Posts Tagged Drugs

[WEB SITE] FDA approves marijuana based medication for epilepsy treatment

 

An advisory panel from the United States Food and Drug Administration (FDA) has recommended the approval of a novel epilepsy drug that is made up of ingredients from marijuana. The agency normally follows the recommendations of the advisory panels regarding approvals and rejections of applications of new drugs. The recommendation statement came yesterday (19th April 2018).

If this drug gets a green light, it is expected to become the first cannabis-derived prescription medicine to be available in the US. The drug is named Epidiolex and is made by GW Pharmaceuticals from Britain. It contains cannabidiol or CBD that is derived from cannabis. However the drug is not seen to cause any intoxication among the users.

Marijuana plant flowering outdoors. Image Credit: Yarygin / Shutterstock

Marijuana plant flowering outdoors. Image Credit: Yarygin / Shutterstock

The use of only one of the components of cannabis also makes it different from medical marijuana that is approved for pain management and other conditions around the world and in the United States. Synthetic forms of chemicals in the cannabis plant are also used to treat nausea among cancer patients and in AIDS patients to prevent weight loss.

Dr. Igor Grant, director of the Center for Medicinal Cannabis Research at the University of California San Diego welcomed this new recommendation from the panel saying, “This is a very good development, and it basically underscores that there are medicinal properties to some of the cannabinoids… I think there could well be other cannabinoids that are of therapeutic use, but there is just not enough research on them to say.”

As of now the panel has recommended the use of this new drug for two types of epilepsy only – Lennox-Gastaut syndrome and Dravet syndrome. These are notoriously difficult to treat and most people continue to have seizures despite treatment. Multiple seizures may occur in a day and this makes the children with these conditions vulnerable for developmental and intellectual disabilities. Lennox-Gastaut syndrome can appear in toddlers at around ages 3 to 5 and Dravet syndrome is usually diagnosed earlier. Nearly 30,000 children and adults suffer from Lennox-Gastaut syndrome and similar numbers of people are diagnosed with Dravet syndrome. Due to the small population of diagnosed patients Epidiolex was filed and classified under orphan drug status.

An orphan drug is one that is developed for a relatively rare disease condition. The FDA provides special subsidies and support for development of orphan drugs and often speed tracks their approval process.

The recommendation from the advisory panel is based on the results of three randomized, double-blind, placebo-controlled trials that included patients of both these disease conditions. The agency statement says, “The statistically significant and clinically meaningful results from these three studies provide substantial evidence of the effectiveness of CBD for the treatment of seizures associated with LGS and DS.” They drug causes liver damage but the report says that this could be managed effectively.

The FDA will conduct a final vote for approval of this drug in June. Oral solution of the drug for a small group of patients with these conditions would be allowed.

Reference: https://www.fda.gov/downloads/AdvisoryCommittees/CommitteesMeetingMaterials/Drugs/PeripheralandCentralNervousSystemDrugsAdvisoryCommittee/UCM604736.pdf

 

via FDA approves marijuana based medication for epilepsy treatment

Advertisements

, , , , , , , , , , , , , ,

Leave a comment

[WEB SITE] Largest-ever study to examine anatomical alterations in the brains of epilepsy patients

Largest-ever study to examine anatomical alterations in the brains of epilepsy patients 

An international research consortium used neuroimaging techniques to analyze the brains of more than 3,800 volunteers in different countries. The largest study of its kind ever conducted set out to investigate anatomical similarities and differences in the brains of individuals with different types of epilepsy and to seek markers that could help with prognosis and treatment.

Epilepsy’s seizure frequency and severity, as well as the patient’s response to drug therapy, vary with the part of the brain affected and other poorly understood factors. Data from the scientific literature suggests that roughly one-third of patients do not respond well to anti-epileptic drugs. Research has shown that these individuals are more likely to develop cognitive and behavioral impairments over the years.

The new study was conducted by a specific working group within an international consortium called ENIGMA, short for Enhancing NeuroImaging Genetics through Meta-Analysis, established to investigate several neurological and psychiatric diseases. Twenty-four cross-sectional samples from 14 countries were included in the epilepsy study.

Altogether, the study included data for 2,149 people with epilepsy and 1,727 healthy control subjects (with no neurological or psychiatric disorders). The Brazilian Research Institute for Neuroscience and Neurotechnology (BRAINN), which participated in the multicenter study, was the center with the largest sample, comprising 291 patients and 398 controls. Hosted in Brazil, at the State University of Campinas (UNICAMP), BRAINN is a Research, Innovation and Dissemination Center (RIDC http://cepid.fapesp.br/en/home/) supported by the Sao Paulo Research Foundation – FAPESP.

“Each center was responsible for collecting and analyzing data on its own patients. All the material was then sent to the University of Southern California’s Imaging Genetics Center in the US, which consolidated the results and performed a meta-analysis,” said Fernando Cendes, a professor at UNICAMP and coordinator of BRAINN.

A differential study

All volunteers were subjected to MRI scans. According to Cendes, a specific protocol was used to acquire three-dimensional images. “This permitted image post-processing with the aid of computer software, which segmented the images into thousands of anatomical points for individual assessment and comparison,” he said.

According to the researcher, advances in neuroimaging techniques have enabled the detection of structural alterations in the brains of people with epilepsy that hadn’t been noticed previously.

Cendes also highlighted that this is the first epilepsy study built on a really large number of patients, which allowed researchers to obtain more robust data. “There were many discrepancies in earlier studies, which comprised a few dozen or hundred volunteers.”

The patients included in the study were divided into four subgroups: mesial temporal lobe epilepsy (MTLE) with left hippocampal sclerosis, MTLE with right hippocampal sclerosis, idiopathic (genetic) generalized epilepsy, and a fourth group comprising various less common subtypes of the disease.

The analysis covered both patients who had had epilepsy for years and patients who had been diagnosed recently. According to Cendes, the analysis – whose results were published in the international journal Brain – aimed at the identification of atrophied brain regions in which the cortical thickness was smaller than in the control group.

First analysis

The researchers first analyzed data from the four patient subgroups as a whole and compared them with the controls to determine whether there were anatomical alterations common to all forms of epilepsy. “We found that all four subgroups displayed atrophy in areas of the sensitive-motor cortex and also in some parts of the frontal lobe,” Cendes said.

“Ordinary MRI scans don’t show anatomical alterations in cases of genetic generalized epilepsy,” Cendes said. “One of the goals of this study was to confirm whether areas of atrophy also occur in these patients. We found that they do.”

This finding, he added, shows that in the case of MTLE, there are alterations in regions other than those in which seizures are produced (the hippocampus, parahippocampus, and amygdala). Brain impairment is, therefore, more extensive than previously thought.

Cendes also noted that a larger proportion of the brain was compromised in patients who had had the disease for longer. “This reinforces the hypothesis that more brain regions atrophy and more cognitive impairment occurs as the disease progresses.”

The next step was a separate analysis of each patient subgroup in search of alterations that characterize each form of the disease. The findings confirmed, for example, that MTLE with left hippocampal sclerosis is associated with alterations in different neuronal circuits from those associated with MTLE with right hippocampal sclerosis.

“Temporal lobe epilepsy occurs in a specific brain region and is therefore termed a focal form of the disease. It’s also the most common treatment-refractory subtype of epilepsy in adults,” Cendes said. “We know it has different and more severe effects when it involves the left hemisphere than the right. They’re different diseases.”

“These two forms of the disease are not mere mirror-images of each other,” he said. “When the left hemisphere is involved, the seizures are more intense and diffuse. It used to be thought that this happened because the left hemisphere is dominant for language, but this doesn’t appear to be the only reason. Somehow, it’s more vulnerable than the right hemisphere.”

In the GGE group, the researchers observed atrophy in the thalamus, a central deep-lying brain region above the hypothalamus, and in the motor cortex. “These are subtle alterations but were observed in patients with epilepsy and not in the controls,” Cendes said.

Genetic generalized epilepsies (GGEs) may involve all brain regions but can usually be controlled by drugs and are less damaging to patients.

Future developments

From the vantage point of the coordinator for the FAPESP-funded center, the findings published in the article will benefit research in the area and will also have future implications for the diagnosis of the disease. In parallel with their anatomical analysis, the group is also evaluating genetic alterations that may explain certain hereditary patterns in brain atrophy. The results of this genetic analysis will be published soon.

“If we know there are more or less specific signatures of the different epileptic subtypes, instead of looking for alterations everywhere in the brain, we can focus on suspect regions, reducing cost, saving time and bolstering the statistical power of the analysis. Next, we’ll be able to correlate these alterations with cognitive and behavioral dysfunction,” Cendes said.

 

via Largest-ever study to examine anatomical alterations in the brains of epilepsy patients

, , , , , , , , , , , , , ,

Leave a comment

[WEB SITE] Antiepileptic drug use linked to increased risk of Alzheimer’s and dementia

The use of antiepileptic drugs is associated with an increased risk of Alzheimer’s disease and dementia, according to a new study from the University of Eastern Finland and the German Center for Neurodegenerative Diseases, DZNE. Continuous use of antiepileptic drugs for a period exceeding one year was associated with a 15 percent increased risk of Alzheimer’s disease in the Finnish dataset, and with a 30 percent increased risk of dementia in the German dataset.

Some antiepileptic drugs are known to impair cognitive function, which refers to all different aspects of information processing. When the researchers compared different antiepileptic drugs, they found that the risk of Alzheimer’s disease and dementia was specifically associated with drugs that impair cognitive function. These drugs were associated with a 20 percent increased risk of Alzheimer’s disease and with a 60 percent increased risk of dementia.

The researchers also found that the higher the dose of a drug that impairs cognitive function, the higher the risk of dementia. However, other antiepileptic drugs, i.e. those which do not impair cognitive processing, were not associated with the risk.

“More research should be conducted into the long-term cognitive effects of these drugs, especially among older people,” Senior Researcher Heidi Taipale from the University of Eastern Finland says.

Besides for epilepsy, antiepileptic drugs are used in the treatment of neuropathic pain, bipolar disorder and generalized anxiety disorder. This new study is the largest research on the topic so far, and the first to investigate the association in terms of regularity of use, dose and comparing the risk between antiepileptic drugs with and without cognitive-impairing effects. The results were published in the Journal of the American Geriatrics Society.

The association of antiepileptic drug use with Alzheimer’s disease was assessed in Finnish persons diagnosed with Alzheimer’s disease and their controls without the disease. This study is part of the nationwide register-based MEDALZ study, which includes all 70,718 persons diagnosed with Alzheimer’s disease in Finland during 2005-2011 and their 282,862 controls. The association of antiepileptic drug use with dementia was investigated in a sample from a large German statutory health insurance provider, Allgemeine Ortskrankenkasse (AOK). The dataset includes 20,325 persons diagnosed with dementia in 2004-2011, and their 81,300 controls.

via Antiepileptic drug use linked to increased risk of Alzheimer’s and dementia

, , , , , , , , , , ,

Leave a comment

[WEB SITE] Learning stress-reducing techniques may benefit people with epilepsy

Learning techniques to help manage stress may help people with epilepsy reduce how often they have seizures, according to a study published in the February 14, 2018, online issue of Neurology®, the medical journal of the American Academy of Neurology.

“Despite all the advances we have made with new drugs for epilepsy, at least one-third of people continue to have seizures, so new options are greatly needed,” said study author Sheryl R. Haut, MD, of Montefiore Medical Center and the Albert Einstein College of Medicine in the Bronx, NY, and member of the American Academy of Neurology. “Since stress is the most common seizure trigger reported by patients, research into reducing stress could be valuable.”

The study involved people with seizures that did not respond well to medication. While all of the 66 participants were taking drugs for seizures, all continued to have at least four seizures during about two months before the study started.

During the three-month treatment period all of the participants met with a psychologist for training on a behavioral technique that they were then asked to practice twice a day, following an audio recording. If they had a day where they had signs that they were likely to have a seizure soon, they were asked to practice the technique another time that day. The participants filled out daily electronic diaries on any seizures, their stress level, and other factors such as sleep and mood.

Half of the participants learned the progressive muscle relaxation technique, a stress reduction method where each muscle set is tensed and relaxed, along with breathing techniques. The other participants were the control group-;they took part in a technique called focused attention. They did similar movements as the other group, but without the muscle relaxation, plus other tasks focusing on attention, such as writing down their activities from the day before. The study was conducted in a blinded fashion so that participants and evaluators were not aware of treatment group assignment.

Before the study, the researchers had hypothesized that the people doing the muscle relaxing exercises would show more benefits from the study than the people doing the focused attention exercises, but instead they found that both groups showed a benefit-;and the amount of benefit was the same.

The group doing the muscle relaxing exercises had 29 percent fewer seizures during the study than they did before it started, while the focused attention group had 25 percent fewer seizures, which is not a significant difference, Haut said. She added that study participants were highly motivated as was shown by the nearly 85 percent diary completion rate over a five-month period.

“It’s possible that the control group received some of the benefits of treatment in the same way as the ‘active’ group, since they both met with a psychologist and every day monitored their mood, stress levels and other factors, so they may have been better able to recognize symptoms and respond to stress,” said Haut. “Either way, the study showed that using stress-reducing techniques can be beneficial for people with difficult-to-treat epilepsy, which is good news.”

Haut said more research is needed with larger numbers of people and testing other stress reducing techniques like mindfulness based cognitive therapy to determine how these techniques could help improve quality of life for people with epilepsy.

, , , , , , , , , , , , , ,

Leave a comment

[BLOG POST] Anti-epilepsy medicine use during pregnancy does not harm overall health of children, study finds

.

Children whose mothers have taken anti-epilepsy medicine during pregnancy, do not visit the doctor more often than children who have not been exposed to this medicine in utero. This is the result of a new study from Aarhus.

Previous studies have shown that anti-epilepsy medicine may lead to congenital malformations in the foetus and that the use of anti-epilepsy medicine during pregnancy affects the development of the brain among the children. There is still a lack of knowledge in the area about the general health of children who are exposed to anti-epilepsy medicine in foetallife. But this new study is generally reassuring for women who need to take anti-epilepsy medicine during their pregnancy.

Being born to a mother who has taken anti-epilepsy medicine during pregnancy appears not to harm the child’s health. These are the findings of the first Danish study of the correlation between anti-epilepsy medicine and the general health of the child which has been carried out by the Research Unit for General Practice, Aarhus University and Aarhus University Hospital.

The results have just been published in the international scientific journal BMJ Open.

The researchers have looked into whether children who have been exposed to the mother’s anti-epilepsy medicine have contact with their general practitioner (GP) more often than other children – and there are no significant differences.

No reason til worry

“Our results are generally reassuring for women who need to take anti-epilepsy medicine during their pregnancy, including women with epilepsy,” says Anne Mette Lund Würtz, who is one of the researchers behind the project.

The difference in the number of contacts to the general practitioner between exposed and non-exposed children is only three per cent.

“The small difference we found in the number of contacts is primarily due to a difference in the number of telephone contacts and not to actual visits to the GP. At the same time, we cannot rule out that the difference in the number of contacts is caused by a small group of children who have more frequent contact with their GP because of illness,” explains Anne Mette Lund Würtz.

Of the 963,010 children born between 1997 and 2012, who were included in the survey, anti-epilepsy medicine was used in 4,478 of the pregnancies that were studied.

Anti-epilepsy medicine is also used for the treatment of other diseases such as migraine and bipolar disorder. The study shows that there were no differences relating to whether the women who used anti-epilepsy medicine during pregnancy were diagnosed with epilepsy or not.

Background for the results

Type of study: The population study was carried out using the Danish registers for the period 1997-2013.

The analyses takes into account differences in the child’s gender and date of birth, as well as the mother’s age, family situation, income, level of education, as well as any mental illness, use of psychiatric medicine and insulin, and substance abuse.

Source: Anti-epilepsy medicine use during pregnancy does not harm overall health of children, study finds

, , , , , , , , , , , , ,

Leave a comment

[WEB SITE] Australian survey reveals cannabis use in people with epilepsy to manage seizures

People with epilepsy resort to cannabis products when antiepileptic drug side-effects are intolerable and epilepsy uncontrolled.

The first Australian nationwide survey on the experiences and opinions of medicinal cannabis use in people with epilepsy has revealed that 14 per cent of people with epilepsy have used cannabis products as a way to manage seizures.

The study showed that of those with a history of cannabis product use, 90 per cent of adults and 71 per cent of parents of children with epilepsy reported success in managing seizures after commencing using cannabis products.

Published in Epilepsy & Behaviour, the Epilepsy Action Australia study, in partnership with The Lambert Initiative at the University of Sydney, surveyed 976 respondents to examine cannabis use in people with epilepsy, reasons for use, and any perceived benefits self-reported by consumers (or their carers).

The survey revealed:

  • 15 per cent of adults with epilepsy and 13 per cent of parents/guardians of children with epilepsy were currently using, or had previously used, cannabis products to treat epilepsy.
  • Across all respondents, the main reasons for trying cannabis products were to manage treatment-resistant epilepsy and to obtain a more favourable side-effect profile compared to standard antiepileptic drugs.
  • The number of past antiepileptic drugs was a significant predictor of medicinal cannabis use in both adults and children with epilepsy.

“This survey provides insight into the use of cannabis products for epilepsy, in particular some of the likely factors influencing use, as well as novel insights into the experiences of and attitudes towards medicinal cannabis in people with epilepsy in the Australian community,” said lead author Anastasia Suraev from The Lambert Initiative.

“Despite the limitations of a retrospective online survey, we cannot ignore that a significant proportion of adults and children with epilepsy are using cannabis-based products in Australia, and many are self-reporting considerable benefits to their condition.

“More systematic clinical studies are urgently needed to help us better understand the role of cannabinoids in epilepsy,” she said.

Co-author of the paper Carol Ireland, CEO of Epilepsy Action Australia, who was recently appointed to the Australian Government’s new Australian Advisory Council on the Medicinal Use of Cannabis, said: “Cannabis products are often what people turn to when they have been unable to control their epilepsy with conventional medication.”

“This highlights a growing need to educate consumers and health professionals on the use of cannabis by people with epilepsy, and to provide safe and timely access to cannabinoid medicine in order to lessen people’s reliance on illicit black market products” she said.

, , , , ,

Leave a comment

[WEB SITE] ADD Program receives $19.5 million NIH contract to test drugs for treating epilepsy

The University of Utah College of Pharmacy’s Anticonvulsant Drug Development (ADD) Program has been awarded a five-year $19.5 million contract renewal with the National Institutes of Health (NIH) to test drugs to treat epilepsy, and the major focus of the project is to address needs that affect millions of people worldwide -identify novel investigational compounds to prevent the development of epilepsy or to treat refractory, or drug-resistant, epilepsy.

The ADD program began in 1975 and since then has tested the vast majority of drugs used to control seizures in patients with epilepsy, helping millions of people worldwide. Unfortunately, almost one-third of the estimated 50 million people with the disorder has refractory, or unresponsive, epilepsy that isn’t adequately controlled by medications currently available. The contract renewal, awarded through the National Institute of Neurological Disorders and Stroke (NINDS) to the U Department of Pharmacology and Toxicology, represents a shift in the mission to identify new therapies, according to ADD Director Karen S. Wilcox, Ph.D., professor and chair of pharmacology and toxicology and principal investigator of the contract.

“We’re proud that over the past 41 years, the ADD program has played a key role in identifying and characterizing many of the drugs now available to treat patients with epilepsy and to control their seizures,” Wilcox says. “Now, we’re looking for drugs that can modify or prevent the disease, particularly in those patients either with refractory epilepsy or at risk for developing epilepsy following a brain injury.”

Epilepsy is a group of neurological disorders characterized by a tendency for repeated seizures over time. It occurs when permanent changes in the brain result in abnormal or excessive neuronal activity in the brain. An estimated 2.9 million people in the United States and 50 million people worldwide have active epilepsy, according the Centers for Disease Control and World Health Organization. There is no cure for epilepsy and the mainstay of treatment is anti-seizure medications.

ADD is a long-standing program dedicated to testing drugs to treat epilepsy. It has received continuous funding from NINDS’ Epilepsy Therapy Screening Program (ETSP) (formerly known as the Anticonvulsant Screening Program) since its founding in 1974. In collaboration, the ETSP and the ADD Program have evaluated more than 32,000 compounds. ADD received the contract in a competitive bidding process. The renewal of the contractual relationship between the NINDS and the University of Utah reflects the ongoing commitment of the NIH and the ETSP to finding and developing novel therapies for epilepsy and represents a unique partnership between government, industry, and academia.

“The NIH-NINDS ETSP is pleased to continue the productive relationship with the University of Utah,” says Dr. John Kehne, a Program Director at NINDS and head of the ETSP. “These and other efforts supported by the NINDS will help to discover new pharmacotherapies to address the unmet medical needs of people living with epilepsy.”

In addition to its focus on evaluating potential candidate drugs for the treatment of therapy-resistant epilepsy, the mission of the ADD Program includes efforts to identify novel therapies for different types of epilepsy. The program also serves as a base for innovative basic research that sheds new light on the pathophysiology of epilepsy and provides a unique training environment for students, research fellows, and visiting scientists. Currently, the ADD program employ18 researchers, technicians, and staff. Cameron S. Metcalf, Ph.D is associate director and a co-Investigator of the contract and Peter J. West, Ph.D., and Misty D. Smith, Ph.D, research assistant professors of pharmacology and toxicology, are also co-investigators on the contract renewal.

Although there currently is no cure for epilepsy, Wilcox, who previously served as a co-Investigator of ADD before taking over as PI in 2016, believes that can be changed.

“The brain has remarkable plasticity throughout a person’s life,” she says. “If we learn enough about neuroscience and the details of how the brain works, it’s very possible to find a cure.”

Source: University of Utah Health Sciences

Source: ADD Program receives $19.5 million NIH contract to test drugs for treating epilepsy

, , , , , , , , , , , ,

Leave a comment

[WEB SITE] Research could pave way for more effective and safer anti-epilepsy drugs

Columbia University Medical Center (CUMC) researchers have discovered how a new epilepsy drug works, which may lead the way to even more effective and safer medications.

The findings were published today in Neuron.

The most commonly used anti-epilepsy drugs are ineffective for about 30 percent of people with seizure disorders.

A new direction in the treatment of epilepsy is aimed at inhibiting AMPA receptors, which help transmit electrical signals in the brain and play a key role in propagating seizures. Currently, perampanel is the only FDA-approved drug that targets AMPA receptors. But because perampanel is associated with significant side effects, its clinical use has been limited.

“The problem is that AMPA receptors are heavily involved in the central nervous system, so if you inhibit their function, you cause an array of unwanted effects,” said study leader Alexander I. Sobolevsky, PhD, professor of biochemistry and molecular biophysics at CUMC. “If we hope to design better drugs for epilepsy, we need to learn more about the structure and function of these receptors.”

In this study, Dr. Sobolevsky employed a technique called crystallography to determine how perampanel and two other inhibitors interact with the AMPA receptors to stop transmission of electrical signals. The study was conducted using rat AMPA receptors, which are almost identical to human receptors.

In the new study, the researchers were able to pinpoint exactly where the drugs bind to AMPA receptors.

“Our data suggest that the inhibitors wedge themselves into the AMPA receptor, which prevents the opening of a channel within the receptor,” said Dr. Sobolevsky. When that channel is closed, ions cannot pass into the cell to trigger an electrical signal.

According to the researchers, these findings may allow drug makers to develop medications that are highly selective for the AMPA receptors, which could be safer and more effective than currently available anti-epilepsy drugs.

Source: Research could pave way for more effective and safer anti-epilepsy drugs

, , , , , , , , , , , ,

Leave a comment

[WEB SITE] Research Reports – Study evaluating the effects of Cerebrolysin treatment on clinical outcomes in traumatic brain injury

Traumatic brain injury (TBI) is a leading cause of death and disability for which

there is currently no effective drug therapy available. Because drugs targeting a

single TBI pathological pathway have failed to show clinical efficacy to date,

pleiotropic agents with effects on multiple mechanisms of secondary brain damage

could represent an effective option to improve brain recovery and clinical

outcome in TBI patients. In this multicenter retrospective study, we investigated

severity-related efficacy and safety of the add-on therapy with two

concentrations (20 ml/day or 30 ml/day) of Cerebrolysin (EVER Neuro Pharma,

Austria) in TBI patients. Adjunctive treatment with Cerrebrolysin started within

48 hours after TBI and clinical outcomes were ranked according to the Glasgow

Outcome Scale and the Modified Rankin Disability Score at 10 and 30 days

post-TBI. Analyses of efficacy were performed separately for subgroups of

patients with mild, moderate or severe TBI according to Glasgow Coma Scale scores

at admission. Compared to standard medical care alone (control group), both doses

of Cerebrolysin were associated with improved clinical outcome scores at 10 days

post-TBI in mild patients and at 10 and 30 days in moderate and severe cases. A

dose-dependent effect of Cerebrolysin on TBI recovery was supported by the

dose-related differences and the significant correlations with treatment duration

observed for outcome measures. The safety and tolerability of Cerebrolysin in TBI

patients was very good. In conclusion, the results of this large retrospective

study revealed that early Cerebrolysin treatment is safe and is associated to

improved TBI outcome.

via Traumatic Brain Injury Resource Guide – Research Reports – Study evaluating the effects of Cerebrolysin treatment on clinical outcomes in traumatic brain injury.

, ,

Leave a comment

[WEB SITE] Traumatic Brain Injury and Drug Use—A Closer Look

January 15, 2015

It’s the big game. You’re running full speed toward the goal line. You have it in sight. You are focused. You are fast. This is it. BAM! You’ve been hit. This is not it. The ball is gone. The moment is passed. And you are on your back. Nothing is broken. But your brain has been rattled. That hit has led to a traumatic brain injury (TBI).

TBI happens when a bump, blow, jolt, or other head injury causes damage to the brain. Every brain injury, even a concussion, is a TBI. A concussion happens when the brain bumps the skull, causing mild damage, almost like a bruise. Usually a concussion causes a change in how the brain works or a short loss of consciousness.

So, why are we talking about TBI on a blog about drugs? Because a recent study reports that people who suffered a TBI before the age of 5 or between ages 16 and 25 were at an increased risk for dependence on alcohol and drugs.

What Does TBI Have To Do With Drug Dependence?

The verdict is still out on that. What we do know is that our brains continue to grow and develop into our late teens and early 20s. This is a time when our brains are, frankly, more vulnerable physically—not to just having a TBI in the first place, but to the consequences of TBI, including an increased risk for drug problems.

What Can Happen When You Use Drugs After a TBI?

Beyond just increasing the use of drugs, a TBI can also make alcohol and drug use more harmful.

For example:

  • After a TBI, teens may feel the effects of alcohol and drugs more quickly than before the injury. Some teens may find just a small amount of alcohol or drugs impairs judgment and balance.
  • People with TBI may have difficulty thinking, balancing, remembering, and concentrating. Using marijuana, alcohol, and other drugs can make these problems worse.
  • Some teens may need to take prescription medications for their injury. When a person mixes prescription medications with drugs or alcohol, a bad reaction can occur, which sometimes can be deadly.
  • People under the influence of drugs or alcohol don’t always make good choices, and those choices increase their risk for another injury.

After a TBI, most people can’t wait to recover and return to their normal activities. And it’s not unreasonable to be sad when you have to sit on the bench while your brain recovers (because it may likely take longer than your body, which feels ready for the field). But what this study tells us is that, while you are free to wallow and feel crummy about your situation, do so without using alcohol and drugs. Drug or alcohol use not only interferes with the recovery process, it can set you up for drug problems—something no athlete wants.

via Traumatic Brain Injury and Drug Use—A Closer Look.

, , ,

Leave a comment

%d bloggers like this: