Posts Tagged contralaterally controlled functional electrical stimulation

[NEWS] Kessler Foundation receives NIH sub-award to test new treatment for hand paralysis


Stroke rehabilitation researchers test new electrical stimulation therapy for improving for hand function after stroke, as part of multi-site study headed by the MetroHealth System and Case Western Reserve University




East Hanover, NJ. November 26, 2019. Kessler Foundation is participating in a phase II multi-site study of an innovative treatment to improve hand function in stroke survivors. Olga Boukrina, PhD, research scientist in the Center for Stroke Rehabilitation Research, is the site’s principal investigator. The study is funded through a five-year $3.2 million grant from the National Institutes of Health awarded to the principal investigator, Jayme S. Knutson, PhD, director of Research and associate professor of Physical Medicine and Rehabilitation at the MetroHealth System and Case Western Reserve University.

This is the first multi-site clinical trial of contralaterally controlled functional electrical stimulation (CCFES), a new rehabilitation intervention for hand recovery following stroke developed by Knutson and colleagues. With CCFES, electrical stimulation is applied to the muscles of the weak hand through surface electrodes, causing the weak hand to open, a function that is often lost in stroke survivors. The patient controls the stimulation to their weak hand through a glove with sensors worn on their opposite, unaffected hand. Opening their unaffected hand delivers a proportional intensity of electrical stimulation that opens their weak hand, and enables them to practice using their hand in therapy. Researchers will enroll 129 patients who are 6 to 24 months post stroke who have upper extremity hemiparesis and limited hand movement.

The effectiveness of CCFES will be compared with two other treatments — cyclic neuromuscular electrical stimulation (CNMES), which has pre-set duration and intensity of stimulation and operates independent of patient control, and traditional task-based training without stimulation. Participants will be randomly assigned to one of the three treatment options for 12 weeks. The research teams will administer the treatments and conduct blinded outcome assessments. The durability of functional improvements will be evaluated at 6-month follow-up. Study sites include the MetroHealth System (Jayme Knutson, PhD), the Cleveland Clinic (Ela Plow, PT, PhD), Emory University (A.M. Barrett, MD), and Johns Hopkins University (Preeti Raghavan, MD).

“Because hand function is integral to so many activities of daily living, advances that improve function can have significant effect on the lives of stroke survivors,” said Dr. Boukrina. “This study will help determine the optimal method for restoring hand function. We anticipate that putting the patients in control of stimulating their weak hand with CCFES may activate neuroplastic changes that lead to greater and longer lasting functional gains.”

via Kessler Foundation receives NIH sub-award to test new treatment for hand paralysis | EurekAlert! Science News

, , , , , , , , , , , , ,

Leave a comment

[ARTICLE] Contralaterally controlled functional electrical stimulation improves wrist dorsiflexion and upper limb function in patients with early-phase stroke: A randomized controlled trial – Full Text HTML


Objectives: To investigate the effectiveness of contra-laterally controlled functional

electrical stimulation (CCFES) on the recovery of active wrist dorsiflexion and upper limb function in patients with early-phase stroke (<15 days post-stroke).

Methods: Patients in the CCFES group were treated with routine rehabilitation combined with CCFES, while those in the conventional neuromuscular electrical stimulation (NMES) group were treated with routine rehabilitation combined with NMES. Time intervals from stroke onset to appearance of wrist dorsiflexion, and from onset of treatment to appearance of wrist dorsiflexion were recorded (in days). Functional assessments were also performed at baseline and endpoint.

Results: Nineteen out of 21 patients in the CCFES group and 12 out of 20 patients in the NMES group regained active wrist dorsiflexion during the treatment and follow-up period (90.5% vs 60%, p = 0.025). The mean time interval from onset of treatment to appearance of active wrist dorsiflexion was signifcantly shorter in the CCFES group than in the NMES

group (p < 0.001). The CCFES group had signifcantly higher scores for upper extremity

function (p = 0.001), strength of extensor carpi (p = 0.002), active ROM for wrist dorsiflexion (p = 0.003), activities of daily living score (p = 0.023) and ICF score (p < 0.001) than the NMES group at the endpoint.

Conclusion: CCFES signifcantly shortened the time for regaining wrist dorsiflexion, and improved the upper extremity function and general health of patients with early-phase stroke. CCFES therefore has potential as a clinical intervention.


Lay Abstract

After a stroke, it is essential that recovery of function of the upper limb is maximized in order to enable activities of daily living. The hand plays an important role in the function of the upper limb. This study examined the effectiveness of contralaterally controlled functional electrical stimulation (CCFES) on recovery of active dorsiflexion of the wrist and upper limb functioning in patients in the early-phase after stroke (<15 days post-stroke). CCFES significantly shortened the time for regaining wrist dorsiflexion, and improved the upper extremity function and general health of patients with early-phase stroke, compared with conventional neuro-muscular electrical stimulation. CCFES therefore has potential as a clinical intervention.


Stroke is a leading cause of disability with high morbidity and mortality. Approximately 75% of patients with stroke have upper extremity dysfunction (1). Impaired motor function of the upper extremity is a major factor in preventing patients returning to their usual activities. In addition to routine medical treatment, early-phase rehabilitation helps improve motor function and activities of daily living (ADL) (2). Moreover, well-prescribed rehabilitation may shorten the course of recovery from stroke, help patients return to the community earlier, improve their quality of life, and reduce the cost of medication (3).

Recovery of upper extremity functioning is essential for improving ADL ability in patients with stroke (4). The hands play an important role in functioning of the upper extremities. Hand function and, in particular, extensor function, is difficult to recover once impaired, Therefore, specific rehabilitation interventions, which are considered the first step in re-gaining full extension of the hand, are essential in the recovery of wrist dorsiflexion (WD). Early recovery of active WD contributes not only to a better outcome for upper extremity functioning, but also to improved outcome for ADL.

Over the past decades, neuromuscular electrical stimulation (NMES), an electrical stimulation that provides passive training for the wrist dorsi-extensor, has been integrated into certain specific rehabilitation prescriptions (5–7). NMES triggers the movement using electrical stimulation. The frequency and amplitude of biphasic rectangular current pulses are pre-set and fixed during the whole training course.

In contrast, controlled functional electrical stimulation (CCFES) is an intervention technique developed recently to improve the function of the paretic upper extremity after stroke. One of the characteristics of CCFES is that it requires active participation from patients, and not merely electrical stimulation of the paretic muscle or extremity. As described by Knutson et al., “CCFES uses a control signal from the non-paretic side of the body to regulate the intensity of electrical stimulation delivered to the paretic muscles of the homologous limb on the opposite side of the body” (8). In separate studies, Knutson et al. (9) and Shen et al. (10) compared the effectiveness of CCFES and NMES in patients with sub-acute stoke, and found greater improvements with CCFES. Nonetheless, its effectiveness in the early-phase (i.e. within 15 days) after stroke is unclear. The aim of this study was therefore to investigate the effectiveness of CCFES compared with NMES on upper extremity function, particularly WD, in patients with early-phase stroke.



Patients admitted to the Department of Neurology, Jiangsu Province People’s Hospital, Nanjing, China, between March and September 2015 were recruited to this study. All subjects provided written informed consent prior to the study, and the ethics committee of the First Affiliated Hospital of Nanjing Medical University approved the study protocol.

Inclusion criteria were: (i) diagnosed with stroke using computed tomography (CT) or magnetic resonance imaging (MRI); (ii) stable vital signs 48 h post-stroke; (iii) single-side injury; (iv) age 20–80 years; (v) within 15 days post-stroke; (vi) Brunnstrom recovery stage of III or less; (vii) score of Fugl-Meyer assessment (FMA) for upper extremity ≤ 22; and (viii) no active WD detected.

Exclusion criteria were: (i) progressive stroke with non-stable condition; (ii) stroke-like symptoms due to subdural haematoma, tumour, encephalitis or trauma; (iii) unable to follow treatment instructions due to severe cognitive and communication deficiency; (iv) implanted with a pacemaker; and (v) no informed consent (11).


Patients were assigned to either the NMES or the CCFES group based on a computer-generated randomization list and allocation (1:1) concealed by consecutively numbered, sealed opaque envelopes. An envelope was opened once a patient had consented to participate in the trial, the administrator then informed the doctor about the allocated intervention regimen via phone calls.

Electrical stimulation system

In the NMES group, 2 stimulating electrodes (4 × 4 cm) were placed at the motor points of the forearm extensor muscles (specifically the ulnar margin of the extensor aspect of the forearm) to produce WD (Fig. 1a). The stimulators (Weisi Corporation, Nanjing, China) used in this study delivered biphasic rectangular current pulses; the pulse frequency was set at 35 Hz, and the pulse amplitude was set at 40 mA. The electrical stimulation intensity was set at a sustainable level with full balanced WD with tetanic contraction.

In the CCFES group, 3 recording electrodes (4 × 4 cm) were placed on the motor points of the forearm extensor muscles (the ulnar margin of the extensor aspect of the forearm) on the non-paretic side, while 2 stimulating electrodes (4 × 4 cm) were attached on the paretic side (Fig 1b). For each patient, the intensity of the electrical stimulation to WD of the paretic side was determined by the strength of contralateral forearm extensor muscles contraction. Subjects were asked to voluntarily extend their unaffected wrist to 10% of ROM or less and maintain that position without moving. The electromyography value of the movement was then recorded. Meanwhile, the therapist adjusted the electric intensity until the same degree of movement appeared on the paretic side. The intensity value was then recorded. The same practice and recording process was also applied, with the patients extending their unaffected wrist to 50% and 100% of ROM. The electrical stimulation intensity that produced balanced WD was determined empirically for each patient and programmed into the stimulator.

Fig. 1. Patients treated with different strategies. (a) The patient underwent neuromuscular electrical stimulation (NMES) with the stimulator in Model I; (b) the patient underwent contralaterally controlled functional electrical stimulation (CCFES) with the stimulator in Model II.


Continue —> Journal of Rehabilitation Medicine – Contralaterally controlled functional electrical stimulation improves wrist dorsiflexion and upper limb function in patients with early-phase stroke: A randomized controlled trial – HTML

, , , , , , , ,

Leave a comment

[WEB SITE] New Device Improves Hand Dexterity for Some Stroke Survivors – Neurology Now

Credit: Cleveland FES Center (


For patients whose stroke affected their ability to use their hand, a new electrical stimulation device may help. The device allows patients to control their impaired hand using their unaffected hand, and to control the timing and intensity of electrical stimulation. In a study published online on September 8 in Stroke, the new method led to improvements in hand dexterity.

Patient-Controlled Electrical Stimulation

Electrical stimulation is already widely available and used in stroke rehabilitation to help patients recover the use of their limbs. Traditional electrical stimulation, known as cyclic neuromuscular electric stimulation (cNMES), is controlled by a therapist and requires no active participation from the patient. By contrast, the new method, called contralaterally controlled functional electrical stimulation or CCFES, allows patients to exercise an impaired hand by controlling electrical stimulation to the impaired hand using their strong hand (or contralateral hand) and performing tasks.

The researchers hypothesized that because CCFES allows patients to use both hands, is done in real time, and involves tasks, it may result in better, faster rehabilitation compared to cNMES.

Improving Dexterity

Researchers at MetroHealth Medical Center in Cleveland, Ohio enrolled 80 patients who had had a stroke and were partially paralyzed in one of their upper limbs for at least six weeks. Half the patients received 10 sessions per week of the new stimulation method, and half received 10 sessions of the traditional stimulation, for six months.

After the six months, the researchers administered the Box and Block Test (BBT) to gauge improvements in hand dexterity. The test counts how many times a person can pick up a block, move it over a partition, and release it in a target area within 60 seconds.

Patients who received CCFES had greater improvement in dexterity as measured by the Box and Block Test than patients who underwent cNMES. Patients who’d had a stroke less than two years prior to the study and had moderate, not severe, hand impairment at the start of the study had the biggest improvements.

A New Option for Stroke Rehabilitation

For recent stroke patients with moderate hand impairment, CCFES is a better option than cNMES, the study authors say, possibly because CCFES happens in real time, requires patients to open both hands at once, and/or allows patients to practice tasks with the impaired hand. They added that with CCFES—unlike with cNMES—patients can control the timing and intensity of tasks.

Watch a video showing the new stimulation device in action here:

Source: Neurology Now

, , , , , , , ,

1 Comment

[ARTICLE] Contralaterally Controlled Functional Electrical Stimulation Improves Hand Dexterity in Chronic Hemiparesis – Full Text PDF


Background and Purpose—It is unknown whether one method of neuromuscular electrical stimulation for poststroke upper limb rehabilitation is more effective than another. Our aim was to compare the effects of contralaterally controlled functional electrical stimulation (CCFES) with cyclic neuromuscular electrical stimulation (cNMES).

Methods—Stroke patients with chronic (>6 months) moderate to severe upper extremity hemiparesis (n=80) were randomized to receive 10 sessions/wk of CCFES- or cNMES-assisted hand opening exercise at home plus 20 sessions of functional task practice in the laboratory for 12 weeks. The task practice for the CCFES group was stimulation assisted. The primary outcome was change in Box and Block Test (BBT) score at 6 months post treatment. Upper extremity Fugl–Meyer and Arm Motor Abilities Test were also measured.

Results—At 6 months post treatment, the CCFES group had greater improvement on the BBT, 4.6 (95% confidence interval [CI], 2.2–7.0), than the cNMES group, 1.8 (95% CI, 0.6–3.0), between-group difference of 2.8 (95% CI, 0.1–5.5), P=0.045. No significant between-group difference was found for the upper extremity Fugl–Meyer (P=0.888) or Arm Motor Abilities Test (P=0.096). Participants who had the largest improvements on BBT were <2 years post stroke with moderate (ie, not severe) hand impairment at baseline. Among these, the 6-month post-treatment BBT gains of the CCFES group, 9.6 (95% CI, 5.6–13.6), were greater than those of the cNMES group, 4.1 (95% CI, 1.7–6.5), between-group difference of 5.5 (95% CI, 0.8–10.2), P=0.023.

Conclusions—CCFES improved hand dexterity more than cNMES in chronic stroke survivors.

Download Full Text PDF


Source: Contralaterally Controlled Functional Electrical Stimulation Improves Hand Dexterity in Chronic Hemiparesis

, , , , , , , , , , , ,

Leave a comment

%d bloggers like this: