Posts Tagged Exoskeleton

[Abstract] Design a solution and a prototype for hand rehabilitation after trauma injures and post stroke

Abstract

Hand injuries are common but if left untreated, it may result in loss of function. Common causes of upper limb injuries are Post Stroke or Trauma. Trauma include falls, cuts from knives or glass as well as workplace injuries. The impairment of finger movements after injures results in a significant deficit in hands everyday performances.

Rehabilitation helps the patient to regain the hands full functionality. Hand therapy is the art that fills the gap between surgery and practical life. It helps the patient to regain the hands full functionality after a certain injury, surgery or Stroke. Hand therapy could be a very tedious process that implies physical exhaustion. Rehabilitation at home is a long process . And it should be done under therapist control. Also finding appointments with the therapist frequent enough for an efficient healing process, is difficult and costly.

Since trying new technologies is usually exciting to people, using the advancements in the field of artificial intelligence could be a solution to this. Different rehabilitation techniques have been developed, nevertheless, they require the presence of a tutor to be executed. To overcome this issue have been designed several apparatuses that allow the patient to perform the training by itself. Trying new technologies is exciting to people.

Hand exoskeleton was implemented to help the patients do their exercises at home in an engaging gamified environment. The objective is to design a portable, lightweight exoskeleton with adjustment fast assemble system. The device support fingers and excluding second injuries. It reproduce pinch exercise. Thus, an easy to use and effective device is needed to provide the right training and complete the rehabilitation techniques in the best way.

In this paper, a review of state of the art in this field is provided, along with an introduc- tion to the problems caused by a hand injuries and the consequences for the mobility of the hand. Then follows a complete review of the exoskeleton project design. The objective is to design a device that can be used at home, with a lightweight and affordable structure and a fast mounting system. For implementing all these features, many aspects have been analysed, starting from the rehabilitation requirements and the ergonomic issues. This device should be able to reproduce the training movements on an injured hand without the need for assistance by an external tutor.

The control system is based on Arduino UNO board, and the user interface is based on UNITY, the objective is to create an online media that allows the patient to exploit the capabilities of the exoskeleton, following the indication of its medic. On the other side, this interface should provide all the data related to the performances of the patient to allow a more precise therapy.

via Design a solution and a prototype for hand rehabilitation after trauma injures and post stroke | POLITesi – Politecnico di Milano

 

, , , , , , , , , ,

Leave a comment

[WEB PAGE] Robotic Hand Orthosis for Therapy and Assistance in Activities of Daily Living

tenoexo is a compact and lightweight hand exoskeleton which has been developed in collaboration with Jumpei Arata at Kyushu University. The EMG-controlled device assists patients with moderate to severe hand motor impairment during grasping tasks in rehabilitation training and during activities of daily living. Its soft mechanism allows for grasping of a variety of objects. Thanks to 3D-rapid prototyping, it can be tailored to the each individual user.

RELab tenoexo

Stroke, spinal cord injury and muscular atrophy are just few examples of diseases leading to persistent hand impairment. No matter the cause, the inability to use the affected hand in activities of daily living will affect independence and quality of life. Wearable robotic devices can support the use of the impaired limb in activities of daily living, and provide at-home rehabilitation training. In collaboration with the groups of Prof. Jumpei Arata at Kyushu University, Japan, and Gregory Fischer at Worcester Polytechnic Institute, USA, we have developed a highly compact and lightweight hand exoskeleton.

Our exoskeleton aims to assist patients in grasping tasks during physiotherapy and in activities of daily living such as eating or grooming. Various grasp types, intuitive control based on electromyography (Ryser et al., 2017) and numerous usability features should increase the independence of the user. The current prototype, RELab tenoexo, is fully wearable and consists of a lightweight hand module (148 g) as well as an actuation box including motors, power source and controllers (720 g), all located in a compact backpack. tenoexo’s remote actuation system (Hofmann et al., 2018) and its compliant 3-layered sliding spring mechanism (Arata et al., 2013) ensure safe operation and inherent adaptation to the shape of the grasped objects. The palmar side of the hand is minimally covered to allow for natural somatosensory feedback during object manipulation. The actuated thumb module allows for both opposition and lateral grasps. tenoexo is fabricated to a large extent by 3D-printing technology. With an underlying automatic tailoring algorithm it can be adapted to the individual user within a few minutes. The maximal fingertip force of 4.5 N per finger allows for grasping and lifting of most everyday objects, up to 0.5-liter water bottles.

Our current focus is on the evaluation of tenoexo with several individuals suffering from stroke or spinal cord injury and exploring its potential as both assistive and therapeutic device in these populations. In related projects, we are investigating intention detection through functional near-infrared spectroscopy (fNIRS) and electroencephalography (EEG) to allow for cortically-triggered assistance. Our vision is to realize a thought-controlled robotic hand exoskeleton for upper limb therapy and assistance in the clinic and at home.

Pictures (source: ETH Zurich / Stefan Schneller)

ReHand

Videos

RELab tenoexo: functions and grasp types

RELab tenoexo: setup, donning and doffing

RELab tenoexo: gesture classification training routine

A hand exoskeleton robot for rehabilitation using a three-layered sliding spring mechanism

Funding

  • Swiss National Science Foundation through the National Center of Competence in Research (NCCR) Robotics
  • Strategic Japanese-Swiss Cooperative Research Program on “Medicine for an Aging Society”
  • Japan Society for the Promotion of Science

Publications

Hofmann, U.A., Bützer, T., Lambercy, O., and Gassert, R. (2018). Design and Evaluation of a Bowden-Cable-Based Remote Actuation System for Wearable Robotics. IEEE Robotics and Automation Letters, 3(3):2101–2108.

Ryser, F., Bützer, T., Held, J.P., Lambercy, O., and Gassert, R. (2017). Fully embedded myoelectric control for a wearable robotic hand orthosisIEEE International Conference on Rehabilitation Robotics (ICORR).

Nycz, Ch., Bützer, T., Lambercy, O., Arata, J., Fischer, G.S., and Gassert, R. (2016). Design and Characterization of a Lightweight and Fully Portable Remote Actuation System for Use with a Hand Exoskeleton. IEEE Robotics and Automation Letters, 1(2):976–983.

Lambercy, O., Schröder, D., Zwicker, S. and Gassert, R. (2013). Design of a thumb exoskeleton for hand rehabilitation (PDF, 1.1 MB). Proc. International Convention on Rehabilitation Engineering and Assistive Technology (i-CREATe).

Arata, J., Ohmoto, K., Gassert, R., Lambercy, O., Fujimoto, H. and Wada, I. (2013). A new hand exoskeleton device for rehabilitation using a three-layered sliding spring mechanism. IEEE International Conference on Robotics and Automation, pp. 3902–3907.

 

via Robotic Hand Orthosis for Therapy and Assistance in Activities of Daily Living – Rehabilitation Engineering Laboratory | ETH Zurich

, , , , , , , , , , , ,

Leave a comment

[WEB SITE] Hong Kong researchers create robotic arm to help stroke patients

new robotic arm  A research team at Hong Kong Polytechnic University (PolyU) has developed a robotic arm to facilitate self-help and upper-limb mobile rehabilitation for stroke patients after discharge from hospital.

Referred to as a mobile exo-neuro-musculo-skeleton, the robotic arm enables intensive and effective self-help rehabilitation exercise.

The lightweight device is said to be the first of its kind to combine exo-skeleton, soft robot and exo-nerve stimulation technologies. It is intended to cater to the increasing need for outpatient rehabilitation service for stroke patients.

“Referred to as a mobile exo-neuro-musculo-skeleton, the robotic arm enables intensive and effective self-help rehabilitation exercise.”

PolyU Department of Biomedical Engineering researcher Hu Xiaoling said: “We are confident that with our mobile exo-neuro-musculo-skeleton, stroke patients can conduct rehabilitation training anytime and anywhere, turning the training into part of their daily activities.

“We hope such flexible self-help training can well supplement traditional outpatient rehabilitation services, helping stroke patients achieve a much better rehabilitation progress.”

Designed to be flexible and easy-to-use, the robotic arm is compact in size, has fast responses and requires a minimal power supply.

It comprises different components for the wrist/hand, elbow, and fingers that can be worn separately or together for various functional training needs. The device can also be connected to a mobile application, where users can manage their training.

The exo-skeleton and soft robot components of the device offer external mechanical forces guided by voluntary muscle signals in order to facilitate the desired joint movement for the patients.

PolyU improved the rehabilitation by adding its Neuro-muscular Electrical Stimulation (NMES) technology, which allows the robotic arm to contract user’s muscles when electromyography signals are detected.

When tested in a clinical trial involving ten stroke patients, the robotic arm is reported to have led to better muscle coordination, wrist and finger functions, and lower muscle spasticity following 20 two-hour training sessions.

The researchers plan to collaborate with hospitals and clinics for conducting additional trials.

via Hong Kong researchers create robotic arm to help stroke patients

, , , , , , , , ,

Leave a comment

[Abstract] Improvement of human-machine compatibility of upper-limb rehabilitation exoskeleton using passive joints

 

Highlights

  • To adapt glenohumeral (GH) movements and improve exoskeletal compatibility, six passive joints were introduced into the connecting interfaces based on optimal configuration principles.
  • The optimal configuration of the passive joints can effectively reduce the gravitational influences of the exoskeleton device and the upper extremities.
  • A new approach is presented to compensate vertical GH movements.
  • A comparison of the theoretical and measured results confirms that the passive joints exhibited good human-machine compatibility for GH movements.
  • The wearable comfort of Co-Exos was improved significantly.

Abstract

The upper-limb rehabilitation exoskeleton is a critical piece of equipment for stroke patients to compensate for deficiencies of manual rehabilitation and reduce physical therapists’ workloads. In this paper, configuration synthesis of an exoskeleton is completed using advanced mechanism theory. To adapt glenohumeral (GH) movements and improve exoskeletal compatibility, six passive joints were introduced into the connecting interfaces based on optimal configuration principles. The optimal configuration of the passive joints can effectively reduce the gravitational influences of the exoskeleton device and the upper extremities. A compatible exoskeleton (Co-Exos) with 11 degrees of freedom was developed while retaining a compact volume. A new approach is presented to compensate vertical GH movements. The theoretical displacements of translational joints were calculated by the kinematic model of the shoulder loop  Θs. A comparison of the theoretical and measured results confirms that the passive joints exhibited good human–machine compatibility for GH movements. The hysteresis phenomenon of translational joints appeared in all experiments due to the elasticoplasticity of the upper arm and GH. In comparable experiments, the effective torque of the second active joint was reduced by an average of 41.3% when passive joints were released. The wearable comfort of Co-Exos was thus improved significantly.

via Improvement of human-machine compatibility of upper-limb rehabilitation exoskeleton using passive joints – ScienceDirect

, , , , , , , , , , ,

Leave a comment

[Abstract] Design and development of a portable exoskeleton for hand rehabilitation

Abstract:

Improvement in hand function to promote functional recovery is one of the major goals of stroke rehabilitation. This paper introduces a newly developed exoskeleton for hand rehabilitation with a user-centered design concept, which integrates the requirements of practical use, mechanical structure and control system. The paper also evaluated the function with two prototypes in a local hospital. Results of functional evaluation showed that significant improvements were found in ARAT (P=0.014), WMFT (P=0.020) and FMA_WH (P=0.021). Increase in the mean values of FMA_SE was observed but without significant difference (P=0.071). The improvement in ARAT score reflects the motor recovery in hand and finger functions. The increased FMA scores suggest there is motor improvement in the whole upper limb, and especially in the hand after the training. The product met patients’ requirements and has practical significance. It is portable, cost effective, easy to use and supports multiple control modes to adapt to different rehabilitation phases.

 

via Design and development of a portable exoskeleton for hand rehabilitation – IEEE Journals & Magazine

, , , , , , , , , , , , , ,

Leave a comment

[Abstract + References] A Novel Method for Designing and Implementing a Training Device for Hand Rehabilitation – Conference paper

 

Abstract

Improvement in hand function to promote functional recovery is an important goal of stroke rehabilitation. However, not all of the rehabilitation products are sufficiently well developed for use in daily life. This paper introduces a newly developed hand training device with a user-centred design concept, which integrates fuzzy-based quality function deployment and morphological analysis method. As a key to rehabilitation product design, the study focuses on how and to what extent certain technical attributes of products are to be met to obtain a higher level of user satisfaction. The paper also tested the function in a local hospital. Test results showed that the hand affected due to a stroke could complete the training task successfully. It also showed that the product met patients’ requirements and has practical significance. The proposed method also can be applied to the development of similar products.

References

  1. 1.
    Ottobock WaveFlex Hand CPM Device. Available at http://professionals.ottobockus.com/cps/rde/xbcr/ob_us_en/12122525_6_WaveFlex_CPM_PATIENT_IFU.pdf. Cited 25.06.2015
  2. 2.
    Idrogenet GLOREHA supports upper limb rehabilitation. Available at http://www.gloreha.com/index.php/en/. Cited 24.06.2015
  3. 3.
    Festo AG, Co KG (2015) New scope for interaction between humans and machines. Available at http://www.festo.com/net/SupportPortal/Files/156734/Brosch_FC_ExoHand_EN_lo_L.pdf. Cited 24.06.2015
  4. 4.
    Chiri A, Vitiello N, Giovacchini F et al (2012) Mechatronic design and characterization of the index finger module of a hand exoskeleton for post-stroke rehabilitation. IEEE-ASME T Mech 17(5):884–894CrossRefGoogle Scholar
  5. 5.
    Brokaw EB, Black I, Holley RJ et al (2011) Hand spring operated movement enhancer (HandSOME): a portable, passive hand exoskeleton for stroke rehabilitation. IEEE T Neur Sys Reh 19(4):391–399CrossRefGoogle Scholar
  6. 6.
    Iqbal J, Khan H, Tsagarakis NG et al (2014) A novel exoskeleton robotic system for hand rehabilitation–conceptualization to prototyping. Biocybern Biomed Eng 34(2):79–89CrossRefGoogle Scholar
  7. 7.
    Cempini M, Cortese M, Vitiello N (2015) A powered finger–thumb wearable hand exoskeleton with self-aligning joint axes. IEEE-ASME T Mech 20(2):705–716CrossRefGoogle Scholar
  8. 8.
    Polygerinos P, Wang Z, Galloway KC et al (2015) Soft robotic glove for combined assistance and at-home rehabilitation. Robot Autom Syst 73:135–143CrossRefGoogle Scholar
  9. 9.
    Kumar A, Said G, Arnold R (2007) Mass customization research: trends, directions, diffusion intensity, and taxonomic frameworks. Flex Serv Manuf J 19(4):637–665CrossRefGoogle Scholar
  10. 10.
    Dong WM, Wong FS (1987) Fuzzy weighted averages and implementation of the extension principle. Fuzzy Set Syst 21(2):183–199MathSciNetCrossRefGoogle Scholar
  11. 11.
    Kao C, Liu S-T (2001) Fractional programming approach to fuzzy weighted average. Fuzzy Set Syst 120(3):435–444MathSciNetCrossRefGoogle Scholar
  12. 12.
    Zimmermann H-J (2001) Fuzzy set theory–and its applications, 4th edn. Kluwer Academic Publishers, Boston, Dordrecht, LondonCrossRefGoogle Scholar
  13. 13.
    Charnes A, Cooper WW (1962) Programming with linear fractional functionals. Nav Res Log 9(3–4):181–186MathSciNetCrossRefGoogle Scholar
  14. 14.
    Oussalah M (2002) On the compatibility between defuzzification and fuzzy arithmetic operations. Fuzzy Set Syst 128(2):247–260MathSciNetCrossRefGoogle Scholar
  15. 15.
    Zwicky F (1989) Entdecken, Erfinden, Forschen im morphologischen Weltbild, Baeschlin. Glarus 88–105Google Scholar
  16. 16.
    Liu H-L, Friesdorf W, Wang D (2013) Combining human information processing methods for product development. In: Proceedings of the international conference on contemporary ergonomics and human factors, pp 109–117CrossRefGoogle Scholar
  17. 17.
    Wang D, Wu J, Lin Q (2018) A novel method for designing and optimizing the layout of facilities in bathroom for the elderly in home-based rehabilitation. Disabil Rehabil Assist Technol 13(4):333–341CrossRefGoogle Scholar

via A Novel Method for Designing and Implementing a Training Device for Hand Rehabilitation | SpringerLink

, , , , ,

Leave a comment

[ARTICLE] Development, Dynamic Modeling, and Multi-Modal Control of a Therapeutic Exoskeleton for Upper Limb Rehabilitation Training – Full Text

Abstract

Robot-assisted training is a promising technology in clinical rehabilitation providing effective treatment to the patients with motor disability. In this paper, a multi-modal control strategy for a therapeutic upper limb exoskeleton is proposed to assist the disabled persons perform patient-passive training and patient-cooperative training. A comprehensive overview of the exoskeleton with seven actuated degrees of freedom is introduced. The dynamic modeling and parameters identification strategies of the human-robot interaction system are analyzed. Moreover, an adaptive sliding mode controller with disturbance observer (ASMCDO) is developed to ensure the position control accuracy in patient-passive training. A cascade-proportional-integral-derivative (CPID)-based impedance controller with graphical game-like interface is designed to improve interaction compliance and motivate the active participation of patients in patient-cooperative training. Three typical experiments are conducted to verify the feasibility of the proposed control strategy, including the trajectory tracking experiments, the trajectory tracking experiments with impedance adjustment, and the intention-based training experiments. The experimental results suggest that the tracking error of ASMCDO controller is smaller than that of terminal sliding mode controller. By optimally changing the impedance parameters of CPID-based impedance controller, the training intensity can be adjusted to meet the requirement of different patients.

1. Introduction

Over the past decade, the increasing stroke patient population has brought great economic and medical pressures to the whole society. Surviving stroke patients usually have a lower quality of life dues to physical disability and cognitive impairment. Studies on clinical stroke treatment indicate that appropriate rehabilitation training has positive therapeutic effects for avoiding muscle atrophy and recovering musculoskeletal motor functions. However, the conventional one-on-one manual-assisted movement training conducted by physiotherapists suffers from many inherent limitations, such as high labor intensity, high cost, long time consumption, lack of repeatability, low participation levels of patient, and high dependence on personnel with specialized skills [1,2]. In recent years, robot-assisted rehabilitation therapies have gained growing interest from academic researchers and the healthcare industry around the world due to their unique advantages and promising application perspectives. Compared with the traditional manual rehabilitation treatment, the combination of robotic technologies and clinical experience can significantly improve the performance and quality of training. Robot-assisted therapy is capable of delivering high-intensity, long-endurance, goal-directed, and low-cost rehabilitation treatment. Moreover, the functional motivations of patient can be activated to enhance active participation and recover cognitive functions. The physical parameters and therapy data can be recorded and analyzed via sensing system, and that can provide objective basis to optimize training strategy and accelerate recovery process [3,4].
Many therapeutic robot system have been developed to assist stroke patients with motor dysfunctions perform the desired rehabilitation training. The existing rehabilitation robotic devices can be categorized into two types, i.e., end-effector-based robots and exoskeleton-based robots. End-effector-based robot has only a connection between its distal end and the impaired extremity of patient. However, the movement of end-effector cannot uniquely identify the configuration of human limb due to the kinematic redundancy. Miller et al. developed a lightweight and potable end-effector-based therapeutic robot, which is integrated with a wrist and finger force sensor module named WFES, for the upper limb rehabilitation training of hemiplegic stroke patients [5]. Pedro et al. developed a parallel kinematic mechanism (PKM) with two translational and two rotational degrees of freedom (DOFs) for knee diagnosis and rehabilitation tasks [6]. Kang et al. proposed a modular and reconfigurable wrist robot called CR2-Haptic for post-stroke subjects to train forearm and wrist movements [7]. Besides, many other end-effector-based therapeutic robot have been investigated and can be referred to [8,9,10,11,12,13]. Comparatively, the exoskeleton-based rehabilitation robots are developed with more complex structures imitating the anatomical human skeleton and guaranteeing the alignment between the joints axis of robot and impaired limb. ChARMin is a powered exoskeleton integrated with audiovisual game-like interface. It can provide intensive pediatric arm rehabilitation training for the children and adolescents with affected motor functions [14]. Simon et al. proposed a spherical shoulder exoskeleton with a double parallelogram linkage to eliminate singularities and achieve good manipulability properties [15]. Crea et al. developed a semi-autonomous whole-arm exoskeleton for the stroke patients performing activities of daily living (ADL) utilizing hybrid electroencephalography and electrooculography feedback signals [16]. Many other representative exoskeleton-based therapeutic robot have also been designed, such as CAREX-7 [17], RUPERT [18], ULEL [19], ArmeoPower [20], Indego [21], and ETS-MARSE [22].
The effectiveness of robot-assisted rehabilitation training depends on the control strategies applied in the therapeutic robot system. Currently, many kinds of control strategies have been developed according to the requirements of patients with various impairment severities in different therapy periods. The existing control schemes can be basically divided into two categories based on the interaction between therapeutic robots and patients, i.e., patient-passive training control and patient-cooperative training control. During the acute period of hemiplegia, the impaired extremity is fully paralyzed without any muscle contraction. The patient-passive training can imitate the manual therapeutic actions of a physiotherapist. It is especially well suited for the patients with severe paralysis to passively execute repetitive reaching missions along predefined training trajectories. However, it is a challenge to guarantee the position control accuracy during rehabilitation training due to the highly nonlinear properties and unexpected uncertainties of human-robot interaction. Different kinds of control algorithms have been developed to improve control performance of patient-passive training, including neural proportional-integral-derivative (PID) control [23], neural proportional-integral (PI) control [24], adaptive nonsingular terminal sliding mode control (SMC) [25], disturbance observer-based fuzzy control [26], neural-fuzzy adaptive control [27], adaptive backlash compensation control [28], and so on. Comparatively, the patient-cooperation training is applicable for the patients at the comparative recovery period, who have regained parts of motor functions. Clinical studies show that integrating the voluntary efforts of patients into rehabilitation training benefits to accelerate recovery progress and promote psychological confidence. Thus, patient-cooperation training should be able to regulate the human-robot interaction in accordance with the motion intentions and hemiplegia degrees of patients. Many patient-cooperation control strategies have been proposed, such as minimal assist-as-needed controller [29], myoelectric pattern recognition controller [30], electromyography (EMG)-based model predictive controllers [31], subject-adaptive controller [32], and fuzzy adaptive admittance controller [33].
Taking the above into consideration, the contribution of this paper is to develop an upper limb exoskeleton to assist the patient with motor disabilities perform multi-modal rehabilitation training. Firstly, the overall mechanical structure and the MATLAB/xPC-based real-time control system of the proposed therapeutic robot are introduced. Secondly, the dynamic modeling of the human-robot system is researched, and the dynamics parameters are obtained via virtual prototype and calibration experiments. After that, a multi-modal control strategy integrated with an adaptive sliding mode controller and a cascade-proportional-integral-derivative (CPID)-based impedance controller is proposed. The controller is combined with an audiovisual therapy interface and is able to realize patient-passive and patient-cooperation training based on the motor ability of patient. Finally, the effectiveness and feasibility of the developed rehabilitation exoskeleton system and control scheme are verified through three experiments conducted by several volunteers.[…]

Continue —> Sensors | Free Full-Text | Development, Dynamic Modeling, and Multi-Modal Control of a Therapeutic Exoskeleton for Upper Limb Rehabilitation Training | HTML

Sensors 18 03611 g001

Figure 1. Architecture and major components of the upper extremity rehabilitation exoskeleton. (a) Virtual prototype model. (b) Real-life picture of exoskeleton.

, , , , , , , , , ,

Leave a comment

[WEB SITE] Metabolic Rate-Reducing Exoskeleton Developed in Lab

Published on 

A team of scientists from the University of Tehran have developed an unpowered exoskeleton that they suggest could help reduce a runner’s metabolic rate. (Photo courtesy of Rezvan Nasiri)

A team of Iranian biomedical engineers has developed an unpowered exoskeleton that they suggest is able to reduce a wearer’s metabolic rate while running.

The research team is led by Rezvan Nasiri, and includes Arjang Ahmadi, and Majid Nili Ahmadabadi, all from the Cognitive Systems Laboratory, Control and Intelligent Processing Center of Excellence at the School of Electrical and Computer Engineering at the University of Tehran, in Iran.

A study describing the exoskeleton’s development and testing is featured in IEEE Transactions on Neural Systems and Rehabilitation Engineering.

“The exoskeleton we developed reduces the metabolic rate by 8% during running by using a rotational spring system which couples two hips in the sagittal plane. The device takes advantage of the ‘scissor kick’ motion that occurs naturally during running – the reciprocal motion of the body recycles that energy, thereby allowing us to create an unpowered exoskeleton. No external battery is required, making the device lightweight and unobtrusive,” says lead researcher, Rezvan Nasiri, in a media release from IEEE EMBS.

“Users do not need to run at a constant speed to achieve metabolic rate reduction. We look forward to testing our device under a wide variety of settings in our future work.”

The exoskeleton the team developed was tested on 10 healthy active subjects for running at 2.5 meters per second. The team repeatedly achieved 8% metabolic rate reduction when compared to the subjects running at the same speed without wearing an exoskeleton. The exoskeleton is entirely human powered, and does not have any motors, electrical systems, or sensors. The research team project that by reducing the mass of their device, up to 10%, metabolic rate reduction is possible.

“This new research is special because it has been incredibly hard to reduce energy costs of a physically intact human by adding a device to their legs. Achieving this is a tremendous breakthrough in the field of human augmentation because humans are so incredibly good at minimizing metabolic energy cost during locomotion. Until now, no one has been able to add a device to humans that could reduce that metabolic energy expenditure for running,” states Dr Rodger Kram, associate professor emeritus of integrative physiology at the University of Colorado, Boulder.

“The beauty of this new device really lies in its simplicity – at less than 2 kilograms, it is lightweight, and requires no external power. It is portable, quiet, and not at all bulky. I’m impressed by this team’s achievement, which has big implications for the running industry. It will be exciting to follow the innovations that result from their work,” he adds.

“This team has developed a very simple, elegant solution that integrates almost seamlessly into the body’s natural movement,” comments Dr Greg Sawicki, an associate professor of mechanical engineering and biological sciences at Georgia Tech, and head of the Human Physiology of Wearable Robotics Lab, the release continues.

“The team in Iran has found a way to remap the structure of the musculoskeletal system with little more than a spring, essentially giving runners the equivalent of a new body part and an alternative pathway for exchanging energy. Their research has tremendous implications for our field, and I’m excited to see what develops as a result of this trailblazing work.”

[Source(s): IEEE EMBS, Business Wire]

 

via Metabolic Rate-Reducing Exoskeleton Developed in Lab – Rehab Managment

, ,

Leave a comment

[WEB SITE] Want to Add a ‘Spring’ to Your Stride? For the First Time, Scientists Have Developed an Unpowered Exoskeleton that Reduces Metabolic Rate While Running

New Research Published Today by the IEEE Engineering in Medicine and Biology Society

This Exciting Development Marks the Beginning of a New Era for Human Augmentation Research and Product Development

Unpowered Exoskeleton Being Tested in the Lab. (Graphic: Business Wire)

Unpowered Exoskeleton Being Tested in the Lab. (Graphic: Business Wire)

PISCATAWAY, N.J.–(BUSINESS WIRE)–Groundbreaking robotics research in the emerging area of human augmentation, which focuses on wearable exoskeletons to improve the performance of the human body, is featured in the October issue of the IEEE Transactions on Neural Systems and Rehabilitation Engineering (TNSRE), a journal published by the IEEE Engineering in Medicine and Biology Society. In recent years, there has been some progress made in reducing the metabolic rate of walking and running, but developing exoskeletons that are lightweight, easy to wear, that also offer reliable, long-lasting power sources has remained elusive. A team of Iranian biomedical engineers has now, for the first time, developed an unpowered exoskeleton that reduces metabolic rate while running.

Check out the groundbreaking new research published today in IEEE TNSRE: “Reducing the Energy Cost of Human Running Using an Unpowered Exoskeleton.” tnsre.embs.org #biomechanics #runningphysiology #physiology #exoskeleton #running #IEEEembs

Tweet this

The research team is led by Rezvan Nasiri, and includes Arjang Ahmadi, and Majid Nili Ahmadabadi, all from the Cognitive Systems Laboratory, Control and Intelligent Processing Center of Excellence at the School of Electrical and Computer Engineering at the University of Tehran, in Iran.

“The exoskeleton we developed reduces the metabolic rate by 8% during running by using a rotational spring system which couples two hips in the sagittal plane. The device takes advantage of the ‘scissor kick’ motion that occurs naturally during running – the reciprocal motion of the body recycles that energy, thereby allowing us to create an unpowered exoskeleton. No external battery is required, making the device lightweight and unobtrusive,” said lead researcher, Rezvan Nasiri. “Users do not need to run at a constant speed to achieve metabolic rate reduction. We look forward to testing our device under a wide variety of settings in our future work.”

The exoskeleton the team developed was tested on ten healthy active subjects for running at 2.5 meters per second. The team repeatedly achieved 8% metabolic rate reduction when compared to the subjects running at the same speed without wearing an exoskeleton. The exoskeleton is entirely human powered, and does not have any motors, electrical systems, or sensors. The research team project that by reducing the mass of their device, up to 10%, metabolic rate reduction is possible, which is an extremely exciting prospect in the field of human augmentation, and for anyone interested in recreational running. The Iranian team’s work was supported by the University of Tehran.

“This new research is special because it has been incredibly hard to reduce energy costs of a physically intact human by adding a device to their legs. Achieving this is a tremendous breakthrough in the field of human augmentation because humans are so incredibly good at minimizing metabolic energy cost during locomotion. Until now, no one has been able to add a device to humans that could reduce that metabolic energy expenditure for running,” said Dr. Rodger Kram, Associate Professor Emeritus of Integrative Physiology at the University of Colorado, Boulder. An expert in the energetics of running, Dr. Kram continued, “the beauty of this new device really lies in its simplicity – at less than 2 kilograms, it is lightweight, and requires no external power. It is portable, quiet, and not at all bulky. I’m impressed by this team’s achievement, which has big implications for the running industry. It will be exciting to follow the innovations that result from their work.”

“This team has developed a very simple, elegant solution that integrates almost seamlessly into the body’s natural movement. Humans have evolved the ability to run over millions of years, and we’re super efficient at it. This makes it especially difficult to improve the function of the already ‘tuned’ biological system – and doing so has long been a challenge for scientists and engineers,” said Dr. Greg Sawicki, an Associate Professor of Mechanical Engineering and Biological Sciences at Georgia Tech, and head of the Human Physiology of Wearable Robotics Lab. “The team in Iran has found a way to remap the structure of the musculoskeletal system with little more than a spring, essentially giving runners the equivalent of a new body part and an alternative pathway for exchanging energy. Their research has tremendous implications for our field, and I’m excited to see what develops as a result of this trailblazing work.”

The entire paper which describes this new research will be available tomorrow on the IEEE TNSRE website, https://tnsre.embs.org.

About IEEE TNSRE

Via its website, tnsre.embs.org, the IEEE Transactions on Neural Systems and Rehabilitation Engineering (IEEE TNSRE) journal publishes cutting-edge research on the rehabilitative and neural aspects of biomedical engineering, including functional electrical stimulation, acoustic dynamics, human performance measurement and analysis, nerve stimulation, electromyography, motor control and stimulation, and hardware and software applications for rehabilitation engineering and assistive devices. The journal has an impact factor of 3.972. The papers published in IEEE TNSRE are accessible through IEEE Xplore. Researchers are invited to submit papers with their research findings and clinical translation studies for publication in the journal.

About the IEEE EMBS

The IEEE Engineering in Medicine and Biology Society (EMBS) is the world’s largest international society of Biomedical Engineers. With more than 9,500 members residing in some 97 countries around the world, it’s a true global connection, providing access to the most fascinating people, practices, information, ideas, opinion and fellowship from one of science’s fastest growing fields: biomedical engineering. From formalized mathematical theory through experimental science, from technological development to practical clinical applications, IEEE EMBS members support scientific, technological, and educational activities as they apply to the concepts and methods of the physical and engineering sciences in biology and medicine. By working together, we can transform and revolutionize the future of medicine and healthcare. For more information about the IEEE EMBS, please visit www.embs.org.

About IEEE

IEEE, the world’s largest technical professional organization, is dedicated to advancing technology for the benefit of humanity. Through its highly cited publications, conferences, technology standards, and professional and educational activities, IEEE is the trusted voice on a wide variety of areas ranging from aerospace systems, computers and telecommunications to biomedical engineering, electric power and consumer electronics. Learn more at www.ieee.org.

Contacts

for IEEE EMBS
Media Contact:
Nicole Randall
nicole.randall@live.com
+1 310.691.0849

 

via Want to Add a ‘Spring’ to Your Stride? For the First Time, Scientists Have Developed an Unpowered Exoskeleton that Reduces Metabolic Rate While Running | Business Wire

, , , ,

Leave a comment

[Abstract + References] Design of MobIle Digit Assistive System (MIDAS): A Passive Hand Extension Exoskeleton for Post Stroke Rehabilitation – Conference paper

Abstract

Stroke often causes flexor hypertonia as well as weakness of finger extension. This limits functionality of the hand degrading independent ability to perform upper limb activities of daily living (ADL’s). Hand rehabilitation post stroke is vital to regaining functionality in the affected limb, leading to improved independence and quality of living. In this paper the development of DigEx and MIDAS passive arm orthoses are detailed. A quick-change cam system is implemented featuring one-handed cam swapping. This provides the ability to vary assistance levels to improve usability and independence for the user. Pulleys and bearings are added to reduce friction caused by mechanical contacts and material failure. Initial tests with the prototype are promising.

References

  1. 1.
    ONU: World population, ageing, Suggest. Cit. United Nations, Dep. Econ. Soc. Aff. Popul. Div. (2015). World Popul. Ageing, vol. United Nat, no. (ST/ESA/SER.A/390), p. 164 (2015)Google Scholar
  2. 2.
    CDC: Stroke Facts | cdc.gov. https://www.cdc.gov/stroke/facts.htm. Accessed 15 Dec 2017
  3. 3.
    Dobkin, B.H.: Rehabilitation after stroke. N. Engl. J. Med. 352(16), 1677–1684 (2005)CrossRefGoogle Scholar
  4. 4.
    Saebo: SaeboFlex / SaeboReach Details | Saebo. https://www.saebo.com/saeboflex-saeboreach-details/. Accessed 15 Dec 2017
  5. 5.
    Schroeder, J.S., Perry, J.C.: Development of a series wrapping cam mechanism for energy transfer in wearable arm support applications. In: 2017 International Conference on Rehabilitation Robotics (ICORR), 17 July 2017, pp. 585–590. IEEEGoogle Scholar
  6. 6.
    Tidwell, P.H., Bandukwala, N.N., Dhande, S.G., Reinholtz, C.F., Webb, G.G.: Synthesis of Wrapping Cams. ASME J. Mech. Des. 116(2), 634–638 (1994).  https://doi.org/10.1115/1.2919425CrossRefGoogle Scholar

via Design of MobIle Digit Assistive System (MIDAS): A Passive Hand Extension Exoskeleton for Post Stroke Rehabilitation | SpringerLink

, , , , , ,

Leave a comment

%d bloggers like this: