Posts Tagged evidence-based

[REVIEW ARTICLE] Robot-Assisted Therapy in Upper Extremity Hemiparesis: Overview of an Evidence-Based Approach – Full Text

Robot-mediated therapy is an innovative form of rehabilitation that enables highly repetitive, intensive, adaptive, and quantifiable physical training. It has been increasingly used to restore loss of motor function, mainly in stroke survivors suffering from an upper limb paresis. Multiple studies collated in a growing number of review articles showed the positive effects on motor impairment, less clearly on functional limitations. After describing the current status of robotic therapy after upper limb paresis due to stroke, this overview addresses basic principles related to robotic therapy applied to upper limb paresis. We demonstrate how this innovation is an evidence-based approach in that it meets both the improved clinical and more fundamental knowledge-base about regaining effective motor function after stroke and the need of more objective, flexible and controlled therapeutic paradigms.

Introduction

Robot-mediated rehabilitation is an innovative exercise-based therapy using robotic devices that enable the implementation of highly repetitive, intensive, adaptive, and quantifiable physical training. Since the first clinical studies with the MIT-Manus robot (1), robotic applications have been increasingly used to restore loss of motor function, mainly in stroke survivors suffering from an upper limb paresis but also in cerebral palsy (2), multiple sclerosis (3), spinal cord injury (4), and other disease types. Thus, multiple studies suggested that robot-assisted training, integrated into a multidisciplinary program, resulted in an additional reduction of motor impairments in comparison to usual care alone in different stages of stroke recovery: namely, acute (57), subacute (18), and chronic phases after the stroke onset (911). Typically, patients engaged in the robotic therapy showed an impairment reduction of 5 points or more in the Fugl-Meyer assessment as compared to usual care. Of notice, rehabilitation studies conducted during the chronic stroke phase suggest that a 5-point differential represents the minimum clinically important difference (MCID), i.e., the magnitude of change that is necessary to produce real-world benefits for patients (12). These results were collated in multiple review articles and meta-analyses (1317). In contrast, the advantage of robotic training over usual care in terms of functional benefit is less clear, but there are recent results that suggest how best to organize training to achieve superior results in terms of both impairment and function (18). Indeed, the use of the robotic tool has allowed us the parse and study the ingredients that should form an efficacious and efficient rehabilitation program. The aim of this paper is to provide a general overview of the current state of robotic training in upper limb rehabilitation after stroke, to analyze the rationale behind its use, and to discuss our working model on how to more effectively employ robotics to promote motor recovery after stroke.

Upper Extremity Robotic Therapy: Current Status

Robotic systems used in the field of neurorehabilitation can be organized under two basic categories: exoskeleton and end-effector type robots. Exoskeleton robotic systems allow us to accurately determine the kinematic configuration of human joints, while end-effector type robots exert forces only in the most distal part of the affected limb. A growing number of commercial robotic devices have been developed employing either configuration. Examples of exoskeleton type include the Armeo®Spring, Armeo®Power, and Myomo® and of end-effector type include the InMotion™, Burt®, Kinarm™ and REAplan®. Both categories enable the implementation of intensive training and there are many other devices in different stages of development or commercialization (1920).

The last decade has seen an exponential growth in both the number of devices as well as clinical trials. The results coalesced in a set of systematic reviews, meta-analyses (1317) and guidelines such as those published by the American Heart Association and the Veterans Administration (AHA and VA) (21). There is a clear consensus that upper limb therapy using robotic devices over 30–60-min sessions, is safe despite the larger number of movement repetitions (14).

This technic is feasible and showed a high rate of eligibility; in the VA ROBOTICS (911) study, nearly two thirds of interviewed stroke survivors were enrolled in the study. As a comparison the EXCITE cohort of constraint-induced movement therapy enrolled only 6% of the screened patients participated (22). On that issue, it is relevant to notice the admission criteria of both chronic stroke studies. ROBOTICS enrolled subjects with Fugl-Meyer assessment (FMA) of 38 or lower (out of 66) while EXCITE typically enrolled subjects with an FMA of 42 or higher. Duret and colleagues demonstrated that the target population, based on motor impairments, seems to be broader in the robotic intervention which includes patients with severe motor impairments, a group that typically has not seen much benefit from usual care (23). Indeed, Duret found that more severely impaired patients benefited more from robot-assisted training and that co-factors such as age, aphasia, and neglect had no impact on the amount of repetitive movements performed and were not contraindicated. Furthermore, all patients enrolled in robotic training were satisfied with the intervention. This result is consistent with the literature (24).

The main outcome result is that robotic therapy led to significantly more improvement in impairment as compared to conventional usual care, but only slightly more on motor function of the limb segments targeted by the robotic device (16). For example, Bertani et al. (15) and Zhang et al. (17) found that robotic training was more effective in reducing motor impairment than conventional usual care therapy in patients with chronic stroke, and further meta-analyses suggested that using robotic therapy as an adjunct to conventional usual care treatment is more effective than robotic training alone (1317). Other examples of disproven beliefs: many rehabilitation professionals mistakenly expected significant increase of muscle hyperactivity and shoulder pain due to the intensive training. Most studies showed just the opposite, i.e., that intensive robotic training was associated with tone reduction as compared to the usual care groups (92526). These results are shattering the resistance to the widespread adoption of robotic therapy as a therapeutic modality post-stroke.

That said, not all is rosy. Superior changes in functional outcomes were more controversial until the very last years as most studies and reviews concluded that robotic therapy did not improve activities of daily living beyond traditional care. One first step was reached in 2015 with Mehrholz et al. (14), who found that robotic therapy can provide more functional benefits when compared to other interventions however with a quality of evidence low to very low. 2018 may have seen a decisive step in favor of robotic as the latest meta-analysis conducted by Mehrholz et al. (27) concluded that robot-assisted arm training may improve activities of daily living in the acute phase after stroke with a high quality of evidence However, the results must be interpreted with caution because of the high variability in trial designs as evidenced by the multicenter study (28) in which robotic rehabilitation using the Armeo®Spring, a non-motorized device, was compared to self-management with negative results on motor impairments and potential functional benefits in the robotic group.

The Robot Assisted Training for the Upper Limb after Stroke (RATULS) study (29) might clarify things and put everyone in agreement on the topic. Of notice, RATULS goes beyond the Veterans Administration ROBOTICS with chronic stroke or the French REM_AVC study with subacute stroke. RATULS included 770 stroke patients and covered all stroke phases, from acute to chronic, and it included a positive meaningful control in addition to usual care.[…]

 

Continue —->  Frontiers | Robot-Assisted Therapy in Upper Extremity Hemiparesis: Overview of an Evidence-Based Approach | Neurology

, , , , , , , , , , ,

Leave a comment

[Review] Evidence based position paper on physical and rehabilitation medicine professional practice for adults with acquired brain injury. The European PRM position (UEMS PRM Section)

INTRODUCTION: Acquired brain injury (ABI) is damage to the brain that occurs after birth caused either by a traumatic or by a nontraumatic injury. The rehabilitation process following ABI should be performed by a multi-professional team, working in an interdisciplinary way, with the aim of organizing a comprehensive and holistic approach to persons with every severity of ABI. This Evidence Based Position Paper represents the official position of the European Union through the UEMS Physical and Rehabilitation Medicine (PRM) Section and designates the professional role of PRM physicians for people with ABI.
AIM: The aim was to formulate recommendations on the PRM physician’s professional practice for persons with ABI in order to promote their functioning and enhance quality of life.
METHODS: This paper has been developed according to the methodology defined by the Professional Practice Committee of the UEMS-PRM SECTION: a systematic literature search has been performed in PubMed and Core Clinical Journals. On the basis of the selected papers, recommendations have been made as a result of five Delphi rounds.
RESULTS: The literature review as well as thirty-one reccomendations are presented.
CONCLUSIONS: The expert consensus is that structured, comprehensive and holistic rehabilitation programme delivered by the multi-professional team, working in an interdisciplinary way, with the leadership and coordination of the PRM physician, is likely to be effective, especially for those with severe disability after brain injury.

Full Text PDF

via Evidence based position paper on physical and rehabilitation medicine professional practice for adults with acquired brain injury. The European PRM position (UEMS PRM Section) – European Journal of Physical and Rehabilitation Medicine 2018 Aug 29 – Minerva Medica – Journals

, , , , ,

Leave a comment

[WEB SITE] EBRSR – Evidence-Based Review of Stroke Rehabilitation

Introduction

Welcome to the 18th edition of the EBRSR. The EBRSR now includes in-depth reviews of well over 4,500 studies including over 2,300 randomized controlled trials. Parts of the EBRSR have been translated into a number of languages.

We extend sincere gratitude to the Canadian Partnership for Stroke Recovery (CPSR), a joint initiative of the Heart and Stroke Foundation and Canada’s leading stroke research centres, for funding the EBRSR.

Many readers have e-mailed us with their comments and we encourage you do so as well. We also encourage you to e-mail us if you have any concerns regarding our analyses. This helps us to ensure our data and conclusions are the best possible.

Robert Teasell MD FRCPC
Andreea Cotoi MSc

Visit Site —> Introduction | EBRSR – Evidence-Based Review of Stroke Rehabilitation

, ,

Leave a comment

[BLOG] Complete Solution for Neurological Gait Rehabilitation

medica presents an efficient best-practice model for multi-phase group therapy

With the THERA-Trainer Complete Solution for gait rehabilitation, medica Medizintechnik GmbH brings a complete device-based concept for neurological rehabilitation onto the market. The company is thus addressing the challenge, faced by many hospitals, of offering scientifically established and effective therapies despite the lack of resources, cost pressures and time constraints.

With our Complete Solution, we are successfully implementing an evidence-based, clinically proven treatment concept for the rehabilitation of the lower extremities.

Jacob Tiebel, head of product management at medica

Many hospitals need tailored strategies to work efficiently, and medica Medizintechnik GmbH’s new solution concept meets this requirement. The THERA-Trainer Complete Solution for gait rehabilitation is developed individually with each customer and is tailored to the current operating reality of each hospital. An in-depth analysis of the initial situation and a customised design of the solution ensure that space issues are taken into account and that the training and therapy devices are properly utilised. The Complete Solution is not a substitute for therapists, but instead facilitates and supports their work. In addition, it enables a single therapist to treat several patients at the same time.

A complete solution, not a piecemeal offering

With the Complete Solution concept, THERA-Trainer primarily addresses the organisational and process weaknesses in hospitals. With this approach, medica intends to harness previously untapped economic potential in hospitals, while at the same time working sustainably towards better treatment outcomes. The focus is not on the individual products, but on an optimised therapy process and the full set of devices as a complete solution.
Last year, medica acquired an end-effector gait trainer through its merger with the Swiss company ability.

With the THERA-Trainer lyra, we now offer the full range of products for gait rehabilitation. The real innovation lies in integrating these products intelligently into a high-efficiency setting.

medica owner and managing director Peter Kopf

First pilot projects have been successful

The first pilot project was launched last year in collaboration with one of Germany’s largest hospital operators. The first THERA-Trainer Complete Solution was installed by medica in the neurological centre at the MEDIAN clinic in Madgeburg. This marked the beginning of intensive cooperation between the rehabilitation sector and industry.

Prof. Michael Sailer, medical director of the MEDIAN clinic in Madgeburg, is convinced: “Professional care allows us to develop a differentiated approach with the Complete Solution.” The process of carrying out a preliminary analysis of a hospital’s therapy processes, followed by the creation of new therapeutic pathways, is of vital importance for cost-effective use, Sailer continues.

With the Complete Solution for gait rehabilitation, medica is striving towards long-term cooperation and partnership with hospitals. The concept has already received positive feedback from experts, and official distribution of the THERA-Trainer Complete Solution is now underway.

via Complete Solution for Neurological Gait Rehabilitation | ACNR | Online Neurology Journal

, , , ,

Leave a comment

[WEB SITE] If we want medicine to be evidence-based, what should we think when the evidence doesn’t agree?

To understand if a new treatment for an illness is really better than older treatments, doctors and researchers look to the best available evidence. Health professionals want a “last word” in evidence to settle questions about what the best modes of treatment are.

But not all medical evidence is created equal. And there is a clear hierarchy of evidence: expert opinion and case reports about individual events are at the lowest tier, and well-conducted randomized controlled trials are near the top. At the very top of this hierarchy are meta-analyses – studies that combine the results from multiple studies that asked the same question. And the very, very top of this hierarchy are meta-analyses performed by a group called the Cochrane Collaboration.

To be a member of the Cochrane Collaboration, individual researchers or research groups are required to adhere to very strict guidelines about how meta-analyses are to be reported and conducted. That’s why Cochrane reviews are generally considered to be the best meta-analyses.

However, no one has ever asked if the results in meta-analyses performed by the Cochrane Collaboration are different from meta-analyses from other sources. In theory, if you compared a Cochrane and non-Cochrane meta-analysis, both published within a similar time frame, you’d tend to expect that they’d have chosen the same studies to analyze, and that their results and interpretation would more or less match up.

Our team at Boston University’s School of Public Health decided to find out. And surprisingly, that’s not what we found.

What is a meta-analysis, anyway?

Imagine you have five small clinical trials that all found a generally positive benefit for, let’s say, taking aspirin to prevent heart attacks. But because each of the studies only had a small number of study subjects, none could confidently state that the beneficial effects weren’t simply due to chance. In statistical-speak, such studies would be deemed “underpowered.”

There is a good way to increase the statistical power of those studies: combine those five smaller studies into one. That’s what a meta-anaysis does. Combining several smaller studies into one analysis and taking the average of those studies can sometimes tip the scales, and let the medical community know with confidence whether a given intervention works, or not.

Taking the average. Magazine image via www.shutterstock.com.

Meta-analyses are efficient and cheap because they don’t require running new trials. Rather, it’s a matter of finding all of the relevant studies that have already been published, and this can be surprisingly difficult. Researchers have to be persistent and methodical in their search. Finding studies and deciding whether they are good enough to trust is where the art – and error – of this science becomes a critical issue.

That’s actually a major reason why the Cochrane Collaboration was founded. Archie Cochrane, a health services researcher, recognized the power of meta-analyses, but also the tremendous importance of doing them right. The Cochrane Collaboration meta-analyses must adhere to very high standards of transparency and methodological rigor and reproducibility.

Unfortunately, few can commit the time and effort to join the Cochrane Collaboration, and that means that the vast majority of meta-analyses are not conducted by the Collaboration, and are not bound to adhere to their standards. But does this actually matter?

Not quite the same. Apple and orange via www.shutterstock.com

How different can two meta-analyses be?

To find out, we started by identifying 40 pairs of meta-analyses, one from Cochrane and one not, that covered the same intervention (e.g., aspirin) and outcome (e.g., heart attacks), and then compared and contrasted them.

First, we found that almost 40 percent of the Cochrane and non-Cochrane meta-analyses disagreed in their bottom-line statistical answers. That means that typical readers, doctors or health policymakers, for instance, would come up with a fundamentally different interpretation of whether the intervention was effective or not, depending on which meta-anlyses they happened to read.

Second, these differences appeared to be systematic. The non-Cochrane reviews, on average, tended to suggest that the interventions they were testing were more potent, more likely to cure the condition or avert some medical complication than the Cochrane reviews suggested. At the same time, the non-Cochrane reviews were less precise in their accuracy, meaning that there was a higher chance that the findings were merely due to chance.

A meta-analysis is nothing more than just a fancy weighted average of its component studies. We were surprised to find that approximately 63 percent of the included studies were unique to one or the other set of meta-analyses. In other words, despite the fact that the two sets of meta-analyses would presumably look for the same papers, using similar search criteria, over a similar period of time and from similar databases, only about a third of the papers the two sets had included were the same.

It seems likely that most or all of these differences come down to the fact that Cochrane insists on tougher criteria. A meta-analysis is only as good as the studies it includes, and taking the average of poor research can lead to a poor result. As the saying goes, “garbage in, garbage out.”

Interestingly, the analyses that reported much higher effect sizes tended to get cited again in other papers at a much higher rate than the analyses reporting the lower effect size. This is a statistical embodiment of the old journalistic saying “If it bleeds, it leads.” Big and bold effects get more attention than results showing marginal or equivocal outcomes. The medical community is, after all, just human.

Why does this matter?

At its most basic level, this shows that Archie Cochrane was absolutely correct. Methodological consistency and rigor and transparency are essential. Without that, there’s a risk of concluding that something works when it doesn’t, or even just overhyping benefits.

But at a higher level this shows us, yet again, how very difficult it is to generate a unified interpretation of the medical literature. Meta-analyses are often used as the final word on a given subject, as the arbiters of ambiguity.

Clearly that role is challenged by the fact that two meta-analyses, ostensibly on the same topic, can reach different conclusions. If we view the meta-analysis as the “gold standard” in our current era of “evidence-based medicine,” how is the average doctor or policymaker or even patient to react when two gold standards contradict each other? Caveat emptor.

Source: If we want medicine to be evidence-based, what should we think when the evidence doesn’t agree?

, , ,

Leave a comment

%d bloggers like this: