Posts Tagged Contralaterally

[Abstract + References] Using Orientation Sensors to Control a FES System for Upper-Limb Motor Rehabilitation

Abstract

Contralaterally controlled functional electrical stimulation (CCFES) is a recent therapy aimed at improving the recovery of impaired limbs after stroke. For hemiplegic patients, CCFES uses a control signal from the non-impaired side of the body to regulate the intensity of electrical stimulation delivered to the affected muscles of the homologous limb on the opposite side of the body. CCFES permits an artificial muscular contraction synchronized with the patient’s intentionality to carry out functional tasks, which is a way to enhance neuroplasticity and to promote motor learning. This work presents an upper extremity motor rehabilitation system based on CCFES, using orientation sensors for control. Thus, the stimulation intensity (current amplitude) delivered to the paretic extremity is proportional to the degree of joint amplitude of the unaffected extremity. The implemented controller uses a control strategy that allows the delivered electrical stimulation intensity, to be comparable to the magnitude of movement. It was carried out a set of experiments to validate the overall system, for executing five bilateral mirror movements that include human wrist and elbow joints. Obtained results showed that movements voluntary signals acquired from right upper-limb were replicated successfully on left upper-limb using the FES system.

References

  1. 1.
    World Report on Disability, World Health Organization (WHO) (2011)Google Scholar
  2. 2.
    Moller, A.R.: Neural Plasticity and Disorders of the Nervous System. Cambridge University Press, Cambridge (2006)CrossRefGoogle Scholar
  3. 3.
    Hara, Y., Obayashi, S., Tsujiuchi, K., Muraoka, Y.: The effects of electromyography controlled functional electrical stimulation on upper extremity function and cortical perfusion in stroke patients. Clin. Neurophysiol. 124, 2008–2015 (2013)CrossRefGoogle Scholar
  4. 4.
    Sheffler, L., Chae, J.: Neuromuscular electrical stimulation in neurorehabilitation. Muscle Nerve 35, 562–590 (2007)CrossRefGoogle Scholar
  5. 5.
    Doucet, B.M., Lamb, A., Griffin, L.: Neuromuscular electrical stimulation for skeletal muscle function. Yale J. Biol. Med. 85, 201–215 (2012)Google Scholar
  6. 6.
    Popovic, D.B., Sinkjærc, T., Popovic, M.B.: Electrical stimulation as a means for achieving recovery of function in stroke patients. NeuroRehabilitation 25, 45–58 (2009)Google Scholar
  7. 7.
    Knutson, J.S., Harley, M.Y., Hisel, T.Z., Makowski, N.S., Fu, M.J., Chae, J.: Contralaterally controlled functional electrical stimulation for stroke rehabilitation. In: Proceedings of IEEE Engineering and Medicine and Biology Society, pp. 314–317 (2012)Google Scholar
  8. 8.
    Knutson, J.S., Harley, M.Y., Hisel, T.Z., Makowski, N.S., Chae, J.: Contralaterally controlled functional electrical stimulation for recovery of elbow extension and hand opening after stroke: a pilot case series study. Am. J. Phys. Med. Rehabil. 93(6), 528–539 (2014)CrossRefGoogle Scholar
  9. 9.
    Sabatini, A.M.: Estimating three-dimensional orientation of human body parts by inertial/magnetic sensing. Sensors 11, 1489–1525 (2011)CrossRefGoogle Scholar
  10. 10.
    Filippeschi, A., Schmitz, N., Miezal, M., Bleser, G., Ruffaldi, E., Stricker, D.: Survey of motion tracking methods based on inertial sensors: a focus on upper limb human motion. Sensors 17, 1257 (2017)CrossRefGoogle Scholar
  11. 11.
    Borbély, B.J., Szolgay, P.: Real-time inverse kinematics for the upper limb: a model-based algorithm using segment orientations. Biomed. Eng. Online 2017(16), 21 (2017)CrossRefGoogle Scholar
  12. 12.
    Lynch, C., Popovic, M.: Functional electrical stimulation: closed-loop control of induced muscle contractions. IEEE Control Syst. Mag. 28, 40–49 (2008)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Ferrarin, M., Palazzo, F., Riener, R., Quintern, J.: Model-based control of FES-induced single joint movements. IEEE Trans. Neural Syst. Rehabil. Eng. 9(3), 245–257 (2001)CrossRefGoogle Scholar
  14. 14.
    Knutson, J.S., Gunzler, D.D., Wilson, R.D., Chae, J.: Contralaterally controlled functional electrical stimulation improves hand dexterity in chronic hemiparesis. Stroke. 47(12), 2596–2602 (2016)CrossRefGoogle Scholar

via Using Orientation Sensors to Control a FES System for Upper-Limb Motor Rehabilitation | SpringerLink

, , , , , , , , , ,

Leave a comment

[Abstract] Contralaterally Controlled Functional Electrical Stimulation Improves Hand Dexterity in Chronic Hemiparesis

Abstract

Background and Purpose—It is unknown whether one method of neuromuscular electrical stimulation for poststroke upper limb rehabilitation is more effective than another. Our aim was to compare the effects of contralaterally controlled functional electrical stimulation (CCFES) with cyclic neuromuscular electrical stimulation (cNMES).

Methods—Stroke patients with chronic (>6 months) moderate to severe upper extremity hemiparesis (n=80) were randomized to receive 10 sessions/wk of CCFES- or cNMES-assisted hand opening exercise at home plus 20 sessions of functional task practice in the laboratory for 12 weeks. The task practice for the CCFES group was stimulation assisted. The primary outcome was change in Box and Block Test (BBT) score at 6 months post treatment. Upper extremity Fugl–Meyer and Arm Motor Abilities Test were also measured.

Results—At 6 months post treatment, the CCFES group had greater improvement on the BBT, 4.6 (95% confidence interval [CI], 2.2–7.0), than the cNMES group, 1.8 (95% CI, 0.6–3.0), between-group difference of 2.8 (95% CI, 0.1–5.5), P=0.045. No significant between-group difference was found for the upper extremity Fugl–Meyer (P=0.888) or Arm Motor Abilities Test (P=0.096). Participants who had the largest improvements on BBT were <2 years post stroke with moderate (ie, not severe) hand impairment at baseline. Among these, the 6-month post-treatment BBT gains of the CCFES group, 9.6 (95% CI, 5.6–13.6), were greater than those of the cNMES group, 4.1 (95% CI, 1.7–6.5), between-group difference of 5.5 (95% CI, 0.8–10.2), P=0.023.

Conclusions—CCFES improved hand dexterity more than cNMES in chronic stroke survivors.

Source: Contralaterally Controlled Functional Electrical Stimulation Improves Hand Dexterity in Chronic Hemiparesis | Stroke

, , , , , , , , , ,

Leave a comment

%d bloggers like this: