Posts Tagged Connectivity

[Abstract] Neural Correlates of Passive Position Finger Sense After Stroke

Background. Proprioception of fingers is essential for motor control. Reduced proprioception is common after stroke and is associated with longer hospitalization and reduced quality of life. Neural correlates of proprioception deficits after stroke remain incompletely understood, partly because of weaknesses of clinical proprioception assessments.

Objective. To examine the neural basis of finger proprioception deficits after stroke. We hypothesized that a model incorporating both neural injury and neural function of the somatosensory system is necessary for delineating proprioception deficits poststroke.

Methods. Finger proprioception was measured using a robot in 27 individuals with chronic unilateral stroke; measures of neural injury (damage to gray and white matter, including corticospinal and thalamocortical sensory tracts), neural function (activation of and connectivity of cortical sensorimotor areas), and clinical status (demographics and behavioral measures) were also assessed.

Results. Impairment in finger proprioception was present contralesionally in 67% and bilaterally in 56%. Robotic measures of proprioception deficits were more sensitive than standard scales and were specific to proprioception. Multivariable modeling found that contralesional proprioception deficits were best explained (r2 = 0.63; P = .0006) by a combination of neural function (connectivity between ipsilesional secondary somatosensory cortex and ipsilesional primary motor cortex) and neural injury (total sensory system injury).

Conclusions. Impairment of finger proprioception occurs frequently after stroke and is best measured using a quantitative device such as a robot. A model containing a measure of neural function plus a measure of neural injury best explained proprioception performance. These measurements might be useful in the development of novel neurorehabilitation therapies.

via Neural Correlates of Passive Position Finger Sense After Stroke – Morgan L. Ingemanson, Justin R. Rowe, Vicky Chan, Jeff Riley, Eric T. Wolbrecht, David J. Reinkensmeyer, Steven C. Cramer, 2019

, , , , , , , , ,

Leave a comment

[Abstract] Neuroimaging in epilepsy

Purpose of review Epilepsy neuroimaging is important for detecting the seizure onset zone, predicting and preventing deficits from surgery and illuminating mechanisms of epileptogenesis. An aspiration is to integrate imaging and genetic biomarkers to enable personalized epilepsy treatments.

Recent findings The ability to detect lesions, particularly focal cortical dysplasia and hippocampal sclerosis, is increased using ultra high-field imaging and postprocessing techniques such as automated volumetry, T2 relaxometry, voxel-based morphometry and surface-based techniques. Statistical analysis of PET and single photon emission computer tomography (STATISCOM) are superior to qualitative analysis alone in identifying focal abnormalities in MRI-negative patients. These methods have also been used to study mechanisms of epileptogenesis and pharmacoresistance.

Recent language fMRI studies aim to localize, and also lateralize language functions. Memory fMRI has been recommended to lateralize mnemonic function and predict outcome after surgery in temporal lobe epilepsy.

Summary Combinations of structural, functional and post-processing methods have been used in multimodal and machine learning models to improve the identification of the seizure onset zone and increase understanding of mechanisms underlying structural and functional aberrations in epilepsy.

via Neuroimaging in epilepsy : Current Opinion in Neurology

, , , , ,

Leave a comment

[REVIEW] Stroke Connectome and Its Implications for Cognitive and Behavioral Sequela of Stroke – Full Text Pdf

Systems-based approaches to neuroscience, using network analysis and the human connectome, have been adopted by many researchers by virtue of recent progress in neuroimaging and computational technologies. Various neurological disorders have been evaluated from a network perspective, including stroke, Alzheimer’s disease, Parkinson’s disease, and traumatic brain injury. Until now, dynamic processes after stroke and during recovery were investigated through multimodal neuroimaging techniques. Many studies have shown disruptions in structural and functional connectivity, including in large-scale neural networks, in patients with stroke sequela such as motor weakness, aphasia, hemianopia, neglect, and general cognitive dysfunction. A connectome-based approach might shed light on the underlying mechanisms of stroke sequela and the recovery process, and could identify candidates for individualized rehabilitation programs. In this review, we briefly outline the basic concepts of structural and functional connectivity, and the connectome. Then, we explore current evidence regarding how stroke lesions cause changes in connectivity and network architecture parameters. Finally, the clinical implications of perspectives on the connectome are discussed in relation to the cognitive and behavioral sequela of stroke.

Full Text PDF

, , , , ,

Leave a comment

%d bloggers like this: