Posts Tagged Exercise

[Abstract] Examining the effect of virtual reality therapy on cognition post-stroke: a systematic review and meta-analysis

Introduction: Virtual reality (VR) are user-computer interface platforms that implement real-time simulation of an activity or environment, allowing user interaction via multiple sensory modalities. VR therapy may be an effective intervention for improving cognitive function following stroke. The aim of this systematic review was to examine the effectiveness of exercise-based VR therapy on cognition post-stroke.

Methods: Electronic databases were searched for terms related to “stroke”, “virtual reality”, “exercise” and “cognition”. Studies were included if they: (1) were randomized-controlled trials; (2) included VR-based interventions; (3) included individuals with stroke; and (4) included outcome measures related to cognitive function. Data from included studies were synthesised qualitatively and where possible, random effects meta-analyses were performed.

Results: Eight studies involving 196 participants were included in the review, of which five were included in meta-analyses (n = 124 participants). Studies varied in terms of type (combination of VR therapy and conventional therapy, combination of VR therapy and computer-based cognitive training, VR therapy alone) and duration of interventions (20–180 min), sample size (n = 12–42), length of the interventions (4–8 weeks), and cognitive outcomes examined. VR therapy was not more effective than control for improving global cognition (n = 5, SMD = 0.24, 95%CI:−0.30,0.78, p = .38), memory (n = 2 studies, SMD= 0.00, 95%CI: −0.58, 0.59, p = .99), attention (n = 2 studies, MD = 8.90, 95%CI: −27.89, 45.70, p = .64) or language (n = 2 studies, SMD = 0.56, 95%CI: −0.08,1.21, p = .09).

Conclusion: VR therapy was not superior to control interventions in improving cognition in individuals with stroke. Future research should include high-quality and adequately powered trials examining the impact of virtual reality therapy on cognition post-stroke.

Implications for rehabilitation

  • Virtual reality therapy is a promising new form of technology that has been shown to increase patient satisfaction towards stroke rehabilitation.

  • Virtual reality therapy has the added benefits of providing instant feedback, and the difficulty can be easily modified, underscoring the user-friendliness of this form of rehabilitation.

  • Virtual reality therapy has the potential to improve various motor, cognitive and physical deficits following stroke, highlighting its usefulness in rehabilitation settings.

via Examining the effect of virtual reality therapy on cognition post-stroke: a systematic review and meta-analysis: Disability and Rehabilitation: Assistive Technology: Vol 0, No 0

, , , ,

Leave a comment

[Abstract + References] Unilateral Dorsiflexor Strengthening With Mirror Therapy to Improve Motor Function After Stroke: A Pilot Randomized Study

Abstract

Background: Independently, cross-education, the performance improvement of the untrained limb following unilateral training, and mirror therapy have shown to improve lower limb functioning poststroke. Mirror therapy has shown to augment the cross-education effect in healthy populations. However, this concept has not yet been explored in a clinical setting.

Objectives: This study set out to investigate the feasibility and potential efficacy of applying cross-education combined with mirror therapy compared with cross-education alone for lower limb recovery poststroke.

Methods: Thirty-one chronic stroke participants (age 61.7 ± 13.3) completed either a unilateral strength training (ST; n = 15) or unilateral strength training with mirror-therapy (MST; n = 16) intervention. Both groups isometrically strength trained the less-affected ankle dorsiflexors three times per week for 4 weeks. Only the MST group observed the mirror reflection of the training limb. Patient eligibility, compliance, treatment reliability, and outcome measures were assessed for feasibility. Maximal voluntary contraction (MVC; peak torque, rate of torque development, and average torque), 10-m walk test, timed up and go (TUG), Modified Ashworth Scale (MAS), and the London Handicap Scale (LHS) were assessed at pretraining and posttraining.

Results: Treatment and assessments were well tolerated without adverse effects. No between group differences were identified for improvement in MVC, MAS, TUG, or LHS. Only the combined treatment was associated with functional improvements with the MST group showing an increase in walking velocity.

Conclusion: Cross-education plus mirror therapy may have potential for improving motor function after stroke. This study demonstrates the feasibility of the combination treatment and the need for future studies with larger sample sizes to investigate the effectiveness of the treatment.

REFERENCES

    1. Aagaard, P., Simonsen, E. B., Andersen, J. L., Magnusson, P., & Dyhre-Poulsen, P. (2002). Increased rate of force development and neural drive of human skeletal muscle following resistance training. Journal of Applied Physiology (Bethesda, MD: 1985), 93(4), 1318-1326. https://doi.org/10.1152/japplphysiol.00283.2002
    1. ACSM (2009). American College of Sports Medicine position stand. Progression models in resistance training for healthy adults. Medicine and Science in Sports and Exercise, 41(3), 687-708. https://doi.org/10.1249/MSS.0b013e3181915670
    1. AI Therapy Statistics (2017). Sample size calculator. Retrieved from https://www.ai-therapy.com/psychology-statistics/sample-size-calculator
    1. Barzi, Y., & Zehr, E. (2008). Rhythmic arm cycling suppresses hyperactive soleus H-reflex amplitude after stroke. Clinical Neurophysiology, 119(6), 1443-1452. https://doi.org/10.1016/j.clinph.2008.02.016
    1. Benjamin, E. J., Blaha, M. J., Chiuve, S. E., Cushman, M., Das, S. R., Deo, R., … Jiménez, M. C. (2017). Heart disease and stroke statistics-2017 update: A report from the American Heart Association. Circulation, 135(10), e146-e603. https://doi.org/10.1161/cir.0000000000000485
    1. Biodex Medical Systems Inc. (2006). Biodex system 3 pro application/ operationmanual. Retrieved from http://www.biodex.com/sites/default/files/835000man_06159.pdf
    1. Bird, S. P., Tarpenning, K. M., & Marino, F. E. (2005). Designing resistance training programmes to enhance muscular fitness: A review of the acute programme variables. Sports Medicine, 35(10), 841-851. https://doi.org/10.2165/00007256-200535100-00002
    1. Broderick, P., Horgan, F., Blake, C., Ehrensberger, M., Simpson, D., & Monaghan, K. (2018). Mirror therapy for improving lower limb motor function and mobility after stroke: A systematic review and meta-analysis. Gait & Posture, 63, 208-220. https://doi.org/10.1016/j.gaitpost.2018.05.017
    1. Carroll, L. M., Volpe, D., Morris, M. E., Saunders, J., & Clifford, A. M. (2017). Aquatic exercise therapy for people with Parkinson disease: A randomized controlled trial. Archives of Physical Medicine and Rehabilitation, 98(4), 631-638. https://doi.org/10.1016/j.apmr.2016.12.006
    1. Carson, R., Riek, S., Mackey, D., Meichenbaum, D., Willms, K., Forner, M., & Byblow, W. (2004). Excitability changes in human forearm corticospinal projections and spinal reflex pathways during rhythmic voluntary movement of the opposite limb. The Journal of Physiology, 560(Pt 3, 929-940. https://doi.org/10.1113/jphysiol.2004.069088
    1. Carvalho, D., Teixeira, S., Lucas, M., Yuan, T. F., Chaves, F., Peressutti, C., & Arias-Carrion, O. (2013). The mirror neuron system in post-stroke rehabilitation. International Archives of Medicine, 6(1), 41. https://doi.org/10.1186/1755-7682-6-41
    1. Cohen, J. (1992). A power primer. Psychological Bulletin, 112(1), 155-159. https://doi.org/10.1037/0033-2909.112.1.155
    1. Collen, F. M., Wade, D. T., & Bradshaw, C. M. (1990). Mobility after stroke: Reliability of measures of impairment and disability. International Disability Studies, 12(1), 6-9. https://doi.org/10.3109/03790799009166594
    1. de Morton, N. A. (2009). The PEDro scale is a valid measure of the methodological quality of clinical trials: A demographic study. The Australian Journal of Physiotherapy, 55(2), 129-133. https://doi.org/10.1016/S0004-9514(09)70043-1
    1. Deconinck, F. J., Smorenburg, A. R., Benham, A., Ledebt, A., Feltham, M. G., & Savelsbergh, G. J. (2015). Reflections on mirror therapy: A systematic review of the effect of mirror visual feedback on the brain. Neurorehabilitation and Neural Repair, 29(4), 349-361. https://doi.org/10.1177/1545968314546134
    1. Dragert, K., & Zehr, E. P. (2013). High-intensity unilateral dorsiflexor resistance training results in bilateral neuromuscular plasticity after stroke. Experimental Brain Research, 225(1), 93-104. https://doi.org/10.1007/s00221-012-3351-x
    1. Ehrensberger, M., Simpson, D., Broderick, P., & Monaghan, K. (2016). Cross-education of strength has a positive impact on post-stroke rehabilitation: A systematic literature review. Topics in Stroke Rehabilitation, 23(2), 126-135. https://doi.org/10.1080/10749357.2015.1112062
    1. Eng, J. J., Kim, C. M., & Macintyre, D. L. (2002). Reliability of lower extremity strength measures in persons with chronic stroke. Archives of Physical Medicine and Rehabilitation, 83(3), 322-328. https://doi.org/10.1053/apmr.2002.29622
    1. Faber, J., & Fonseca, L. M. (2014). How sample size influences research outcomes. Dental Press Journal of Orthodontics, 19(4), 27-29. https://doi.org/10.1590/2176-9451.19.4.027-029.ebo
    1. Faria, C. D., Teixeira-Salmela, L. F., Neto, M. G., & Rodrigues-de-Paula, F. (2012). Performance-based tests in subjects with stroke: Outcome scores, reliability and measurement errors. Clinical Rehabilitation, 26(5), 460-469. https://doi.org/10.1177/0269215511423849
    1. Farthing, J. P. (2009). Cross-education of strength depends on limb dominance: Implications for theory and application. Exercise and Sport Sciences Reviews, 37(4), 179-187. https://doi.org/10.1097/JES.0b013e3181b7e882
    1. Fimland, M. S., Helgerud, J., Solstad, G. M., Iversen, V. M., Leivseth, G., & Hoff, J. (2009). Neural adaptations underlying cross-education after unilateral strength training. European Journal of Applied Physiology, 107(6), 723-730. https://doi.org/10.1007/s00421-009-1190-7
    1. Flansbjer, U. B., Holmback, A. M., Downham, D., Patten, C., & Lexell, J. (2005). Reliability of gait performance tests in men and women with hemiparesis after stroke. Journal of Rehabilitation Medicine, 37(2), 75-82. https://doi.org/10.1080/16501970410017215
    1. Gracies, J. M. (2005). Pathophysiology of spastic paresis. II: Emergence of muscle overactivity. Muscle & Nerve, 31(5), 552-571. https://doi.org/10.1002/mus.20285
    1. Harbo, T., Brincks, J., & Andersen, H. (2012). Maximal isokinetic and isometric muscle strength of major muscle groups related to age, body mass, height, and sex in 178 healthy subjects. European Journal of Applied Physiology, 112(1), 267-275. https://doi.org/10.1007/s00421-011-1975-3
    1. Hendy, A. M., & Lamon, S. (2017). The cross-education phenomenon: Brain and beyond. Frontiers in Physiology, 8, 297. https://doi.org/10.3389/fphys.2017.00297
    1. Holmback, A. M., Porter, M. M., Downham, D., & Lexell, J. (1999). Reliability of isokinetic ankle dorsiflexor strength measurements in healthy young men and women. Scandinavian Journal of Rehabilitation Medicine, 31(4), 229-239.
    1. Hortobagyi, T. (2005). Cross education and the human central nervous system. IEEE Engineering in Medicine and Biology Magazine, 24(1), 22-28. https://doi.org/10.1109/MEMB.2005.1384096
    1. Hortobagyi, T., Taylor, J. L., Petersen, N. T., Russell, G., & Gandevia, S. C. (2003). Changes in segmental and motor cortical output with contralateral muscle contractions and altered sensory inputs in humans. Journal of Neurophysiology, 90(4), 2451-2459. https://doi.org/10.1152/jn.01001.2002
    1. Howatson, G., Zult, T., Farthing, J. P., Zijdewind, I., & Hortobagyi, T. (2013). Mirror training to augment cross-education during resistance training: A hypothesis. Frontiers in Human Neuroscience, 7, 396. https://doi.org/10.3389/fnhum.2013.00396
    1. Lee, M., & Carroll, T. J. (2007). Cross education: Possible mechanisms for the contralateral effects of unilateral resistance training. Sports Medicine, 37(1), 1-14. https://doi.org/10.2165/00007256-200737010-00001
    1. Magnus, C. R., Arnold, C. M., Johnston, G., Dal-Bello Haas, V., Basran, J., Krentz, J. R., & Farthing, J. P. (2013). Cross-education for improving strength and mobility after distal radius fractures: A randomized controlled trial. Archives of Physical Medicine and Rehabilitation, 94(7), 1247-1255. https://doi.org/10.1016/j.apmr.2013.03.005
    1. Manca, A., Cabboi, M., Dragone, D., Ginatempo, F., Ortu, E., De Natale, E., … Deriu, F. (2017). Resistance training for muscle weakness in multiple sclerosis: Direct versus contralateral approach in individuals with ankle dorsiflexors’ disparity in strength. Archives of Physical Medicine and Rehabilitation, 98(7), 1348-1356. https://doi.org/10.1016/j.apmr.2017.02.019
    1. Manca, A., Dragone, D., Dvir, Z., & Deriu, F. (2017). Cross-education of muscular strength following unilateral resistance training: A meta-analysis. European Journal of Applied Physiology, 117(11), 2335-2354. https://doi.org/10.1007/s00421-017-3720-z
    1. Manca, A., Pisanu, F., Ortu, E., & Deriu, F. (2015). Isokinetic cross-training effect in foot drop following common peroneal nerve injury. Isokinetics and Exercise Science, 23(1), 17-20. https://doi.org/10.3233/IES-140559
    1. McElwaine, P., McCormack, J., & Harbison, J. (2015). National Stroke Audit 2015. Retrieved from http://www.irishheart.ie/media/pub/strokestudy2015/ihfhse_national_stroke_audit__mcelwaine.pdf
    1. Michielsen, M. E., Selles, R. W., van der Geest, J. N., Eckhardt, M., Yavuzer, G., Stam, H. J., … Bussmann, J. B. (2011). Motor recovery and cortical reorganization after mirror therapy in chronic stroke patients: A phase II randomized controlled trial. Neurorehabilitation and Neural Repair, 25(3), 223-233. https://doi.org/10.1177/1545968310385127
    1. Park, E., & Choi, Y. (2014). Rasch analysis of the London Handicap Scale in stroke patients: A cross-sectional study. Journal of Neuroengineering and Rehabilitation, 11, 114. https://doi.org/10.1186/1743-0003-11-114
    1. Patten, C., Lexell, J., & Brown, H. E. (2004). Weakness and strength training in persons with poststroke hemiplegia: Rationale, method, and efficacy. Journal of Rehabilitation Research and Development, 41(3a), 293-312. https://doi.org/10.1682/JRRD.2004.03.0293
    1. Pekna, M., Pekny, M., & Nilsson, M. (2012). Modulation of neural plasticity as a basis for stroke rehabilitation. Stroke, 43(10), 2819-2828. https://doi.org/10.1161/strokeaha.112.654228
    1. Perera, S., Mody, S. H., Woodman, R. C., & Studenski, S. A. (2006). Meaningful change and responsiveness in common physical performance measures in older adults. Journal of the American Geriatrics Society, 54(5), 743-749. https://doi.org/10.1111/j.1532-5415.2006.00701
    1. Rossiter, H. E., Borrelli, M. R., Borchert, R. J., Bradbury, D., & Ward, N. S. (2015). Cortical mechanisms of mirror therapy after stroke. Neurorehabilitation and Neural Repair, 29(5), 444-452. https://doi.org/10.1177/1545968314554622
    1. Shaw, L., Rodgers, H., Price, C., van Wijck, F., Shackley, P., Steen, N., & Graham, L. (2010). BoTULS: A multicentre randomised controlled trial to evaluate the clinical effectiveness and cost-effectiveness of treating upper limb spasticity due to stroke with botulinum toxin type A. Health Technology Assessment, 14(26), 1-113. https://doi.org/10.3310/hta14260
    1. Stolberg, H. O., Norman, G., & Trop, I. (2004). Randomized controlled trials. AJR. American Journal of Roentgenology, 183(6), 1539-1544. https://doi.org/10.2214/ajr.183.6.01831539
    1. Thibaut, A., Chatelle, C., Ziegler, E., Bruno, M. A., Laureys, S., & Gosseries, O. (2013). Spasticity after stroke: Physiology, assessment and treatment. Brain Injury, 27(10), 1093-1105. https://doi.org/10.3109/02699052.2013.804202
    1. Thieme, H., Morkisch, N., Mehrholz, J., Pohl, M., Behrens, J., Borgetto, B., & Dohle, C. (2018). Mirror therapy for improving motor function after stroke. Cochrane Database of Systematic Reviews, (7), Cd008449. https://doi.org/10.1002/14651858.CD008449.pub3
    1. Touzalin-Chretien, P., Ehrler, S., & Dufour, A. (2010). Dominance of vision over proprioception on motor programming: Evidence from ERP. Cerebral Cortex, 20(8), 2007-2016. https://doi.org/10.1093/cercor/bhp271
    1. Trompetto, C., Marinelli, L., Mori, L., Pelosin, E., Currà, A., Molfetta, L., & Abbruzzese, G. (2014). Pathophysiology of spasticity: Implications for neurorehabilitation. BioMed Research International, 2014, 1-8. https://doi.org/10.1155/2014/354906
    1. Urban, P. P., Wolf, T., Uebele, M., Marx, J. J., Vogt, T., Stoeter, P., … Wissel, J. (2010). Occurence and clinical predictors of spasticity after ischemic stroke. Stroke, 41(9), 2016-2020. https://doi.org/10.1161/strokeaha.110.581991
    1. van Wijck, F. M., Pandyan, A. D., Johnson, G. R., & Barnes, M. P. (2001). Assessing motor deficits in neurological rehabilitation: Patterns of instrument usage. Neurorehabilitation and Neural Repair, 15(1), 23-30. https://doi.org/10.1177/154596830101500104
    1. Vattanasilp, W., Ada, L., & Crosbie, J. (2000). Contribution of thixotropy, spasticity, and contracture to ankle stiffness after stroke. Journal of Neurology, Neurosurgery, and Psychiatry, 69(1), 34-39. https://doi.org/10.1136/jnnp.69.1.34
    1. World Health Organization (2001). International classification of functioning, disability and health. Retrieved from http://unstats.un.org/unsd/disability/pdfs/ac.81-b4.pdf2001
    1. Wimpenny, P. (2016). Theory-Interpretation of results. Retrieved from http://www.isokinetics.net/index.php/2016-04-05-17-04-58/interpretation/general-interpretation
    1. Wissel, J., Schelosky, L. D., Scott, J., Christe, W., Faiss, J. H., & Mueller, J. (2010). Early development of spasticity following stroke: A prospective, observational trial. Journal of Neurology, 257(7), 1067-1072. https://doi.org/10.1007/s00415-010-5463-1
    1. Wolf, S. L., Catlin, P. A., Gage, K., Gurucharri, K., Robertson, R., & Stephen, K. (1999). Establishing the reliability and validity of measurements of walking time using the emory functional ambulation profile. Physical Therapy, 79(12), 1122-1133.
    1. Zipp, G., & Sullivan, J. (2010). Neurology section StrokEDGE taskforce. Retrieved from http://www.neuropt.org/docs/stroke-sig/strokeedge_taskforce_summary_document.pdf
    1. Zult, T., Goodall, S., Thomas, K., Solnik, S., Hortobagyi, T., & Howatson, G. (2016). Mirror training augments the cross-education of strength and affects inhibitory paths. Medicine and Science in Sports and Exercise, 48, 1001-1013. https://doi.org/10.1249/mss.0000000000000871
    1. Zult, T., Howatson, G., Kadar, E. E., Farthing, J. P., & Hortobagyi, T. (2014). Role of the mirror-neuron system in cross-education. Sports Medicine, 44(2), 159-178. https://doi.org/10.1007/s40279-013-0105-2
    1. Whitehead, A. L., Julious, S. A., Cooper, C. L., & Campbell, M. J. (2016). Estimating the sample size for a pilot randomised trial to minimise the overall trial sample size for the external pilot and main trial for a continuous outcome variable. Statistical Methods in Medical Research, 25(3), 1057-1073. https://doi.org/10.1177/0962280215588241

via Unilateral Dorsiflexor Strengthening With Mirror Therapy to Improve Motor Function After Stroke: A Pilot Randomized Study – PubMed

, , , , , , , , ,

Leave a comment

[TED-Ed] The brain-changing benefits of exercise – Wendy Suzuki

What’s the most transformative thing that you can do for your brain today? Exercise! says neuroscientist Wendy Suzuki. Get inspired to go to the gym as Suzuki discusses the science of how working out boosts your mood and memory — and protects your brain against neurodegenerative diseases like Alzheimer’s.

via The brain-changing benefits of exercise – Wendy Suzuki | TED-Ed

, ,

Leave a comment

[ARTICLE] Feedback Design in Targeted Exercise Digital Biofeedback Systems for Home Rehabilitation: A Scoping Review – Full Text PDF

Digital biofeedback systems (DBSs) are used in physical rehabilitation to improve outcomes by engaging and educating patients and have the potential to support patients while doing targeted exercises during home rehabilitation. The components of feedback (mode, content, frequency and timing) can influence motor learning and engagement in various ways. The feedback design used in DBSs for targeted exercise home rehabilitation, as well as the evidence underpinning the feedback and how it is evaluated, is not clearly known. To explore these concepts, we conducted a scoping review where an electronic search of PUBMED, PEDro and ACM digital libraries was conducted from January 2000 to July 2019. The main inclusion criteria included DBSs for targeted exercises, in a home rehabilitation setting, which have been tested on a clinical population. Nineteen papers were reviewed, detailing thirteen different DBSs. Feedback was mainly visual, concurrent and descriptive, frequently providing knowledge of results. Three systems provided clear rationale for the use of feedback. Four studies conducted specific evaluations of the feedback, and seven studies evaluated feedback in a less detailed or indirect manner. Future studies should describe in detail the feedback design in DBSs and consider a robust evaluation of the feedback element of the intervention to determine its efficacy.

Download Full Text PDF

via Feedback Design in Targeted Exercise Digital Biofeedback Systems for Home Rehabilitation: A Scoping Review – Sensors – X-MOL

 

, , , , , , , ,

1 Comment

[Abstract] Improving Walking Ability in People With Neurologic Conditions: A Theoretical Framework for Biomechanics-Driven Exercise Prescription.

Abstract

The purpose of this paper is to discuss how knowledge of the biomechanics of walking can be used to inform the prescription of resistance exercises for people with mobility limitations. Muscle weakness is a key physical impairment that limits walking in commonly occurring neurologic conditions such as cerebral palsy, traumatic brain injury, and stroke. Few randomized trials to date have shown conclusively that strength training improves walking in people living with these conditions. This appears to be because

(1) the most important muscle groups for forward propulsion when walking have not been targeted for strengthening, and

(2) strength training protocols have focused on slow and heavy resistance exercises, which do not improve the fast muscle contractions required for walking.

We propose a theoretical framework to improve exercise prescription by integrating the biomechanics of walking with the principles of strength training outlined by the American College of Sports Medicine to prescribe exercises that are specific to improving the task of walking. The high angular velocities that occur in the lower limb joints during walking indicate that resistance exercises targeting power generation would be most appropriate. Therefore, we propose the prescription of plyometric and ballistic resistance exercise, applied using the American College of Sports Medicine guidelines for task specificity, once people with neurologic conditions are ambulating, to improve walking outcomes. This new theoretical framework for resistance training ensures that exercise prescription matches how the muscles work during walking.

via Improving Walking Ability in People With Neurologic Conditions: A Theoretical Framework for Biomechanics-Driven Exercise Prescription. – PubMed – NCBI

, , , , , , , ,

Leave a comment

[BLOG POST] Exercise can help your brain injury, not just your muscles – #jumbledbrain

Having suffered a car accident, I had some serious injuries. These included my spine, nerves and my brain. I had foot drop, where when you raise your leg, you can not raise your foot from your ankle, leaving it to hang limply. That means you cannot put any weight on it and it will not offer any support or flexibility. On top of this, due tExerciseo a damaged nerve in my neck, and had weakness down my left side. However after 10 days, the hospital team got me walking with crutches, and sent me home.

I knew that I needed to do some exercise to help rebuild some of my strength. But what I didn’t know was how good exercise is for your brain as well.

We all know that the more you practise at something, the better you will get at it. Well, the brain is just the same. Every time you perform an action, you are creating the building blocks for a new pathway in your brain. Let me give you an example. I used to love painting and drawing. But following my  brain injury, I could barely write legibly. For me this was depressing, as my art was a part of who I was. My partner James, kept badgering me to keep trying although I felt he just didn’t understand. I couldn’t make my hand follow the instructions I gave it properly, leaving me frustrated.

Exercise doesn’t mean you have to hit the gym. Just practise a physical activity.

So many sheets of paper ended up in the bin. (I would like to apologise to the trees who were sacrificed  for my cause.) But in time my writing improved, and I found my artistic flair returning to me. Just by reminding the muscles in my hand and arm how to behave, I had begun to regain my skill. But it wasn’t because the muscles needed to be rebuilt, it was because my brain needed to create new pathways to replace those that were damaged. This is the same process as when you learn a skill for the first time, and why your mother always said “practise makes perfect.” The more we do an action, the more the brain prioritises building pathways which make a shortcut to that action.

Now I know you are saying “but Michelle drawing and writing isn’t exercise.” And yes you are right, but I wanted to share this example with you to help you see that although there is the physical muscles movements, there is much more that needs to happen and I think we can all agree agree creativity is something very much in your brain.

Think about how in sports there is a tactical element, spacial awareness, problem solving… the list goes on.

Think of your favourite teams and how some are better at the element of surprise than others. This is the players having to read the current situation and apply the tactics that they have been practising all whilst dealing with how their opponents are trying to stop them. Yes it helps to be the fastest and strongest person on the pitch, but if you can’t get your timing, accuracy and game plan right, you’re going to still struggle. And whilst you might take the feedback from your coach with, you can only get better at these things by going out there and trying again. Ths that’s why exercise can help your brain injury recovery for other parts of the brain too.

I’m now 5 years on from my accident, and most people wouldn’t notice my slight limp. For someone who struggled to walk for so long, that’s not bad. I still have nerve damage, and I may do for the rest of my life, but I can deal with it. I’d be frightened to go skiing again, but it doesn’t affect my everyday life much at all. Yes I get pain and tire much easier, but I can cope with that.

My brain is still trying to repair my cognitive skills. Bearing in mind I couldn’t read or write to start with, I think it’s fair to say it’s doing a pretty good job. I even set up this website all by myself even though I had no experience of doing this sort of thing before. (If you are thinking of starting a blog but aren’t sure where to start head over to Starting a blog following a brain injury is difficult, but it is achievable to get some ideas on how to get going.)

No matter what your fitness level, or sporting ability never underestimate the importance of exercise.

You don’t need to run like you’re Mo Farah, just find something you enjoy which you can fit into your busy schedule. Dance, yoga and swimming are all great options. As evidence is growing to show regular exercise can stave off dementia, your brain will thank you for it. We all have days when just getting out of bed is an achievement, so don’t feel any shame in taking it easy. But just remember your efforts will encourage enhancements in much more than just becoming physically stronger. Your mental health and general well being will benefit too. Exercise can help your brain injury recovery process and you might even discover a talent for something new that you never knew you had.

Other articles you may like:

What exercises have you found most beneficial following your brain injury?

via Exercise can help your brain injury, not just your muscles #jumbledbrain

, , , , ,

Leave a comment

[Abstract] Treatments for Poststroke Motor Deficits and Mood Disorders: A Systematic Review for the 2019 U.S. Department of Veterans Affairs and U.S. Department of Defense Guidelines for Stroke Rehabilitation

Abstract

Background: Early rehabilitation after stroke is essential to help reduce disability.
Purpose: To summarize evidence on the benefits and harms of nonpharmacologic and pharmacologic treatments for motor deficits and mood disorders in adults who have had stroke.
Data Sources: English-language searches of multiple electronic databases from April 2009 through July 2018; targeted searches to December 2018 for studies of selective serotonin reuptake inhibitors (SSRIs) or serotonin–norepinephrine reuptake inhibitors.
Study Selection: 19 systematic reviews and 37 randomized controlled trials addressing therapies for motor deficits or mood disorders in adults with stroke.
Data Extraction: One investigator abstracted the data, and quality and GRADE assessment were checked by a second investigator.
Data Synthesis: Most interventions (for example, SSRIs, mental practice, mirror therapy) did not improve motor function. High-quality evidence did not support use of fluoxetine to improve motor function. Moderate-quality evidence supported use of cardiorespiratory training to improve maximum walking speed and repetitive task training or transcranial direct current stimulation to improve activities of daily living (ADLs). Low-quality evidence supported use of robotic arm training to improve ADLs. Low-quality evidence indicated that antidepressants may reduce depression, whereas the frequency and severity of antidepressant-related adverse effects was unclear. Low-quality evidence suggested that cognitive behavioral therapy and exercise, including mind–body exercise, may reduce symptoms of depression and anxiety.
Limitation: Studies were of poor quality, interventions and comparators were heterogeneous, and evidence on harms was scarce.
Conclusion: Cardiorespiratory training, repetitive task training, and transcranial direct current stimulation may improve ADLs in adults with stroke. Cognitive behavioral therapy, exercise, and SSRIs may reduce symptoms of poststroke depression, but use of SSRIs to prevent depression or improve motor function was not supported.
Primary Funding Source: U.S. Department of Veterans Affairs, Veterans Health Administration.

via Treatments for Poststroke Motor Deficits and Mood Disorders | Annals of Internal Medicine | American College of Physicians

, , , , , , , , ,

Leave a comment

[ARTICLE] Effect of Exercise on Gait Kinematics and Kinetics in Patients with Chronic Ischaemic Stroke – Full Text

ABSTRACT

Introduction In 2014, American Heart Association and American Stroke Association (AHA/ASA) issued exercise guidelines for stroke patients.
Aim of the Study: To study the effects of an exercise programme based on AHA/ ASA guidelines, on gait kinematics and kinetics in patients with chronic ischemic stroke.
Materials and Methods: Twelve stroke patients, 67.33 ± 9.14 years old, followed an 8-week exercise programme, with 3 hourly sessions per week, consisting of strength, endurance and flexibility training, as well as neuromuscular activities. Patients’ gait kinematics and kinetics were evaluated before and after the intervention using a 3-dimensional gait analysis system.
Results: In most cases, patients in the intervention group showed significant increase or no change in gait kinematics, significant increase in joint moments at the anterior-posterior plane during support phase, and non-signi- ficant change in the frontal and transverse planes kinetics.
Conclusions: Exercise prevented further deterioration and/or led to improved walking pattern.

1. Introduction

It is estimated that one in 5 women and one in 6 men will sustain a stroke up to the age of 75 years [1] . The main purpose of rehabilitation in such patients is to achieve the maximum possible personal performance, physical and psychological, with the ultimate goal of regaining a level of functional independence that will allow them to be re-integrated into social life as much as possible [2] . However, stroke patients often adopt a sedentary lifestyle [3] [4] [5] [6] . This may be attributed to 1) factors associated with patients themselves, such as depression, lack of interest or motivation, decreased perception, decreased confidence, ignorance that exercise is possible and desirability and fear of falls, of a new stroke or other undesirable effects; 2) practical factors, such as lack of support from family or other social actors, inability to access exercise sites, inadequate public transport, health professionals’ ignorance of the availability of physical activity services; 3) financial cost [7] [8] [9] [10] [11] . Conversely, exercise in groups may improve patient motivation [12] .

In 2014, the council of the American Heart Association and the American Stroke association (AHA/ASA) revised the exercise recommendations for stroke patients at all stages of their recovery [13] . Therefore, the aim of this study was to assess the effect of an exercise programme based on these recommendations on gait kinematics and kinetics of ischaemic stroke patients in the chronic phase of recovery.[…]

 

Continue —->  Effect of Exercise on Gait Kinematics and Kinetics in Patients with Chronic Ischaemic Stroke

, , , , ,

Leave a comment

[Abstract] A Preliminary Study of Dual-Task Training Using Virtual Reality: Influence on Walking and Balance in Chronic Poststroke Survivors

Abstract

BACKGROUND:

Stroke is a leading cause of death and disability in the Western world, and leads to impaired balance and mobility.

OBJECTIVE:

To investigate the feasibility of using a Virtual Reality-based dual task of an upper extremity while treadmill walking, to improve gait and functional balance performance of chronic poststroke survivors.

METHODS:

Twenty-two individuals chronic poststroke participated in the study, and were divided into 2 groups (each group performing an 8-session exercise program): 11 participated in dual-task walking (DTW), and the other 11 participated in single-task treadmill walking (TMW). The study was a randomized controlled trial, with assessors blinded to the participants’ allocated group. Measurements were conducted at pretest, post-test, and follow-up. Outcome measures included: the 10-m walking test (10 mW), Timed Up and Go (TUG), the Functional Reach Test (FRT), the Lateral Reach Test Left/Right (LRT-L/R); the Activities-specific Balance Confidence (ABC) scale, and the Berg Balance Scale(BBS).

RESULTS:

Improvements were observed in balance variables: BBS, FRT, LRT-L/R, (P < .01) favoring the DTW group; in gait variables: 10 mW time, also favoring the DTW group (P < .05); and the ABC scale (P < .01). No changes for interaction were observed in the TUG.

CONCLUSIONS:

The results of this study demonstrate the potential of VR-based DTW to improve walking and balance in people after stroke; thus, it is suggested to combine training sessions that require the performance of multiple tasks at the same time.

 

via A Preliminary Study of Dual-Task Training Using Virtual Reality: Influence on Walking and Balance in Chronic Poststroke Survivors. – PubMed – NCBI

, , , , , , , , , , ,

Leave a comment

[WEB SITE] Depression Overview: Emotional Symptoms, Physical Signs, and More – WebMD

via Depression Overview: Emotional Symptoms, Physical Signs, and More

, , , , , , , , , , , , , , , , , , ,

Leave a comment

%d bloggers like this: