a period of a year or two, develop a capacity-building plan that may involve increasing your daily reading or taking a study strategy program to maximize your study habits.

Create a schedule and stick to it – Schedule periods in your day when you’ll focus, and rest periods above and beyond getting your required sleep. The purpose is to provide times in your day when your mind can rest and enjoy other activities.

Develop a daily resiliency plan – Too much caffeine or alcohol can hurt your brain’s ability to perform while exercise and strong coping skills – the strategies that enable us to solve problems under stress – can help your brain stay strong when its being stressed. A resiliency plan is a minimum commitment to provide the mind and body the most opportunity to have the energy it needs to push through daily challenges as well as to reduce risk for cognitive fatigue. A daily plan may include:

  • Getting seven to nine hours’ sleep
  • Drinking no more than two cups of coffee – and no other sources of caffeine
  • Taking a 10-minute break every 90 minutes
  • Eating three healthy meals, with healthy snacks between them
  • Exercising 30 minutes each day
  • Drinking at least 2.5 litres of water
  • Meditating for 15 minutes first thing in the morning to kick off the day
  • Journaling at the end of the day to process the day’s challenges and acknowledge things to be grateful for
  • Spending a minimum of 30 minutes with your partner to catch up on life

Bill Howatt is the chief research and development officer of work force productivity with Morneau Shepell in Toronto.

You can find all the stories in this series at tgam.ca/workplaceaward

via How to keep your brain healthy and avoid cognitive fatigue – The Globe and Mail

,

Leave a comment

[Review] Evidence-Based Cognitive Rehabilitation: Updated Review of the Literature From 2003 Through 2008

Abstract

Cicerone KD, Langenbahn DM, Braden C, Malec JF, Kalmar K, Fraas M, Felicetti T, Laatsch L, Harley JP, Bergquist T, Azulay J, Cantor J, Ashman T. Evidence-based cognitive rehabilitation: updated review of the literature from 2003 through 2008.

Objective

To update our clinical recommendations for cognitive rehabilitation of people with traumatic brain injury (TBI) and stroke, based on a systematic review of the literature from 2003 through 2008.

Data Sources

PubMed and Infotrieve literature searches were conducted using the terms attentionawarenesscognitivecommunicationexecutivelanguagememoryperceptionproblem solving, and/or reasoning combined with each of the following terms: rehabilitationremediation, and training for articles published between 2003 and 2008. The task force initially identified citations for 198 published articles.

Study Selection

One hundred forty-one articles were selected for inclusion after our initial screening. Twenty-nine studies were excluded after further detailed review. Excluded articles included 4 descriptive studies without data, 6 nontreatment studies, 7 experimental manipulations, 6 reviews, 1 single case study not related to TBI or stroke, 2 articles where the intervention was provided to caretakers, 1 article redacted by the journal, and 2 reanalyses of prior publications. We fully reviewed and evaluated 112 studies.

Data Extraction

Articles were assigned to 1 of 6 categories reflecting the primary area of intervention: attention; vision and visuospatial functioning; language and communication skills; memory; executive functioning, problem solving and awareness; and comprehensive-holistic cognitive rehabilitation. Articles were abstracted and levels of evidence determined using specific criteria.

Data Synthesis

Of the 112 studies, 14 were rated as class I, 5 as class Ia, 11 as class II, and 82 as class III. Evidence within each area of intervention was synthesized and recommendations for Practice StandardsPractice Guidelines, and Practice Options were made.

Conclusions

There is substantial evidence to support interventions for attention, memory, social communication skills, executive function, and for comprehensive-holistic neuropsychologic rehabilitation after TBI. Evidence supports visuospatial rehabilitation after right hemisphere stroke, and interventions for aphasia and apraxia after left hemisphere stroke. Together with our prior reviews, we have evaluated a total of 370 interventions, including 65 class I or Ia studies. There is now sufficient information to support evidence-based protocols and implement empirically-supported treatments for cognitive disability after TBI and stroke.

via Evidence-Based Cognitive Rehabilitation: Updated Review of the Literature From 2003 Through 2008 – Archives of Physical Medicine and Rehabilitation

, , , , ,

Leave a comment

%d bloggers like this: