Posts Tagged constraint induced movement therapy

[Abstract] Occupational therapy for the upper limb after stroke: implementing evidence-based constraint induced movement therapy into practice. – Doctoral thesis

Abstract

Background
Constraint induced movement therapy (CIMT), an intervention to increase upper limb (UL) function post-stroke, is not used routinely by therapists in the United Kingdom; reasons for this are unknown. Using the Promoting Action on Research Implementation in Health Services (PARIHS) framework to analyse CIMT research and context, a series of related studies explored implementation of CIMT into practice.

Methods and Findings
Systematic review: nineteen CIMT randomised controlled trials found evidence of effectiveness in sub-acute stroke, but could not determine the most effective evidence-based protocols. Further review of qualitative data found paucity of evidence relating to acceptability and feasibility of CIMT.
Focus group: perceptions of the feasibility, including facilitators and barriers, of implementing CIMT into practice were explored in a group of eight therapists. Thematic analysis identified five themes: personal characteristics; setting and support; ethical considerations; education and training; and practicalities, which need to be addressed prior to implementation of CIMT.

Mixed-methods, pilot study (three single cases): pre- and post-CIMT (participant preferred protocol) interviews explored perceptions and experiences of CIMT, with pre- and post-CIMT measurement of participation and UL function. Findings indicated: (i) provision of evidence-based CIMT protocols was feasible, although barriers persisted; (ii) piloted data collection and analysis methods facilitated exploration of stroke survivors’ perceptions and experiences, and recorded participation and UL function.

Conclusions
Findings traversed PARIHS elements (evidence, context, facilitation), and should be considered prior to further CIMT implementation. Future studies of CIMT should explore: effects of CIMT protocol variations; characteristics of stroke survivors most likely to benefit from CIMT; interactions between CIMT and participation.

Source: Keele Research Repository – Keele University

Advertisements

, , , , , , ,

Leave a comment

[Workshop] Evidence-Based Upper Limb Retraining after Stroke 2017 – Pre-Reading and Workshop Tasks – PDF

CHAPTER 40: Optimizing motor performance and sensation after brain impairment

ABSTRACT

This chapter provides a framework for optimizing motor performance and sensation in adults with brain impairment. Conditions such as stroke and traumatic brain injury are the main focus, however, the chapter content can apply to adults with other neurological conditions. The tasks of eating and drinking are used as examples throughout the chapter. Skills and knowledge required by graduates are identified, including knowledge of motor behaviour, the essential components of reaching to grasp and reaching in sitting, and how to identify compensatory strategies, develop and test movement hypotheses. Factors that enhance skill acquisition are discussed, including task specificity, practice intensity and timely feedback, with implications for therapists’ teaching skills. Finally, a summary is provided of evidence-based interventions to improve motor performance and sensation, including high intensity, task-specific training, mirror therapy, mental practice, electrical stimulation and constraint therapy.

Key Points:

  1. Essential knowledge in neurological rehabilitation includes an understanding of normal motor behaviour, muscle biology and skill acquisition.
  2. Abnormal motor performance can be observed during a task such as reaching for a cup, and compared with expected performance. Hypotheses about the cause(s) of observed movement differences can then be made and tested.

  3. Paralysis, weakness and loss of co-ordination affect upper limb motor performance. To improve performance after brain impairment, therapists should primarily focus on improving strength and co-ordination.

  4. Many people with brain impairment have difficulty understanding instructions, goals and feedback, and consequently may not practice well. To teach people to practice well and learn skills, therapists need to be good coaches.

  5. Motor performance and sensation can be improved using low-cost evidence-based strategies such as high intensity, repetitive, task-specific training, mirror therapy, mental practice, electrical stimulation and constraint-induced movement therapy.

1. Introduction

Upper motor neuron lesions typically cause impairments such as paralysis, muscle weakness and loss of sensation. These impairments can limit participation in everyday tasks such as eating a meal. Motor control is a term commonly used in rehabilitation (Shumway-Cook, 2012; van Vliet et al 2013) and refers to control of movements such as reaching to grasp a cup and standing up. Occupational therapists and physiotherapists retrain motor and sensory impairments that interfere with tasks such as grasping a cup and sitting safely on the toilet.

The aim of this chapter is to provide a framework that helps therapists to systematically observe, analyse and measure motor and sensory impairments. Targeted evidence-based interventions will be described that can drive neuroplasticity. Therapists need to proactively seek muscle activity and sensation. It is not enough to teach a person how to compensate using one-handed techniques, or to wait for recovery to possibly occur.[…]

Full Text PDF

 

, , , , , , , , , , , ,

Leave a comment

[Abstract] Computer-aided prediction of extent of motor recovery following constraint-induced movement therapy in chronic stroke

Abstract

Constraint-induced movement therapy (CI therapy) is a well-researched intervention for treatment of upper limb function. Overall, CI therapy yields clinically meaningful improvements in speed of task completion and greatly increases use of the more affected upper extremity for daily activities. However, individual improvements vary widely. It has been suggested that intrinsic feedback from somatosensation may influence motor recovery from CI therapy. To test this hypothesis, an enhanced probabilistic neural network (EPNN) prognostic computational model was developed to identify which baseline characteristics predict extent of motor recovery, as measured by the Wolf Motor Function Test (WMFT). Individual characteristics examined were: proprioceptive function via the brief kinesthesia test, tactile sensation via the Semmes-Weinstein touch monofilaments, motor performance captured via the 15 timed items of the Wolf Motor Function Test, stroke affected side. A highly accurate predictive classification was achieved (100% accuracy of EPNN based on available data), but facets of motor functioning alone were sufficient to predict outcome. Somatosensation, as quantified here, did not play a large role in determining the effectiveness of CI therapy.

Source: Computer-aided prediction of extent of motor recovery following constraint-induced movement therapy in chronic stroke – ScienceDirect

, , , , , , ,

Leave a comment

[ARTICLE] The Effects of Constraint Induced Movement Therapy in Improving Functions of Upper Limb in Patients with Stroke – Full Text PDF

ABSTRACT

Objective: The aim of this was to compare the effects of constraint movement therapy and conventional therapy for improving motor function of upper limb in patients with sub-acute stroke.

Study Design: A randomized controlled trial.

Place and Duration of Study: The study was carried out from January 2016 to December 2016 in Rafsan Neuro Rehabilitation Centre, Peshawar.

Materials and Methods: A total of 60 patients with sub-acute stage of stroke were randomly allocated into constraint induced movement therapy and conventional therapy groups. Patients in conventional therapy group followed conventional physical therapy rehabilitation activities while patients in the constraint induced movement therapy group were guided to perform the same activities while constraining their less effected limb. Patients in both groups were assessed just before and six weeks after the start of these therapies. Mann Whitney U test was used to compare the results of both treatment.

Results: The patients in constraint induced movement therapy group showed better results on upper arm function, hand movement and advanced hand activities of motor assessment scale as compared to the patients in conventional therapy group. The mean rank for upper arm function of constraint induced movement therapy and conventional therapy group were 40 and 20, respectively (p=0.001), hand movement for CIMT and CT were 40 and 20 (p=0.001) and advanced hand activities for CIMT and CT group were 43 and 17 (p=0.001), respectively. The patients in induced movement therapy group showed 20% better result on upper arm function, 21% on hand movements and 26% on advanced hand activities of motor assessment scale. Conclusion: It is concluded that constraint induced movement therapy provides improved upper arm function, hand movement and advanced hand activities as compared to the conventional therapy for the patients with sub-acute stroke.

FULL TEXT PDF

, , , , , , , ,

Leave a comment

[WEB SITE] Constraint Mitt – Constraint Induced Movement Therapy 

In order to ensure total focus on the affected arm and hand, you will wear a constraint mitt on your unaffected side for most of the CIMT programme. The constraint mitt is a lightweight glove that fits on your hand and wrist.

To gain the most benefit from constraint induced movement therapy you should wear the mitt for 90% of your waking hours. On the first day of your CIMT programme your therapist will go through your daily routine in detail with you to agree the specific activities when you are allowed to remove the mitt. These may include:

  • Personal care activities (eg toileting, bathing)
  • Dangerous activities (eg driving, tasks with sharp or hot objects)
  • Activities involving water (eg showering)

A detailed list of activities will be drawn up and you will sign a contract to agree to only remove the mitt for an activity on the list. This gives you strict guidance on wearing the mitt and helps you to obtain maximum benefit from the CIMT programme.

While wearing the mitt you will find day-to-day activities more difficult. We therefore strongly recommend you complete a CIMT programme with support from a partner, family member or carer. They will be able to assist in tasks and allow you to wear the mitt for longer, which will help with your progress. Your CIMT therapist will provide guidance to your supporter on how they can help you while also promoting use of your affected side.

It is common to feel frustration while wearing the mitt. Constraint induced movement therapy is an intensive and challenging process. However, if you persevere with a CIMT programme you will make some significant improvements over a short period of time.

On completion of the programme you may take the constraint mitt with you – either to continue practice or as a memento of your hard work!

Source: Constraint Mitt | Our programmes for adults | Adults | CIMT | Constraint Induced Movement Therapy| Treatment for hemiplegia in Manchester City Centre

, ,

Leave a comment

[ARTICLE] Video Game Rehabilitation for Outpatient Stroke (VIGoROUS): protocol for a multi-center comparative effectiveness trial of in-home gamified constraint-induced movement therapy for rehabilitation of chronic upper extremity hemiparesis – Full Text

 

Abstract

Background

Constraint-Induced Movement therapy (CI therapy) is shown to reduce disability, increase use of the more affected arm/hand, and promote brain plasticity for individuals with upper extremity hemiparesis post-stroke. Randomized controlled trials consistently demonstrate that CI therapy is superior to other rehabilitation paradigms, yet it is available to only a small minority of the estimated 1.2 million chronic stroke survivors with upper extremity disability. The current study aims to establish the comparative effectiveness of a novel, patient-centered approach to rehabilitation utilizing newly developed, inexpensive, and commercially available gaming technology to disseminate CI therapy to underserved individuals. Video game delivery of CI therapy will be compared against traditional clinic-based CI therapy and standard upper extremity rehabilitation. Additionally, individual factors that differentially influence response to one treatment versus another will be examined.

Methods

This protocol outlines a multi-site, randomized controlled trial with parallel group design. Two hundred twenty four adults with chronic hemiparesis post-stroke will be recruited at four sites. Participants are randomized to one of four study groups: (1) traditional clinic-based CI therapy, (2) therapist-as-consultant video game CI therapy, (3) therapist-as-consultant video game CI therapy with additional therapist contact via telerehabilitation/video consultation, and (4) standard upper extremity rehabilitation. After 6-month follow-up, individuals assigned to the standard upper extremity rehabilitation condition crossover to stand-alone video game CI therapy preceded by a therapist consultation. All interventions are delivered over a period of three weeks. Primary outcome measures include motor improvement as measured by the Wolf Motor Function Test (WMFT), quality of arm use for daily activities as measured by Motor Activity Log (MAL), and quality of life as measured by the Quality of Life in Neurological Disorders (NeuroQOL).

Discussion

This multi-site RCT is designed to determine comparative effectiveness of in-home technology-based delivery of CI therapy versus standard upper extremity rehabilitation and in-clinic CI therapy. The study design also enables evaluation of the effect of therapist contact time on treatment outcomes within a therapist-as-consultant model of gaming and technology-based rehabilitation.

Background

Clinical practice guidelines recommend outpatient rehabilitation for stroke survivors who remain disabled after discharge from inpatient rehabilitation [1]. Although these guidelines recommend that the majority of stroke survivors receive at least some outpatient rehabilitation [2], many cannot access long-term care [3]. Among those individuals who do undergo outpatient rehabilitation, the standard of care for upper extremity rehabilitation is suboptimal.

In an observational study of 312 rehabilitation sessions (83 occupational and physical therapists at 7 rehabilitation sites), Lang and colleagues [4] found that functional rehabilitation (i.e., movement that accomplishes a functional task, such as eating, as opposed to strength training or passive movement) was provided in only 51% of the sessions of upper extremity rehabilitation, with only 45 repetitions per session on average. This is concerning given that empirically-validated interventions incorporate higher doses of active motor practice [5, 6, 7]. Additionally, functional upper extremity movements are most likely to generalize to everyday tasks [8], an aspect of recovery that is critically important to patients and their families [9, 10, 11]. Yet, passive movement and non-goal-directed exercise are more frequently administered [4].

There appear to be at least two critical elements required for successful upper extremity motor rehabilitation: 1) motor practice that is sufficiently intense and 2) techniques to carryover motor improvements to functional activities. Carry-over techniques to increase a person’s use of the more affected upper extremity for daily activities are extremely important for rehabilitation and appear necessary for structural brain change [12, 13, 14, 15]. When rehabilitation incorporates these techniques, there is substantially improved improvement in self-perceived quality of arm use for daily activities [12, 16]. Carry-over techniques enable the patient to overcome the conditioned suppression of movement (learned nonuse) characteristic of chronic hemiparesis [17]. Techniques include structured self-monitoring, a treatment contract, daily home practice of specific functional motor skills, and guided problem-solving to overcome perceived barriers to using the extremity [18].

Constraint-Induced Movement therapy (CI therapy) has strong empirical backing [5, 19] and combines high-repetition functional practice of the more affected arm with behavioral techniques to enhance carry-over [13, 18]. CI therapy produces consistently superior motor performance and retention of gains versus standard upper extremity rehabilitation [20, 21], particularly when it includes the critically important carry-over (transfer package) techniques [12]. When compared to other equally intensive interventions (i.e., equal hours of training on functional tasks), CI therapy with carry-over (transfer package) techniques has also shown enhanced carry-over of clinical gains to daily activities [12, 13, 22, 23, 24] that are retained for at least 2 years [19, 25, 26, 27, 28].

Despite its inclusion in best practice recommendations [29, 30], CI therapy is available to only a very small minority of those who could benefit from it in the US. CI therapy is not typically covered by insurance and the 30+ hours of assessment and physical training cost upwards of $6000. Access barriers for the patient include limited transportation and insurance coverage, whereas therapists may have difficulty accommodating the CI therapy schedule [31, 32]. Access barriers aside, CI therapy has also been plagued by a variety of misconceptions regarding use of restraint and the transfer package. Most iterations of CI therapy employ use of a restraint mitt to promote use of the affected arm, which is viewed by many patients and clinicians as excessively prohibitive [32]. Yet, literature demonstrates that restraint is not specifically required to achieve positive outcomes [33, 34]. Moreover, the transfer package, a component found to be critical [13, 14], is omitted from the majority of research studies on CI therapy [35].

To address transportation barriers, a telerehabilitation model of CI therapy delivery (AutoCITE) has been tested. AutoCITE is a large specialized motor apparatus (not commercially available, cost not established) that was installed in patients’ homes to enable therapeutic manipulation of actual objects with continuous video monitoring via Internet. This telerehabilitation approach demonstrated efficacy approximately equivalent to that of in-clinic CI therapy [36, 37, 38], thus establishing the feasibility of utilizing technology to deliver CI therapy remotely. However, this system involved specialized equipment at a high cost and did not become available outside a research setting.

To more fully address the barriers to accessing CI therapy and to counter the misconceptions surrounding CI therapy, a patient-centered treatment approach was developed that incorporated the high-repetition practice and carry-over strategies from CI therapy, while reforming non-patient-centric elements of the protocol that lack strong empirical support (i.e., the restraint). To deliver engaging high-repetition practice, a Kinect-based video game was created that can accommodate a wide range of motor disability, can be customized to each user, and automatically progresses in difficulty as the individual’s performance improves (termed “shaping” in the CI therapy literature). A player’s body movements drive game play (there is no external controller), which makes the game easy to use for those who may be unfamiliar with technology. To date, such high-repetition practice through motor gaming [39] has shown initial promise compared to traditional clinic-based approaches [40]. To promote increased use of the weaker arm, a smart watch biofeedback application is utilized in lieu of the restraint mitt. This application counts movements made with the weaker arm and provides alerts when a period of inactivity is detected. Previous approaches for providing CI therapy in the home and reducing the amount of therapist effort have been carried out [36, 37, 38, 41]. These approaches automated the delivery of training and permitted remote supervision of the training via an Internet-based audio-visual link, but did not embed the training within the context of a video game, rely on manipulation of virtual objects, or incorporate a patient-centric substitute for the mitt.

Initial evidence from a pilot trial of this system (Borstad A, Crawfis R, Phillips K, Pax Lowes L, Worthen-Chaudhari L, Maung D, et al.: In-home delivery of constraint induced movement therapy via virtual reality gaming is safe and feasible: a pilot study, submitted) suggests that improvements in motor speed, as measured by Wolf Motor Function Test (WMFT) performance time [42], an outcome of prime importance to stroke survivors, are approximately equivalent to those reported in the traditional CI therapy literature [5, 13, 19, 25]. Qualitative data reveal that the technology is accepted irrespective of age, technological expertise, ethnicity, or cultural background. Thus, this technology has the potential to address the main barriers to adoption of CI therapy, while reducing the cost of care. A randomized clinical trial is now required to provide Level 1 evidence of the comparative effectiveness of this novel model of CI therapy delivery. Data from this trial will enable individuals with motor disability to evaluate whether a home-based video game therapy has the potential to help them meet their rehabilitation goals compared to in-clinic CI therapy and traditional approaches. By combining novel gaming elements with the transfer package from CI therapy, this trial will also address a major limitation of rehabilitation gaming interventions that have been tried to date: extremely limited emphasis on carry-over of training to daily activities.

The primary objective of this trial is to compare the effectiveness of two video game-based models of CI therapy versus traditional clinic-based CI therapy versus standard upper extremity rehabilitation for improving upper extremity motor function. One video gaming group will match the number of total hours spent on the CI therapy transfer package, but will involve fewer days of therapist-client interaction (4 versus 10); the other will match the number of interactions with a therapist to that of clinic-based CI therapy using video consultation between in-person sessions and, as such, will involve more therapist contact hours spent focusing on the transfer package. The secondary objective of this project is to promote personalized medicine by examining individual factors that may differentially influence response to one treatment versus another.

Continue —>  Video Game Rehabilitation for Outpatient Stroke (VIGoROUS): protocol for a multi-center comparative effectiveness trial of in-home gamified constraint-induced movement therapy for rehabilitation of chronic upper extremity hemiparesis | BMC Neurology | Full Text

Fig. 1 Screen capture of the Recovery Rapids gaming environment

, , , , , , , , , , ,

Leave a comment

[VIDEO] FAQs about CIMT for adults –  Constraint Induced Movement Therapy

Source: FAQs | CIMT | Constraint Induced Movement Therapy

, ,

Leave a comment

[ARTICLE] Can Short-Term Constraint-Induced Movement Therapy Combined With Visual Biofeedback Training Improve Hemiplegic Upper Limb Function of Subacute Stroke Patients? – Full Text

Abstract

ObjectiveTo Investigate the synergic effects of short-term constraint-induced movement therapy (CIMT) and visual biofeedback training (VBT) in subacute stroke patients.

MethodsThirty-two subacute stroke patients were enrolled and randomly assigned to one of three groups: short-term CIMT with VBT, VBT only, and control groups. We applied CIMT for an hour daily during VBT instead of the ordinary restraint time, referred to as ‘short-term’ CIMT. Short-term CIMT with VBT group received simultaneous VBT with CIMT, whereas the VBT the only group received VBT without CIMT for an hour a day for 2 weeks. The control group received conventional occupational therapy (OT) alone. Patients underwent the Purdue Pegboard Test, the JAMAR grip strength test, the Wolf Motor Function Test, the Fugl-Meyer Assessment (upper extremity), Motricity index and the Korean version of Modified Barthel Index test to evaluate motor functions of the hemiplegic upper limb at baseline, post-treatment, and 2 weeks after treatment.

ResultsNo significant differences were observed between short-term CIMT with VBT and VBT only groups. Both groups showed significantly higher scores compared to the control group in the WMFT and FMA tests. However, the short-term CIMT with VBT group showed significant improvement (p<0.05) compared with the control group in both grasp and pad pinch at post-treatment and 2 weeks after treatment while the VBT only group did not.

ConclusionShort-term CIMT with VBT group did not show significant improvement of hemiplegic upper limb function of subacute stroke patients, compared to VBT only group. Larger sample sizes and different restraint times would be needed to clarify the effect.

INTRODUCTION

Most stroke survivors have upper limb motor impairments, along with difficulties in performing activities of daily living [1]. Currently, there are several known intervention treatments for functional recovery of the upper limb after stroke.

Constraint-induced movement therapy (CIMT) has been shown to enhance hemiplegic upper limb functions at both early and late stages of post-stroke [2]. The test was developed by Taub et al. [3] to improve the function of the affected upper limb by limiting the motion of the intact upper limb and induce affected upper limb movement [4, 5]. The original CIMT program consisted of 2 weeks of restraining the unaffected upper limb for 90% of waking hours combined with forced use of the affected upper limb for approximately 6 hours per day during task-oriented activities. However, Page et al. [6] reported that 68% of 208 stroke patients said that they were disinterested in participating in CIMT. One domestic research study showed that 12 out of 46 patients dropped out when they participated in CIMT lasting for 14 hours daily for 2 weeks. The most common reason for dropping out in this study was the lack of participation in training time [7]. Therefore, in a clinical setting, various modified CIMT methods have been developed to improve participation rates.

Recently visual biofeedback training (VBT) has been studied and introduced as a therapeutic option because VBT might improve motor performance by effectively tuning the control structure [8]. Also, Kim et al. [9] reported a significant effect of spatial target reaching training based on visual biofeedback of the upper limb function in hemiplegic subjects. In their previous article, VBT group showed more significant improvement than the control group in the Wolf Motor Function Test (WMFT) and the Fugl-Meyer Assessment (FMA).

Several other studies have also been developed that recognize the effect of CIMT combined with other treatments [10, 11, 12]. In these trials, unaffected upper limbs were restrained for several hours daily, even when participants were not taking other combined therapies. However, it is not easy to apply restraint for more than 5 to 6 hours daily in a clinical setting and longer restraint times can compromise a patient’s therapeutic compliance. To overcome these limitations, it is necessary to find out whether there is any modified therapies have any effects such as a reduced restraint time in CIMT during combined therapy.

In this study, we applied a new CIMT protocol in a clinical setting, while maintaining the existing concept of CIMT. Both CIMT and VBT were performed simultaneously for 1 hour daily for 2 weeks. CMT is hereafter referred to as ‘short-term’ CIMT. We examined the effects of short-term CIMT combined with VBT on gross and fine motor functions and daily functions in patients with subacute hemiplegic strokes. We hypothesized that study participant who received short-term CIMT with VBT would demonstrate more improved outcomes than patients who received VBT alone.

Continue —> KoreaMed Synapse

Fig. 3. The patient with right hemiparesis received ‘behavior simulation.’ The patient held a disc grip by finger flexors. (A) The patient tried to put the spoon in the bowl by forearm pronation. (B) On the other hand, the patient was required to supinate his forearm for getting the spoon to the mouth. There were three patients with left hemiparesis. (C) One received short-term CIMT and VBT simultaneously. (D) Another patient received only VBT. (E) Both patients participated in the catch balls’ game. The other patient received conventional occupational therapy. CIMT, constraint-induced movement therapy; VBT, visual biofeedback training.

, , , , , , ,

Leave a comment

[VIDEO] Lydia’s Story – Constraint Induced Movement Therapy (CIMT) – YouTube

, , , , , , , ,

Leave a comment

[WEB SITE] What is CIMT – Constraint Induced Movement Therapy

What is CIMT?

Constraint Induced Movement Therapy (“CIMT” or “CI Therapy”) is a form of rehabilitation of the arm and hand following a neurological event such as a stroke.

Constraint induced movement therapy is suitable for adults with hemiplegia, where one arm is weaker than the other. CIMT involves rehabilitation of the weaker arm while restraining the stronger arm. CIMT can make significant and lasting improvements to the amount and quality of use of the affected arm, which can have a major impact on your quality of life and function.

Constraint induced movement therapy has a large body of scientific research behind it and the effects of the treatment have been shown not only on the hand and arm, but on the brain itself.

A constraint induced movement therapy programme is short but intensive. Treatment is provided daily over a period of 2 to 3 weeks and led by a specialist physiotherapist or occupational therapist. You will wear a restraint “mitt” on your stronger hand for 90% of your waking hours throughout the programme, and take part in intensive therapy sessions as well as home practice.

Explore our website for more information, or contact us to speak directly with one of our CIMT therapists.

Source: What is CIMT | CIMT | Constraint Induced Movement Therapy

, , , , , ,

Leave a comment

%d bloggers like this: