Posts Tagged constraint induced movement therapy

[VIDEO] FAQs about CIMT for adults –  Constraint Induced Movement Therapy

Source: FAQs | CIMT | Constraint Induced Movement Therapy

, ,

Leave a comment

[ARTICLE] Can Short-Term Constraint-Induced Movement Therapy Combined With Visual Biofeedback Training Improve Hemiplegic Upper Limb Function of Subacute Stroke Patients? – Full Text

Abstract

ObjectiveTo Investigate the synergic effects of short-term constraint-induced movement therapy (CIMT) and visual biofeedback training (VBT) in subacute stroke patients.

MethodsThirty-two subacute stroke patients were enrolled and randomly assigned to one of three groups: short-term CIMT with VBT, VBT only, and control groups. We applied CIMT for an hour daily during VBT instead of the ordinary restraint time, referred to as ‘short-term’ CIMT. Short-term CIMT with VBT group received simultaneous VBT with CIMT, whereas the VBT the only group received VBT without CIMT for an hour a day for 2 weeks. The control group received conventional occupational therapy (OT) alone. Patients underwent the Purdue Pegboard Test, the JAMAR grip strength test, the Wolf Motor Function Test, the Fugl-Meyer Assessment (upper extremity), Motricity index and the Korean version of Modified Barthel Index test to evaluate motor functions of the hemiplegic upper limb at baseline, post-treatment, and 2 weeks after treatment.

ResultsNo significant differences were observed between short-term CIMT with VBT and VBT only groups. Both groups showed significantly higher scores compared to the control group in the WMFT and FMA tests. However, the short-term CIMT with VBT group showed significant improvement (p<0.05) compared with the control group in both grasp and pad pinch at post-treatment and 2 weeks after treatment while the VBT only group did not.

ConclusionShort-term CIMT with VBT group did not show significant improvement of hemiplegic upper limb function of subacute stroke patients, compared to VBT only group. Larger sample sizes and different restraint times would be needed to clarify the effect.

INTRODUCTION

Most stroke survivors have upper limb motor impairments, along with difficulties in performing activities of daily living [1]. Currently, there are several known intervention treatments for functional recovery of the upper limb after stroke.

Constraint-induced movement therapy (CIMT) has been shown to enhance hemiplegic upper limb functions at both early and late stages of post-stroke [2]. The test was developed by Taub et al. [3] to improve the function of the affected upper limb by limiting the motion of the intact upper limb and induce affected upper limb movement [4, 5]. The original CIMT program consisted of 2 weeks of restraining the unaffected upper limb for 90% of waking hours combined with forced use of the affected upper limb for approximately 6 hours per day during task-oriented activities. However, Page et al. [6] reported that 68% of 208 stroke patients said that they were disinterested in participating in CIMT. One domestic research study showed that 12 out of 46 patients dropped out when they participated in CIMT lasting for 14 hours daily for 2 weeks. The most common reason for dropping out in this study was the lack of participation in training time [7]. Therefore, in a clinical setting, various modified CIMT methods have been developed to improve participation rates.

Recently visual biofeedback training (VBT) has been studied and introduced as a therapeutic option because VBT might improve motor performance by effectively tuning the control structure [8]. Also, Kim et al. [9] reported a significant effect of spatial target reaching training based on visual biofeedback of the upper limb function in hemiplegic subjects. In their previous article, VBT group showed more significant improvement than the control group in the Wolf Motor Function Test (WMFT) and the Fugl-Meyer Assessment (FMA).

Several other studies have also been developed that recognize the effect of CIMT combined with other treatments [10, 11, 12]. In these trials, unaffected upper limbs were restrained for several hours daily, even when participants were not taking other combined therapies. However, it is not easy to apply restraint for more than 5 to 6 hours daily in a clinical setting and longer restraint times can compromise a patient’s therapeutic compliance. To overcome these limitations, it is necessary to find out whether there is any modified therapies have any effects such as a reduced restraint time in CIMT during combined therapy.

In this study, we applied a new CIMT protocol in a clinical setting, while maintaining the existing concept of CIMT. Both CIMT and VBT were performed simultaneously for 1 hour daily for 2 weeks. CMT is hereafter referred to as ‘short-term’ CIMT. We examined the effects of short-term CIMT combined with VBT on gross and fine motor functions and daily functions in patients with subacute hemiplegic strokes. We hypothesized that study participant who received short-term CIMT with VBT would demonstrate more improved outcomes than patients who received VBT alone.

Continue —> KoreaMed Synapse

Fig. 3. The patient with right hemiparesis received ‘behavior simulation.’ The patient held a disc grip by finger flexors. (A) The patient tried to put the spoon in the bowl by forearm pronation. (B) On the other hand, the patient was required to supinate his forearm for getting the spoon to the mouth. There were three patients with left hemiparesis. (C) One received short-term CIMT and VBT simultaneously. (D) Another patient received only VBT. (E) Both patients participated in the catch balls’ game. The other patient received conventional occupational therapy. CIMT, constraint-induced movement therapy; VBT, visual biofeedback training.

, , , , , , ,

Leave a comment

[VIDEO] Lydia’s Story – Constraint Induced Movement Therapy (CIMT) – YouTube

, , , , , , , ,

Leave a comment

[WEB SITE] What is CIMT – Constraint Induced Movement Therapy

What is CIMT?

Constraint Induced Movement Therapy (“CIMT” or “CI Therapy”) is a form of rehabilitation of the arm and hand following a neurological event such as a stroke.

Constraint induced movement therapy is suitable for adults with hemiplegia, where one arm is weaker than the other. CIMT involves rehabilitation of the weaker arm while restraining the stronger arm. CIMT can make significant and lasting improvements to the amount and quality of use of the affected arm, which can have a major impact on your quality of life and function.

Constraint induced movement therapy has a large body of scientific research behind it and the effects of the treatment have been shown not only on the hand and arm, but on the brain itself.

A constraint induced movement therapy programme is short but intensive. Treatment is provided daily over a period of 2 to 3 weeks and led by a specialist physiotherapist or occupational therapist. You will wear a restraint “mitt” on your stronger hand for 90% of your waking hours throughout the programme, and take part in intensive therapy sessions as well as home practice.

Explore our website for more information, or contact us to speak directly with one of our CIMT therapists.

Source: What is CIMT | CIMT | Constraint Induced Movement Therapy

, , , , , ,

Leave a comment

[ARTICLE] Constraint-Induced Movement Therapy in Compared to Traditional Therapy in Chronic Post-stroke patients – Full Text PDF

Abstract

Introduction: Constraint-induced movement therapy (CIMT) forces the use of the affected side by restraining the unaffected side. The purpose of this article is to explore the changes of motor and functional performance after modified CIMT (mCIMT) in comparison with traditional rehabilitation (TR) in chronic post-stroke patients.

Material and Methods: A total of 12 patients randomly assigned into two treatment groups. Six patients in the mCIMT group received intensive training in a more affected limb for 2 hours daily, 5 days/week using shaping method over a period of 21 days. Participants less affected limb were restrained in arm – hand splint with a target of wearing it for 5 hours daily. The patients in TR group received bimanual and unilateral activities, stretching, strengthening and coordination exercises of the impaired side, tone modification and coordination exercises of the affected side. The focus was to increase independence in activities of daily living activities using affected side. The motor activity log (MAL), wolf motor function test (WMFT), and modified ashworth scale were measured at pre-test (1 day before training), posttest (1 day after training) and follow-up in 3 weeks after training.

Results: The Friedman test found significant differences between pre-test, post-test, and follow-up in MAL and WMFT in mCIMT group. Furthermore, mCIMT group showed significant decreased spasticity (P = 0.030) that measured by ash worth scale. The effect sizes between post-test and pre-test in the above-mentioned outcome measures were moderate to large in mCIMT, ranging from 0.3 to 0.76, but in TR group the effect size were small, ranging from 0 to 0.2.

Conclusion: Therefore, it seems that the mCIMT treatment was more effective than TR in improving some parameters.

Download the PDF file 

, , , , ,

Leave a comment

[ARTICLE] Adherence to modified constraint-induced movement therapy: the case for meaningful occupation – Full Text

Abstract

INTRODUCTION: Modified constraint-induced movement therapy (mCIMT) has been shown to improve function of an affected upper limb post stroke. However, factors influencing adherence of individuals undertaking a mCIMT protocol require further investigation.

AIM: To explore the experience of two participants undergoing a mCIMT protocol and examine factors influencing adherence to the protocol.

METHODS: A qualitative case study design was used. Two participants with upper limb hemiparesis following a stroke were recruited and received mCIMT (two hours of therapy, three days per week for a total of two weeks). During the treatment period, participants were also encouraged to wear the restraint mitt for four hours per day at home.

RESULTS: Participants reported increased confidence and self-esteem following participation, as well as improvements in bi-lateral upper limb function. Participants reported the mCIMT protocol as being highly frustrating. However, motivation to adhere to the protocol was positively influenced by the meaningfulness of the occupations attempted.

CONCLUSION: Although mCIMT can prove frustrating, meaningful occupations may act as a powerful motivator towards adherence to a mCIMT protocol. Further research is required.

WHAT GAP THIS FILLS

What is already known: The literature on the effectiveness of constraint-induced movement therapy (CIMT) and its modifications (mCIMT), to improve motor issues post stroke, is broad and conclusive. However, the demands and rigor of CIMT or mCIMT can influence compliance negatively.
What this study adds: This study offers an insight into the experience of undergoing mCIMT. In relation to client motivation and adherence to protocol, it highlights the importance of meaningful and psychologically rewarding occupations.

, , , , , , ,

Leave a comment

[WEB SITE] Constraint Induced Movement Therapy

  • Use it or lose it

    The human brain has been shown to modify itself constantly as a result of learning.
    Similar modifications take place after brain damage resulting in recovery of function.
  • WHAT IS CIMT?

    Constraint-Induced Movement therapy (CIMT/ CIT) or CI therapy is a new therapeutic approach to rehabilitation of hand and arm movement after stroke, cerebral palsy, brachial plexus injury, multiple sclerosis (MS) and traumatic brain injury (TBI). CI therapy consists of a family of treatments that teach the brain to “rewire” itself following a neurological injury. CI therapy is based on research by Prof. Edward Taub and his collaborators at the University of Alabama at Birmingham, USA that showed that patients can learn to improve movement of the weaker part of their bodies.CIMT is a 2-3 week treatment program that includes restraint of the non-affected hand for most of the waking hours and intensive practice of the affected one for specific hours per day. Practice is focused on everyday activities that are important for the patient and takes place in the clinic and at home. The daily home-based program is tailor made to match each person’s abilities and interests.

Continue —> Constraint Induced Movement Therapy | Constraint Induced Movement Therapy

, , , , , , , ,

Leave a comment

[ARTICLE] Neural Plasticity in Rehabilitation and Psychotherapy: New Perspectives and Findings.

Publication Cover

Print ISSN: 2190-8370 Online ISSN: 2151-2604 Published in German from 1890 to 2006 and in English since 2007

It is only a short period of time since one of the most basic convictions about the brain, postulated by the Spanish neuroanatomist, Santiago Ramon y Cajal, became undermined by new and opposing discoveries. In 1928, Ramon y Cajal postulated that the neural setup of the human brain would be fixed and unable to change beyond the end of maturation of the brain around the age of 22–24 years. What structure or function of the human brain is not shaped until that time point by an individual’s interaction with her/his physical and social environments and through learning and adaptation would not be changeable any more during the succeeding years of life. The only accepted reason for change was damage of the brain by traumatization and/or inflammation or by changes in genetic functioning. This view of the human brain has changed considerably since the early 1970s and has been replaced by a myriad of experimental evidence demonstrating that the brain’s structure and functions are open to change throughout the whole lifetime.

The terms coined for this form of modification are “neuroplasticity” and “reorganization.” Although there is currently no generally accepted definition of neuroplasticity and reorganization, most contemporary scientists in this field would agree that neuroplasticity refers to a property at all levels of the human brain, that is, from molecules to larger cortical neural networks, to adapt its structures and functions to environmental pressures, experiences, and challenges, including brain damage (Johansson, 2011; Merzenich, Van Vleet, & Nahum, 2014). In addition, neural reorganization refers to the capacity of the brain to extend and/or change the control of behavior, cognition, and emotion by enlarging the neural networks involved through learning-induced response coordination (Merzenich et al., 2014). Other options represent optimization and economizing the activity of neural networks or the transference of the control of behavior and cognition to other structures that formerly did not control these actions (Merzenich, 2013). The latter was often addressed as rewiring the brain.

Three forms of neuroplasticity and reorganization can further be distinguished by: (a) developmental or maturational plasticity, where changes of brain structures and functions occur as a function of natural development and maturation; (b) adaptive neuroplasticity, where plasticity is induced in the course of adaptation to new environmental conditions, by learning and by skill formation, and (c) restorative neuroplasticity, where plasticity and reorganization occur as a consequence of trauma, inflammation, or epigenetic reprogramming (Will, Dalrymple-Alford, Wolff, & Cassel, 2008).

Following the conviction of the Nobel laureate Eric Kandel (1979, 2008) that any positive outcome of therapy and rehabilitative measure will only occur when the interventions significantly change the underlying neural structures and/or functions of the brain, the present topical issue of the Zeitschrift für Psychologie focuses on structural and functional plasticity of the brain as a result of behavioral and cognitive training and training of emotion regulation in several areas of therapy and rehabilitation.

The first article by Thomas Straube (2016) presents recent findings and developments of neuroplasticity in the psychotherapy of anxiety disorders. He summarizes current evidence that cognitive and behavioral interventions have demonstrated massive cortical plasticity of structures and functions that are considered central in the generation and individual expression of anxiety, like the amygdala, the anterior cerebral cortex (ACC), the insula, and the bed nucleus of the stria terminalis. He also presents a number of methodological issues in the use of functional brain imaging techniques that are critical in order to obtain valid experimental results in this field.

Thomas Weiss (2016) comprehensively summarizes current evidence for neural plasticity and cortical reorganization in subjects suffering from chronic pain in the next paper. In contrast to traditional views that postulated changes of peripheral neural systems being central causes of chronicity, he shows that cortical neuroplasticity and reorganization of neural networks in the somatosensory cortex, motor cortex, limbic and cognitive functional structures mainly account for the chronification of pain, and that these structures are also relevant targets for successful interventions in the behavioral and cognitive treatment of pain.

Eckart Altenmüller’s and Christos Ioannou’s paper (Altenmüller & Ioannou, 2016) specifies some negative sides of neuroplasticity, namely that neuroplasticity is not always beneficial but can lead to massive impairments of motor functions. Too intensive behavioral training of musicians in order to master their instruments might induce a serious condition known as musician’s dystonia and related disorders. Altenmüller and Ioannou elegantly show that in most cases such developments are consequences of training-induced maladaptive processes of plasticity in cortical and subcortical networks.

The paper by Wolfgang Miltner (2016) summarizes a number of processes that demonstrate the enormous plasticity and reorganization capacity of the human brain following brain lesion and highlights a series of behavioral and neuroscientific studies that indicate that successful intensive behavioral rehabilitation is paralleled by plastic changes of brain structures and by cortical reorganization. He shows that the amount of such plastic changes is obviously significantly determining the overall outcome of rehabilitation.

In the final review article, Klingner, Brodoehl, Volk, Guntinas-Lichius, and Witte (2016) explore the plasticity which is induced in the brain when it experiences a pronounced disturbance of the expected body responses: within the face, a lesion of the seventh nerve causes a motor paralysis with intact sensory input which is conveyed through the fifth cranial nerve. As a consequence, the intact brain orders a motor command, which is not executed, resulting in a mismatch between perceived and expected sensory information. This mismatch requires a major adaptive plasticity of the brain, which was studied in detail by this group.

Turning to the original articles, firstly Wolfgang Miltner, Heike Bauder, and Edward Taub (2016)present an example how neuroplasticity can be addressed by means of electroencephalographic measures known as Bereitschaftspotential (BP) that normally precede that execution of voluntary movements of, for example, fingers, hands, and legs. This technique was applied in a group of patients with chronic stroke who were given constraint-induced movement therapy (CIMT) over an intensive 2-week course of treatment. The intervention resulted in a large improvement in use of the more affected upper extremity in the laboratory and in the real-world environment. The evaluation of BP showed that the treatment produced marked changes in cortical activity that correlated with the significant rehabilitative effects. The results are consistent with the rehabilitation treatment having produced a use-dependent cortical reorganization and demonstrate where the physiological data interdigitates with and provides additional credibility to the clinical data.

Brodoehl, Klingner, Schaller, and Witte (2016) explore, in the second original article, the adaptation which the brain performs upon eye closure: with closure of the eyes the brain fundamentally alters the processing of afferent information, from a visually dominated multisensory mode to a monosensory mode. This plasticity is independent of the visual information and takes place in complete darkness, indicating that this switch of processing modes is caused by state-dependent, inherent brain plasticity. Based on these observations one can assume that the ability to cause functional reorganizations can be substantially modified by optimized conditions for such learning processes.

In their opinion piece, Otto Witte and Malgorzata Kossut (2016) emphasize the impact of inflammatory factors on brain plasticity: following a stroke or in the aging brain, the inflammatory system is activated and impairs brain plasticity. The analysis of these processes opens a window for therapeutic interventions that may be employed to enhance the efficacy of behavioral and other rehabilitative procedures.

Altenmüller, E. & Ioannou, C. I. (2016). Maladaptive plasticity induces degradation of fine motor skills in musicians: Apollo’s curse. Zeitschrigt für Psychologie, 224, 8090. doi: 10.1027/2151-2604/a000242 Link
Brodoehl, S., Klingner, C. M., Schaller, D. & Witte, O. W. (2016). Plasticity during short-term visual deprivation. Zeitscrift für Psychologie, 224, 125132. doi: 10.1027/2151-2604/a000246 Link
Johansson, B. B. (2011). Current trends in stroke rehabilitation: A review with focus on brain plasticity. Acta Neurologica Scandinavica, 123, 147159. CrossRef
Kandel, E. R. (1979). Psychotherapy and the single synapse: The impact of psychiatric thought on neurobiological research. New England Journal of Medicine, 301, 10281037. CrossRef
Kandel, E. R. (2008). Psychiatrie, Psychoanalyse und die neue Biologie des Geistes [Psychiatry psychoanalysis, and the new biology of the mind]. Frankfurt/M, Germany: Suhrkamp Verlag.
Klingner, C. M., Brodoehl, S., Volk, G. F., Guntinas-Lichius, O. & Witte, O. W. (2016). Adaptive and maladaptive neural plasticity due to facial nerve palsy: What can we learn from pure deefferentation?Zeitschrift für Psychologie, 224, 102111. doi: 10.1027/2151-2604/a000244 Link
Merzenich, M. M. (2013). Soft-wired: How the new science of brain plasticity can change your life.San Francisco, CA: Parnassus Publishing.
Merzenich, M. M., Van Vleet, T. M. & Nahum, M. (2014). Brain plasticity-based therapeutics.Frontiers in Human Neuroscience, 8, 385. doi: 10.3389/fnhum.2014.00385 CrossRef
Miltner, W. H. R. (2016). Plasticity and reorganization in the rehabilitation of stroke: The constraint-induced movement therapy (CIMT) example. Zeitschrift für Psychologie, 224, 91101. doi:10.1027/2151-2604/a000243 Link
Miltner, W. H. R., Bauder, H. & Taub, E. (2016). Change in movement-related cortical potentials following constraint-induced movement therapy (CIMT) after stroke. Zeitschrift für Psychologie, 224,112124. doi: 10.1027/2151-2604/a000245 Link
Straube, T. (2016). Effects of psychotherapy on brain activation patterns in anxiety disorders.Zeitscrift für Psychologie, 224, 6270. doi: 10.1027/2151-2604/a000240 Link
Weiss, T. (2016). Plasticity and cortical reorganization associated with pain. Zeitschrift für Psychologie, 224, 7179. Abstract
Will, B., Dalrymple-Alford, J., Wolff, M. & Cassel, J.-C. (2008). The concept of brain plasticity: Paillard’s systemic analysis and emphasis on structure and function (followed by the translation of a seminal paper by Paillard on plasticity). Behavioural Brain Research, 192, 27. doi:10.1016/j.bbr.2007.11.008 CrossRef
Witte, O. W. & Kossut, M. (2016). Impairment of brain plasticity by brain inflammation. Zeitschrift für Psychologie, 224, 133138. doi: 10.1027/2151-2604/a000247 Link
Correspondence concerning this article shoud be addressed to:
Wolfgang H. R. Miltner
Department of Biological and Clinical Psychology
Friedrich Schiller University (FSU)
Am Steiger 3/1
07743 Jena
Germany

Tel. +49 3641 945140, Fax +49 3641 945142, E-mail

Source: Neural Plasticity in Rehabilitation and Psychotherapy: Neural Plasticity in Rehabilitation and Psychotherapy: Zeitschrift für Psychologie: Vol 224, No 2

, , , , , , , , , , , ,

Leave a comment

[Abstract] Constraint-induced movement therapy as a rehabilitation intervention for upper extremity in stroke patients: systematic review and meta-analysis. – PubMed – NCBI

Abstract

Constraint-induced movement therapy (CIMT) is a neurorehabilitation technique designed to improve upper extremity motor functions after stroke.

This review aimed to investigate evidence of the effect of CIMT on upper extremity in stroke patients and to identify optimal methods to apply CIMT.

Four databases (MEDLINE, EMBASE, CINHAL, and PEDro) and reference lists of relevant articles and reviews were searched. Randomized clinical trials that studied the effect of CIMT on upper extremity outcomes in stroke patients compared with other rehabilitative techniques, usual care, or no intervention were included. Methodological quality was assessed using the PEDro score. The following data were extracted for each trial: patients’ characteristics, sample size, eligibility criteria, protocols of CIMT and control groups, outcome measurements, and the PEDro score. A total of 38 trials were identified according to the inclusion criteria. The trials included were heterogeneous in CIMT protocols, time since stroke, and duration and frequency of treatment. The pooled meta-analysis of 36 trials found a heterogeneous significant effect of CIMT on upper extremity.

There was no significant effect of CIMT at different durations of follow-up. The majority of included articles did not fulfill powered sample size and quality criteria. The effect of CIMT changed in terms of sample size and quality features of the articles included.

These meta-analysis findings indicate that evidence for the superiority of CIMT in comparison with other rehabilitative interventions is weak. Information on the optimal dose of CIMT and optimal time to start CIMT is still limited.

Source: Constraint-induced movement therapy as a rehabilitation intervention for upper extremity in stroke patients: systematic review and meta-analysis. – PubMed – NCBI

, , , , , ,

Leave a comment

[ARTICLE] Effectiveness of Modified Constraint Induced Movement Therapy and Bilateral Arm Training on Upper Extremity Function after Chronic Stroke: A Comparative Study – Full Text PDF

ABSTRACT

Statement of the Problem: Upper limb hemiparesis is a common impairment underlying disability after Stroke. Transfer of treatment to daily functioning remains a question for traditional approaches used in treatment of upper extremity hemiparesis. Approaches based on Motor Learning principles may facilitate the transfer of treatment to activities of daily living.
Methodology: Forty one subjects with chronic stroke, attending department of occupational therapy, National Institute for the Orthopaedically Handicapped, Kolkata, West Bengal, India participated in a single blinded randomized pre-test and post-test control group training study. Subjects were randomized over three intervention groups receiving modified Constraint Induced Movement Therapy (n = 13), Bilateral Arm training (n = 14), and an equally intensive conventional treatment program (n = 14). Subjects in the bilateral arm training group participated in bilateral symmetrical activities, where as subjects in constraint induced movement therapy group performed functional activities with the affected arm only and conventional group received conventional Occupational Therapy. Each group received intensive training for 1 hour/day, 5 days/week, for 8 weeks. Pre-treatment and post-treatment measures included the Fugl-Meyer measurement of physical performance (FMA- upper extremity section), action research arm test, motor activity log. Assessments were administered by a rater blinded to group assignment.
Result: Both m-CIMT (p = 0.01) and bilateral arm training (p = 0.01) group showed statistically significant improvement in upper extremity functioning on Action Research Arm Test score in comparison to the conventional therapy group (p = 0.33). The bilateral arm training group had significantly greater improvement in upper arm function (Proximal Fugl-Meyer Assessment score, p = 0.001); while the constraint induced movement therapy group had greater improvement of hand functions (Distal Fugl-Meyer Assessment score, p = 0.001. There is an improvement seen in Quality of movement in the Conventional Therapy group. (p = 0.001).
Conclusion: Both the treatment techniques can be used for upper extremity management in patients with chronic stroke. Bilateral arm training may be used to improve upper arm function and m-CIMT may be used to improve hand functions, while the group that received modified constraint induced movement therapy had greater improvement.

References

[1] Whittal, J., McCombe Waller, S., Silver, K.H.C., et al. (2000) Repetitive Bilateral Arm Training with Rhythmic Auditory Cueing Improves Motor Function in Chronic Stroke. Stroke, 31, 2390-2395.
http://dx.doi.org/10.1161/01.STR.31.10.2390
[2] Bonifer, N.M., Anderson, K.M., Arciniegas, D.B., et al. (2005) Constraint Induced Movement Therapy for Stroke: Efficacy for Patients with Minimal Upper Extremity Motor Ability. Archives of Physical Medicine and Rehabilitation, 86, 1867-1872. http://dx.doi.org/10.1016/j.apmr.2005.04.002
[3] Radomski, M.V. and Trombly Latham, C.A. (2008) Occupational Therapy for Physical Dysfunction. 6th Edition, Lippincott Williams and Wilkins, Philadelphia.
[4] Taub, E., Uswatte, G. and Pidikiti, R. (1999) Constraint Induced Movement Therapy, a New Family of Techniques with Broad Application to Physical Rehabilitation—A Clinical Review. Journal of Rehabilitation Research and Development, 36, 273-251.
[5] Dobkin, B.H. (2005) Clinical Practice. Rehabilitation after Stroke. The New England Journal of Medicine, 352, 1677- 1684. http://dx.doi.org/10.1056/NEJMcp043511
[6] Taub, E., et al. (1993) Techniques to Improve Chronic Motor Deficits after Stroke. Archive of Physical Medicine and Rehabilitation, 74, 347-354.
[7] Page, S.J., Levine, P., Sisto, S., et al. (2002) Stroke Patients and Therapists Opinions of Constraint Induced Movement Therapy. Clinical Rehabilitation, 16, 55-60. http://dx.doi.org/10.1191/0269215502cr473oa
[8] Page, S.J., Sisto, S., Levine, P. and McGrath, R.E. (2004) Efficacy of Modified Constraint Induced Movement Therapy in Chronic Stroke: A Single Blind Randomized Controlled Trial. Archives of Physical Medicine and Rehabilitation, 85, 14-17. http://dx.doi.org/10.1016/S0003-9993(03)00481-7
[9] Luft, A.R., McCombe-Waller, S., Whitall, J. et al. (2004) Repetitive Bilateral Arm Training and Motor Cortex Activation in Chronic Stroke. JAMA, 292, 1853-1861. http://dx.doi.org/10.1001/jama.292.15.1853
[10] Uswatte, G. and Taub, E. (1999) Constraint Induced Movement Therapy. New Approaches to Outcome Measurement in Rehabilitation. In: Struss, D.T., Winocur, G. and Robertson, I.H., Eds., Cognitive Neurorehabilitation, a Comprehensive Approach, Cambridge University Press, Cambridge, England, 215-29
[11] Fugl-Meyer, A.R., et al. (1975) The Post Stroke Hemiplegic Patient. I. A Method for Evaluation of Physical Performance. Scandinavian Journal of Rehabilitation Medicine, 7, 13-31.
[12] Vander Lee, J.H., Beckermen, H., Lankhorst, G.J. and Breter, L.M. (2001) The Responsiveness of the Action Research Arm Test and Fugl-Meyer Assessment of Physical Performance Scale in Chronic Stroke Patients. Journal of Rehabilitation Medicine, 33, 110-113.
http://dx.doi.org/10.1080/165019701750165916
[13] Vander Lee, J.H., Wagenaar, R.C., Lankhorst, G.J., et al. (1999) Forced Use of the Upper Extremity in Chronic Stroke Patients: Results from a Single Blind Randomized Clinical Trial. Stroke, 30, 2369-2375.
http://dx.doi.org/10.1161/01.STR.30.11.2369
[14] Staines, W.R., McIlroy, W.E., Graham, S.J. and Black, S.E. (2001) Bilateral Movement Enhances Ipsilesional Cortical Activity in Acute Stroke: A Pilot Functional MRI Study. Neurology, 56, 401-404.
http://dx.doi.org/10.1212/WNL.56.3.401
[15] Kelso, J.A.S., Putnam, C.A. and Goodman, D. (1983) On the Space-Time Structure of Human Inter Limb Coordination. The Quarterly Journal of Experimental Psychology Section, 35A, 347-375.
http://dx.doi.org/10.1080/14640748308402139
[16] Carr, J. and Shepherd, R. (1998) Neurological Rehabilitation: Optimizing Motor Performance. Butterworth-Heineman, Edinburgh, 241-264.
[17] Levine, P. and Page, S.J. (2004) Modified Constraint Induced Movement Therapy: A Promising Restorative out Patient Therapy. Top Stroke Rehabilitation, 11, 1-10.
http://dx.doi.org/10.1310/R4HN-51MW-JFYK-2JAN

Source: Effectiveness of Modified Constraint Induced Movement Therapy and Bilateral Arm Training on Upper Extremity Function after Chronic Stroke: A Comparative Study

, , , , , , , , ,

Leave a comment

%d bloggers like this: