Posts Tagged fatigue

[Systematic Review] Does Tai Chi relieve fatigue? A systematic review and meta-analysis of randomized controlled trials – Full Text

Abstract

Background

Fatigue is not only a familiar symptom in our daily lives, but also a common ailment that affects all of our bodily systems. Several randomized controlled trials (RCTs) have proven Tai Chi to be beneficial for patients suffering from fatigue, however conclusive evidence is still lacking. A systematic review and meta-analysis was performed on all RCTs reporting the effects of Tai Chi for fatigue.

Methods

In the end of April 2016, seven electronic databases were searched for RCTs involving Tai Chi for fatigue. The search terms mainly included Tai Chi, Tai-ji, Taiji, fatigue, tiredness, weary, weak, and the search was conducted without language restrictions. Methodological quality was assessed using the Cochrane Risk of Bias tool. RevMan 5.3 software was used for meta-analysis. Publication bias was estimated with a funnel plot and Egger’s test. We also assessed the quality of evidence with the GRADE system.

Results

Ten trials (n = 689) were included, and there was a high risk of bias in the blinding. Two trials were determined to have had low methodological quality. Tai Chi was found to have improved fatigue more than conventional therapy (standardized mean difference (SMD): -0.45, 95% confidence interval (CI): -0.70, -0.20) overall, and have positive effects in cancer-related fatigue (SMD:-0.38, 95% CI: -0.65, -0.11). Tai Chi was also more effective on vitality (SMD: 0.63, 95% CI: 0.20, 1.07), sleep (SMD: -0.32, 95% CI: -0.61, -0.04) and depression (SMD: -0.58, 95% CI: -1.04, -0.11). However, no significant difference was found in multiple sclerosis-related fatigue (SMD: -0.77, 95% CI: -1.76, 0.22) and age-related fatigue (SMD: -0.77, 95% CI: -1.78, 0.24). No adverse events were reported among the included studies. The quality of evidence was moderate in the GRADE system.

Conclusions

The results suggest that Tai Chi could be an effective alternative and /or complementary approach to existing therapies for people with fatigue. However, the quality of the evidence was only moderate and may have the potential for bias. There is still absence of adverse events data to evaluate the safety of Tai Chi. Further multi-center RCTs with large sample sizes and high methodological quality, especially carefully blinded design, should be conducted in future research.

Background

Although no one can exactly quantify or document fatigue [1], fatigue is a common symptom not only deeply related to most acute and chronic diseases, but also to everyday life. It is not only common, but problematic, for people with conditions such as cancer, multiple sclerosis, and rheumatoid arthritis [2]. The National Comprehensive Cancer Network (NCCN) defined cancer related fatigue as ‘an persistent, unusual, subjective feeling of tiredness correlated with cancer or cancer treatment that obstruct to normal functioning’ [3]. Definition of fatigue was also described as “a subjective feeling of lacking mental and/or physical energy, which was perceived by the caregiver or individuals interfering with usual and desired activities” [4]. Because of its subjective nature, fatigue can only be gauged by self-reported or caregiver-reported questionnaires [5]. Fatigue generally lasts longer than somnolence [6]. Tiredness is a state of temporary decreasing in strength and energy, which may be experienced as a partial of fatigue [7]. Some authors simply divided fatigue into acute and chronic fatigue [2]. Acute fatigue occurs in healthy populations, with a rapid onset and short duration. After a period of rest and exercise, it is generally relieved. Chronic fatigue mainly affects clinically disordered individuals and is onset gradually, persists and develops over time. It usually can’t be alleviated by usual recovery techniques [6]. As a symptom, fatigue is a common complaint among most people, and many ailments are accompanied by fatigue. However, it is often ignored, under-diagnosed, and seen as a natural result of physical deterioration [8].

A previous study had shown that 10.6% of women and 10.2% of men complained of fatigue for ≥ 1 month in the South London general practice attenders [9]. The prevalence rate of chronic fatigue was 10.7% in general Chinese population [10]. Among older adults with myocardial infarction, fatigue is frequently reported to be one of the most serious barriers to physical activity [11]. Fatigue occurs in 50%-83% of patients with multiple sclerosis [12]. Among breast cancer patients 58%-94% undergoing treatment and 56%-95% who are post-chemotherapy experience fatigue [13]. Although the methods, standards, and results of these studies are not always consistent, it is undeniable that fatigue is a common symptom from which many patients suffer.

The mechanisms behind fatigue are unclear [5], however they may be related to a patient’s physical condition. There is no panacea for fatigue other than treating the symptoms [5]. Evidence has shown that exercise including walking, running, jogging, swimming, resistance (strengthening) training, stretching, aerobic exercise can counter fatigue among sufferers of chronic fatigue syndrome [14], multiple sclerosis [15], fibromyalgia [16] and among cancer survivors [17,18]. So we supposes that Tai Chi, a traditional Chinese martial art, may be an effective treatment for patients suffering from fatigue.

Tai Chi has popular in China for several centuries. Many different types of Tai Chi exist, but most consist of movement, meditation and breathing, while concentrating on the mind and maintaining low intensity [1920], and further modulate various aspects of the body including the physical, the psychological, mood and spirit [21]. In the theory of Chinese medicine (CM), Tai Chi can maintain the harmony between qi and the blood, keep yin and yang in balance and also enhance immunity [2223]. These properties are both important in relieving fatigue and maintaining energy. Qi, the energy which promotes the body’s movement, can circulate around the entire body freely if yin and yang are kept in balance [23].

Tai Chi may relieve fatigue via different mechanisms of action. Firstly, through slow movement and weight shifting, Tai Chi may relieve stress, make people more happy [24] and promote relaxation [25]. Secondly, the proven efficacy of Tai Chi to enhance aerobic capacity and immune function [26] and to improve pain [27], depression and psychological well-being [28] may be beneficial to relieve fatigue.

An advantage of Tai Chi is that it is easy to learn, teach, and popularize, and more reports on evidence of its effects should lead to it becoming even more popular. As a low impact exercise, Tai Chi may be ideal for people with fatigue, lack of exercise or who do not have active lifestyles [19]. Several studies have reported that Tai Chi plays a critical role in fighting fatigue [2932]. However, there not been explicit studies to reach a conclusion on Tai Chi’s effects on fatigue. Others have shown no difference between Tai Chi groups and control groups [33,34]. In addition, most of the studies focus on only one ailment [32,35,36]. As far as we know, the majority of the literature on Tai Chi intervention for fatigue is empirical, and uses small sample sizes. Few of the existing studies have explored fatigue as the primary outcome. To date, there have been no systematic reviews nor meta-analyses to evaluate the effects of Tai Chi for fatigue, but single RCTs based on a specific population in a certain place. This systematic review evaluates the effects and safety of Tai Chi for fatigue, and provides an overall understanding of the current situation, as well as problems in this field.

Continue —> Does Tai Chi relieve fatigue? A systematic review and meta-analysis of randomized controlled trials

,

Leave a comment

[BLOG POST] Combating Struggles with Acquired Brain Injury

The physical, neurological and emotional challenges that may arise from an acquired brain injury (ABI) are vast. Different causes and injuries create consequences that vary among individuals. Therapists need to be perceptive in order to both address struggles and provide avenues for constructive thinking.

One of the largest hurdles therapists encounter in rehabilitation with individuals who have suffered an ABI is the patient often lacks insight into their own deficits. Their injured brain signals they are fine and can successfully perform activities they used to do before injury, when in fact they may be struggling with anything from orientation and memory to executive function. This is challenging for family members and caregivers and is also is a barrier for treatment if the patient does not come to terms with these new deficits. Although insight typically improves to some degree as the patient progresses, giving the right level and amount of explanation about what has happened and future planning is helpful.

A thorough evaluation should be completed early on to identify cognitive deficits. Once strengths and deficits are identified, treatment can begin. Include tasks to promote gains in deficit areas such as memory and attention, such as deductive and/or abstract reasoning tasks, working memory tasks or word-retrieval activities. Also think about how strengths can be utilized to assist in this processIf a patient’s reading comprehension is better than auditory comprehension, printed information should be used to improve their ability to comprehend spoken information.

Combat common struggles by demonstrating compensatory strategies that aid the individual in participating in life activities. For patients experiencing memory and organization deficits, be prepared with a list of smart phone apps and functions they can use to set alerts for appointments, manage tasks, make lists, etc.

Fatigue is common in individuals recovering from a brain injury. Their brain is working “overtime” to make sense of things, and performing tasks successfully may take a great deal of conscious thought and effort. Assist patients in creating a schedule to work on their cognitive exercises and/or stay active in doing their daily activities, and include rest to help the brain recover. Once the brain begins to fatigue, there is a decrease in function. The patient will notice activities and tasks become harder, and head pain may also occur. This should signal the patient that it’s time to rest.

Lastly, there are things the brain injury survivor can focus on that will help their recovery, including:

  • Accepting their new persona
  • Allowing themselves to make mistakes
  • Striving to keep a positive attitude
  • Remembering they can continue to improve

Continued improvements may be the most important point in keeping your patient motivated. In years past, it was commonly accepted that after a window of about three years, the brain would not have any further recovery. It is now known that neuroplasticity allows for continued recovery over time with focused effort. Different parts of the brain can establish neuropathways and take over functions lost through damage to other parts of the brain.

Area Manager Jean Herauf, SLP has 30+ years’ experience, more than 20 of them with RehabVisions. Jean is active in her clinic’s local brain injury support group and has attended numerous courses over the years, and read a good deal on ABI.

Source: Combating Struggles with Acquired Brain Injury – RehabVisions

, , , , ,

Leave a comment

[BLOG POST] Driving After Stroke: Is it Safe? -Saebo

After having a stroke, many survivors are eager to start driving again. Driving offers independence and the ability to go where you want to go on your own schedule, so it is no surprise that survivors want to get back behind the wheel rather than rely on someone else for their transportation needs.

Unfortunately, having a stroke can have lasting effects that make driving more difficult. A survivor might not be aware of all of the effects of their stroke and could misjudge their ability to drive safely. Driving against a doctor’s orders after a stroke is not only dangerous, it may even be illegal. Many stroke survivors successfully regain their ability to safely drive after a stroke, but it is important that they do not attempt to drive until they are cleared by their healthcare provider.

 

How Stroke Affects the Ability to Drive

Having a stroke can affect an individual’s ability to drive in numerous ways, whether it be because of physical challenges, cognitive changes, or other challenges.

 

Physical Challenges

Physical-Challenges

After a stroke, it’s common to experience weakness or paralysis on one side of the body, depending on which side of the brain the stroke occurred. More than half of all stroke survivors also experience post-stroke pain. Minor physical challenges may be overcome with adaptive driving equipment, but severe challenges like paralysis or contracture can seriously affect an individual’s ability to drive.

 

Cognitive Effects

cognitive

Driving requires a combination of cognitive skills, including memory, concentration, problem solving, judgement, multitasking, and the ability to make quick decisions. A stroke can cause cognitive changes that limit the ability to do many of those things.

 

Vision Problems

vision

As many as two-thirds of stroke victims experience vision impairments as a result of a stroke. This can include vision loss, blurred vision, and visual processing problems. Stroke survivors with vision problems should not drive until their problems are resolved and they have been cleared by a doctor.

 

Fatigue

fatigue

Fatigue is a common physical condition after a stroke that affects between 40 and 70 percent of stroke survivors. Fatigue can arrive without warning, so it is dangerous to drive when suffering from post-stroke fatigue.

 

Warning Signs of Unsafe Driving

 

Stroke survivors are not always aware of how their stroke has limited their ability to drive. If they are choosing to drive after their stroke against their doctor’s advice, it is important for them and their loved ones to look out for warning signs that they might not be ready to start driving. Here are some of the common warning signs to look out for:

  • Driving faster or slower than the posted speed or the wrong speed for the current driving conditions
  • Consistently asking for instruction and help from passengers
  • Ignoring posted signs or signals
  • Making slow or poor decisions
  • Becoming easily frustrated or confused
  • Getting lost in familiar areas
  • Being in an accident or having close calls
  • Drifting into other lanes

 

If you or your loved one is showing any of these warning signs, immediately stop yourself or them from driving until your or their driving is tested.

 

Driving Again After a Stroke

Before a stroke survivor begins driving again, they should speak with their doctor or therapist to discuss whether or not it would be safe for them to continue driving. Many states require mandatory reporting by a physician to the DMV if their patient has impairments that may affect their driving after a stroke. Even if their doctor clears them to drive, they still will likely need to be evaluated by the DMV before they regain their driving privileges.

 

Driver rehabilitation specialists are available to help stroke survivors evaluate their driving ability from behind the wheel. There are also driver’s training programs that provide a driving evaluation, classroom instruction, and suggestions for modifying a car to the individual driver’s needs. For instance, an occupational therapist can provide a comprehensive in-clinic evaluation of a client’s current skills and deficits relative to driving.

 

From there a client could be sent for an in-vehicle assessment for further evaluation by a certified driver rehabilitation specialist (CDRS). They can assess driving skills in a controlled and safe environment. An in-vehicle driving test is the most thorough way to gauge a driver’s abilities. Each assessment takes about 1 hour and involves driving with a trained evaluator or driving in a computer simulator.

 

The “behind-the-wheel” evaluation will include testing for changes in key performance areas such as attention, memory, vision, reaction time, and coordination. After this assessment the CDRS can determine if the client is safe to drive, can not drive at all, or may drive with additional recommendations.

 

Often times clients may require certain modifications to their car in order to drive safely. In addition, some clients may benefit from on-going classroom training and simulation training in order to meet safety standards. These are all services that a driver rehabilitation specialist can provide. To help find these resources, The Association for Driver Rehabilitation Specialists has a directory of certified driver rehabilitation specialists, driver rehabilitation specialists, and mobility equipment dealers and manufacturers.

 

Get Back Behind the Wheel

Many stroke survivors successfully drive after a stroke; however, not all are able to. While reclaiming independence is important, staying safe is the greatest concern. It is important for stroke survivors to listen to their doctors and wait until they are fully ready before attempting to drive again. With some hard work and patience, getting back behind the wheel is possible.

 


All content provided on this blog is for informational purposes only and is not intended to be a substitute for professional medical advice, diagnosis, or treatment. Always seek the advice of your physician or other qualified health provider with any questions you may have regarding a medical condition. If you think you may have a medical emergency, call your doctor or 911 immediately. Reliance on any information provided by the Saebo website is solely at your own risk.

Source: Driving After Stroke: Is it Safe? | Saebo

, , , , ,

Leave a comment

[ARTICLE] Complementary and alternative interventions for fatigue management after traumatic brain injury: a systematic review – Full Text

We systematically reviewed randomized controlled trials (RCTs) of complementary and alternative interventions for fatigue after traumatic brain injury (TBI).

We searched multiple online sources including ClinicalTrials.gov, the Cochrane Library database, MEDLINE, CINAHL, Embase, the Web of Science, AMED, PsychINFO, Toxline, ProQuest Digital Dissertations, PEDro, PsycBite, and the World Health Organization (WHO) trial registry, in addition to hand searching of grey literature. The methodological quality of each included study was assessed using the Jadad scale, and the quality of evidence was evaluated using the Grading of Recommendations, Assessment, Development and Evaluation (GRADE) system. A descriptive review was performed.

Ten RCTs of interventions for post-TBI fatigue (PTBIF) that included 10 types of complementary and alternative interventions were assessed in our study. There were four types of physical interventions including aquatic physical activity, fitness-center-based exercise, Tai Chi, and aerobic training. The three types of cognitive and behavioral interventions (CBIs) were cognitive behavioral therapy (CBT), mindfulness-based stress reduction (MBSR), and computerized working-memory training. The Flexyx Neurotherapy System (FNS) and cranial electrotherapy were the two types of biofeedback therapy, and finally, one type of light therapy was included. Although the four types of intervention included aquatic physical activity, MBSR, computerized working-memory training and blue-light therapy showed unequivocally effective results, the quality of evidence was low/very low according to the GRADE system.

The present systematic review of existing RCTs suggests that aquatic physical activity, MBSR, computerized working-memory training, and blue-light therapy may be beneficial treatments for PTBIF. Due to the many flaws and limitations in these studies, further controlled trials using these interventions for PTBIF are necessary.

Fatigue is a common phenomenon following traumatic brain injury (TBI), with a reported prevalence ranging from 21% to 80% [Ouellet and Morin, 2006Bushnik et al. 2007Dijkers and Bushnik, 2008Cantor et al. 2012Ponsford et al. 2012], regardless of TBI severity [Ouellet and Morin, 2006Ponsford et al. 2012]. Post-TBI fatigue (PTBIF) refers to fatigue that occurs secondary to TBI, which is generally viewed as a manifestation of ‘central fatigue’. Associated PTBIF symptoms include mental or physical exhaustion and inability to perform voluntary activities, and can be accompanied by cognitive dysfunction, sensory overstimulation, pain, and sleepiness [Cantor et al. 2013]. PTBIF appears to be persistent, affects most TBI patients daily, negatively impacts quality of life, and decreases life satisfaction [Olver et al. 1996Cantor et al.20082012Bay and De-Leon, 2010]. Given the ubiquitous presence of PTBIF, treatment or management of fatigue is important to improve the patient’s quality of life after TBI. However, the effectiveness of currently available treatments is limited.

Although pharmacological interventions such as piracetam, creatine, monoaminergic stabilizer OSU6162, and methylphenidate can alleviate fatigue, adverse effects limit their usage and further research is needed to clarify their effects [Hakkarainen and Hakamies, 1978Sakellaris et al.2008Johansson et al. 2012b2014]. Therefore, many researchers have attempted to identify complementary and alternative interventions to relieve PTBIF [Bateman et al. 2001Hodgson et al. 2005Gemmell and Leathem, 2006Hassett et al. 2009Johansson et al. 2012aBjörkdahl et al. 2013Sinclair et al. 2014]. In this study, we aimed to systematically review randomized controlled trials (RCTs) that evaluated treatment of PTBIF using complementary and alternative medicine (CAM) to provide practical recommendations for this syndrome.

figure

Figure 1. The study selection process for the systematic review.

Continue —> Complementary and alternative interventions for fatigue management after traumatic brain injury: a systematic reviewTherapeutic Advances in Neurological Disorders – Gang-Zhu Xu, Yan-Feng Li, Mao-De Wang, Dong-Yuan Cao, 2017

, , , , , ,

Leave a comment

[WEB SITE] 17 Things People With Chronic Illness Mean When They Say ‘I’m Tired’

Everyone has said “I’m tired” at one point or another. But those deceptively simple words can have so many meanings. Without knowing the extent of the exhaustion someone with chronic illness is feeling when they say they’re people may think your “tiredness” can be cured by a nap or early night, like theirs, not understanding the support you really need in that moment.

So we asked our Mighty community with chronic illness to reveal what they might actually mean when they say, “I’m tired.” It’s important for the people in your life to understand the challenges you’re dealing with and the empathy and kindness that can help you get through them.

 

Here’s what our community told us:

1. “Most people who are healthy don’t understand that ‘I’m tired’ is a very shortened phrase for us. When I actually admit to friends and family that I feel bad or am tired that means so much. That means I can no longer mask the symptoms I deal with on a daily basis and I need a little compassion to get through the next few hours or sometimes days.”

2. “When I say ‘I’m tired,’ I mean my body hurts to the point I can’t explain to a ‘normal’ person how bad it hurts. It means mentally, emotionally and physically I do not want to keep going. When I say ‘I’m tired’ I’m giving myself permission for a second to stop fighting my illness and to be vulnerable. When I say ‘I’m tired’ I’m trusting you enough to show you how I really feel before I get ready to get up and keep fighting again.”

3. “I don’t want to stop helping you, but I’m pretty sure I’m going to crumble if I do one more thing. So, just smile and nod as I go sit down and put my brace on.”

4. “Just sitting in a chair is exhausting. I just want to be able to melt into the floor because I don’t have the energy to hold myself up. I’m not sleepy, I’m exhausted!”

5. “When I say ‘I’m tired’ it means I don’t want to talk about it right now. It means I’m tired of the fight my body is constantly in against itself, I’m tired of being positive, I’m tired of pushing through the pain, I’m tired of never-ending procedures and continuous doctor appointments that tend to only discover new problems. I know everything will be OK and my faith will get me through this, but right now ‘I’m tired’ and don’t have the energy or the will to put that much effort in to finding the good in my situation.”

6. “‘I’m tired’ is code for: I’ve hit the exhaustion wall/power-off button; I don’t have the energy to explain the systemic overload my body and mind are experiencing; I need to be alone; I’m sorry I can’t do that for you right now, but I’m incapable of even doing that for myself.”

7. “Most of the time it actually means, ‘I know you mean well, but please give me some space. I’d like to be alone.’ Predominantly this is when I really am absolutely exhausted and have zero energy to consider those around me.”

8. “I’m mentally exhausted from having to keep it together on the surface at work, when what I really want to do is scream out loud with the pain. The majority of my day is spent ticking down the clock so I can go home and curl up and just be in pain out loud.”

9. “Half the time it means I don’t have any reason for feeling the way I do emotionally, mentally, or physically, but I feel I need to give one. The other half of the time it’s that I’m at my breaking point and there’s not enough rest or time away in the world to bring me out of it.”

10. “It’s usually my go-to response for pain, exhaustion, anxiety, everything. It’s easier than trying to explain something ‘normal’ people will never understand. Tiredness is something everyone can comprehend on some level.”

11. “I want, no need, to collapse right here. I’m in so much pain I want to cry, but it isn’t socially acceptable to do that. I can’t think straight enough to know my own name, let alone what I should be doing right now!”

12. “When I say I’m tired I mean I can’t keep smiling and acting as if nothing was happening. My whole day I try to show my best, I pretend to be the same person I was before the pain started. When I’m tired I cannot pretend anymore, I have to be who I am now.”

13. “I’m emotionally drained. But I don’t want to appear weak or go into details. Saying, ‘I’m just tired’ is simpler sometimes.”

14. “I say ‘I’m tired,’ but what I mean is I am fatigued beyond exhaustion, I can barely function, I feel like I haven’t slept in days, my body and mind ache for restful rest!”

15. “When I say I am tired, it means wherever I am could make a good place to lay down and hopefully sleep. The concrete floor over there? Yeah that looks like an amazing place.”

16. “I’m out of spoons. Of juice. Of battery. I physically cannot muster the energy needed to complete the task(s) being asked of me.”

17. “I’ll stare off into the brain fog and when someone notices, auto respond, ‘I’m just tired.’ It’s so much easier not to have to explain something you know they likely don’t understand. My being tired can’t be fixed. Take a nap, cured. If only it were that simple.”

Source: 17 Things People With Chronic Illness Mean When They Say ‘I’m Tired’ | The Mighty

, , , ,

Leave a comment

[WEB SITE] Helping Others Understand: Post-Stroke Fatigue

[Helping Others Understand is an open-ended, intermittent series designed to support stroke survivors and family caregivers with helping friends and family better understand the nuances, complications and realistic expectations for common post-stroke conditions. If there is a specific post-stroke condition you’d like to see us address in future issues, we invite you to let us know: strokeconnection@heart.org.]


Stroke is unpredictable both in its arrival and in the consequences it leaves, but one common stroke deficit is fatigue. Some studies indicate that as many as 70 percent of survivors experience fatigue at some time following their stroke. Unlike exertional fatigue that we feel after working in the yard, post-stroke fatigue occurs from doing typical everyday tasks or sometimes from not doing anything. “It is a fatigue associated with the nervous system, which is quite difficult to understand,” said Jade Bender-Burnett, P.T., D.P.T., N.C.S., a neurological physical therapist in Falls Church, Virginia. “It’s very frustrating to the person who’s living with it because, unlike exertional fatigue, post-stroke fatigue doesn’t always resolve after you take a break, or get some rest.”

That has been Roman Nemec’s experience since surviving an ischemic stroke 11 years ago. It doesn’t seem to matter how much sleep he gets, “I walk around tired all the time, even after 9-10 hours of sleep,” he said from his home in Georgia.

This can be difficult for friends and family members to get their heads around because they have not likely experienced this kind of brain fatigue. Bender-Burnett has asked her clients who were marathoners prior to their stroke to compare the fatigue one feels following a marathon to post-stroke fatigue: “They said the fatigue you feel after damage to the brain is unlike any fatigue they’ve ever felt,” she said.

While there is no standardized scale for post-stroke fatigue, Bender-Burnett says that therapists distinguish between two types of fatigue. “Objective fatigue occurs when we can see physical, mental or cognitive changes,” she said. “With subjective fatigue we don’t see any changes, but the survivor will tell you that they’re feeling extremely weary and have no energy.”

For some this goes on for a few months after their stroke, for others, like Roman, it is persistent. Fatigue may be a side effect of medication. “Post-stroke fatigue is very individualized,” Bender-Burnett said. “One of the most frustrating parts of post-stroke fatigue is that it’s so unpredictable. Today, getting up, brushing your teeth and putting on your clothes may be fine, but tomorrow you may not be able to complete the morning routine without a rest break. That unpredictability is very frustrating for people and makes reintegration into daily life difficult.”

Post-stroke fatigue often changes over time. People report more and greater fatigue in the first six months. It’s episodic at first and seems to come out of nowhere: “They may be functioning well, and then all of a sudden they hit a wall,” she said. “It seems that as they get farther along in recovery, those hit-the-wall episodes decrease, and the lingering effect is ‘I just don’t have the energy to do all the things on my plate.’”

Life consequences span the spectrum from nuisance to career-ending. It can impact a survivor’s ability to function in unpredictable ways: As they tire, they may become clumsy or their speech may be affected. Their ability to understand, comprehend or recall may be compromised. Some people get irritable, while others experience increased emotional lability (crying or laughing with no apparent trigger). Bender-Burnett has worked with people who have made remarkable recoveries but were not able to return to work because of post-stroke fatigue.

Just as the consequences are individualized, so are the responses. If your energy is better in the morning, then take advantage of that. For mental fatigue, the most effective response is to sit quietly with low sensory stimulation, not necessarily take a nap. Some survivors may require regular and scheduled rest breaks or even a nap; that does not work for Roman: “I just live through it,” he said. “There are worse things than being tired. I feel good; I can get around; I can talk. Life is good compared to what it could be. Being tired all the time is not a big problem.”

Rhonda Hand, whose significant other, Tarvin, is a survivor, said: “In our household the fatigue issue is factored in before any event or activity and recuperation time after an event or activity. We just block off rest time like another activity; if we don’t, everything shuts down, including speech. Over the years, we have become much more proactive in scheduling appointments with anybody. There is nothing before 8 a.m. That’s when deep sleep is happening.”

Knowing your limits — and quitting before you hit them — is key to living with post-stroke fatigue. Survivors with fatigue have limited energy reserves, and if they get depleted, they take longer to replenish. “You don’t want push to the point just before you’re exhausted, you want to end on a high note, leaving some reserves,” Bender-Burnett said.

“We’re still learning about post-stroke fatigue from the healthcare perspective, and so I think it’s important that we all be willing to recognize it and have open communication about it,” Bender-Burnett said. “I urge family members and friends to come from a position of compassion and understanding rather than expectation that everything should be better, because, much like depression, others can’t always see it but, if you’re feeling it, it can be quite limiting.”

 

The Stroke Connection team knows that it can sometimes be hard for family and friends to understand how profoundly post-stroke fatigue may be impacting a survivor. We encourage you to share this article with the people in your life — and, for those pressed for time, we’ve created a quick-reference sheet  that you can print or share via email or socia

Source: Helping Others Understand: Post-Stroke Fatigue – Stroke Connection Magazine – Spring 2017

, ,

1 Comment

[Abstract] The treatment of fatigue by non-invasive brain stimulation

Summary

The use of non-invasive brain neurostimulation (NIBS) techniques to treat neurological or psychiatric diseases is currently under development. Fatigue is a commonly observed symptom in the field of potentially treatable pathologies by NIBS, yet very little data has been published regarding its treatment. We conducted a review of the literature until the end of February 2017 to analyze all the studies that reported a clinical assessment of the effects of NIBS techniques on fatigue. We have limited our analysis to repetitive transcranial magnetic stimulation (rTMS) and transcranial direct current stimulation (tDCS). We found only 15 studies on this subject, including 8 tDCS studies and 7 rTMS studies. Of the tDCS studies, 6 concerned patients with multiple sclerosis while 6 rTMS studies concerned fibromyalgia or chronic fatigue syndrome. The remaining 3 studies included patients with post-polio syndrome, Parkinson’s disease and amyotrophic lateral sclerosis. Three cortical regions were targeted: the primary sensorimotor cortex, the dorsolateral prefrontal cortex and the posterior parietal cortex. In all cases, tDCS protocols were performed according to a bipolar montage with the anode over the cortical target. On the other hand, rTMS protocols consisted of either high-frequency phasic stimulation or low-frequency tonic stimulation. The results available to date are still too few, partial and heterogeneous as to the methods applied, the clinical profile of the patients and the variables studied (different fatigue scores) in order to draw any conclusion. However, the effects obtained, especially in multiple sclerosis and fibromyalgia, are really carriers of therapeutic hope.

Source: The treatment of fatigue by non-invasive brain stimulation

, , , , , , , , ,

Leave a comment

[WEB SITE] All Fatigue is Not Created Equal: Why it Matters and What it Means for Pain Management

Have you ever felt so tired that you wished you could hibernate? Or so out of energy that you wanted to plug into a wall outlet and recharge?  Even if you haven’t, you’ve probably experienced the fatigue of a long day at work, a workout, or a poor night of sleep. This feeling is not only physical; emotional and mental fatigue can lead to irritability, difficulty concentrating, or in extreme cases, to locking ourselves in our room and watching reruns on television while our friends go out and enjoy themselves.

For people with chronic pain conditions, feelings of fatigue may be the norm rather than the exception. In fact, fatigue is one of the most common symptoms reported by patients with chronic pain, and increases as the intensity of the pain increases [1-2]. Chronic fatigue syndrome is highly comorbid with chronic pain conditions [3-4], and patients with fibromyalgia describe “fibro fog,” a set of symptoms characterized by difficulty with concentrating and performing other mental tasks [5].

Why does fatigue matter? It predicts low quality of life and poor functioning in a number of chronic pain populations [6-7], including cancer [8] and lower back pain [9]. In our work, we found that fatigue predicts low satisfaction with life in patients with chronic orofacial pain (pain in the head and face), and partially explains why pain is associated with psychological distress [2,10]. Yet, despite the negative impact of fatigue on functioning, it is still largely treated as a single symptom. Our team wanted to take a more nuanced approach and test whether different subtypes of fatigue (general fatigue, mental fatigue, emotional fatigue, physical fatigue, and vigor), as well as total fatigue (as a single symptom), predicted pain-related interference with social and recreational activities. To do this, we examined medical and psychological data from over 2,000 patients seeking treatment for chronic orofacial pains at a university orofacial pain center. A full version of the report can be found here [11], but below I summarize the main results.

First, total fatigue (as a single symptom) significantly predicted pain interference, above and beyond pain intensity, depression, psychological distress, and poor sleep! This suggests fatigue is more than feeling tired or lacking energy and is likely influenced by a number of factors. In fact, there’s moderately strong evidence for a central governing mechanism that monitors an array of cognitive, emotional, and physiological inputs and produces feelings of fatigue to prevent catastrophic overexertion [12-13]. A pretty clever protective mechanism! How this central governor influences and is modulated by pain remains an exciting area for future research, and one with much clinical relevance.

A second interesting finding was that the fatigue subtypes did not overlap as much as might be expected (13 – 40% of shared variance). Most of the variance in any one type of fatigue was not accounted for by the other types, suggesting we can feel emotionally tired but physically energized, just as we can feel mentally tired but generally energized, for example. Think of a long airplane ride. After a few hours, you might feel eager to move but unable to concentrate. This nuanced condition of low physical fatigue but high mental fatigue is lost when we treat fatigue as a single symptom. Examples of being fatigued in one domain but not another abound, but pain research takes a less nuanced approach and treats all of fatigue as one and the same.

The reason this matters – and this is the third interesting finding- is that each of these fatigue subtypes predicts outcomes differently. In our study, physical fatigue and lack of vigor were the only two significant predictors of pain interference: general, emotional, and mental fatigue were not significantly associated. The more physically fatigued people felt, or the less energy they had, the more pain disrupted their social and recreational activities. This was the first study to look at how specific subtypes of fatigue predicted pain outcomes.

Clinically, these findings suggest that perhaps we should be looking at people’s fatigue profiles to target individualized treatment. If someone reports high mental fatigue, then simplifying medication regiments (and implementing physical aids that promote medication adherence such as alarm clocks and reminders) may be particularly important. If, on the other hand, someone else has particularly high physical fatigue, then a cognitive behavioral intervention aimed at reducing physical fatigue and improving exercise might be most helpful. And if a third person is particularly high on emotional fatigue, they might benefit most from learning emotion regulation strategies and interpersonal communication skills. Although these ideas sound good in theory, more work is needed on targeted interventions to fatigue subtypes to test if they would indeed promote successful outcomes in pain patients.

About Ian Boggero

Ian Boggero is a clinical psychology graduate student at the University of Kentucky, but is originally from Los Angeles and did his undergraduate studies at UCLA. His research interests involve the psychological and social factors that promote adaptive responses to pain. Clinically, he has worked with orofacial pain, chronic lower back pain, phantom limb pain, and fibromyalgia populations, among others. Aside from pain, Ian enjoys hiking, cooking, playing soccer and chess, but most of all, spending time with his wonderful wife (who also shares his clinical and research interest in management). For more information, please see https://psychology.as.uky.edu/users/iabo222

References:

  1. [1] Hunt IM, Silman AJ, Benjamin S, McBeth J, Macfarlane GJ. The prevalence and associated features of chronic widespread pain in the community using the ‘Manchester’ definition of chronic widespread pain.Rheumatol 1999;38(3): 275-279. doi: 10.1093/rheumatology/38.3.275
  1. [2] Boggero IA, Rojas MV, Carlson CR, de Leeuw R. Satisfaction with life in orofacial pain disorders: Associations and theoretical implications. J Oral Facial Pain Headache 2016; 30(2): 99-106. doi: 10.11607/ofph.1526.
  1. [3] Clauw DJ, Chrousos GP. Chronic pain and fatigue syndromes: overlapping clinical and neuroendocrine features and potential pathogenic mechanisms. Neuroimmunomodulat 1997; 4: 134-153. doi: 10.1159/000097332
  1. [4] Aaron LA, Burke MM, Buchwald D. Overlapping conditions among patients with chronic fatigue syndrome, fibromyalgia, and temporomandibular disorder. Arch Intern Med 2000; 160: 221-227. doi: 10.1001/archinte.160.2.221
  1. [5] Williams DA, Clauw DJ, Glass JM. Perceived cognitive dysfunction in fibromyalgia syndrome.J Musculoskelet Pain 2011; 19(2): 66-75. doi: 10.3109/10582452.2011.558989
  1. [6] Sturgeon JA, Darnall BD, Kao MCJ, Mackey SC. Physical and psychological correlates of fatigue and physical function: a collaborative health outcomes information registry (CHOIR) study. J Pain 2015:16:291-298. doi: 10.1016/j.jpain.2014.12.004
  1. [7] de Leeuw R, Studts JL, Carlson CR. Fatigue and fatigue-related symptoms in an orofacial pain population. Oral Surg Oral Med O 2005; 99:168-174. doi: 10.1016/j.tripleo.2004.03.001
  1. [8] Servaes P, Verhagen C, Bleijenberg G. Fatigue in cancer patients during and after treatment: prevalence, correlates and interventions.Europe J Cancer 2002;38(1): 27-43. doi: 10.1016/S0959-8049(01)00332-X
  1. [9] Feuerstein M, Carter RL, Papciak AS. A prospective analysis of stress and fatigue in recurrent low back pain. Pain 1987; 3:333-344. doi: 10.1016/0304-3959(87)90162
  1. [10] Boggero IA, Kniffin TC, de Leeuw R, Carlson CR. Fatigue mediates the relationship between pain interference and distress in patients with persistent orofacial pain. J Oral Facial Pain Headache 2014; 28:38-45. doi: 10.11607/jop.1204
  1. [11] Boggero, I. A., Rojas Ramirez, M. V., & Carlson, C. R. (2017). All fatigue is not created equal: The association of fatigue and its subtypes on pain interference in orofacial pain. The Clinical Journal of Pain, 33(3), 231-237. doi: 10.1097/AJP.0000000000000391
  1. [12] Evans DR, Boggero IA, Segerstrom SC. Explaining self-regulatory fatigue and ‘ego depletion’: Lessons from physical fatigue. Personality Soc Psych Rev 2016; 20(4): 291-310. doi: 10.1177/1088868315597841
  1. [13] Noakes TD. The central governor model in 2012: Eight new papers deepen our understanding of the regulation of human exercise performance. British J Sports Med 2012; 46(1): 1-3. doi: 10.1136/bjsports-2011-090811

Source: All Fatigue is Not Created Equal: Why it Matters and What it Means for Pain Management

, , , , , ,

Leave a comment

[Abstract] Interventions for post-stroke fatigue.  

Abstract

BACKGROUND: Post-stroke fatigue (PSF) is a common and distressing problem after stroke. The best ways to prevent or treat PSF are uncertain. Several different interventions can be argued to have a rational basis. OBJECTIVES: To determine whether, among people with stroke, any intervention reduces the proportion of people with fatigue, fatigue severity, or both; and to determine the effect of intervention on health-related quality of life, disability, dependency and death, and whether such intervention is cost effective.

SEARCH METHODS: We searched the Cochrane Stroke Group Trials Register (last searched May 2014), Cochrane Central Register of Controlled Trials (The Cochrane Library, 2014, Issue 4), MEDLINE (1950 to May 2014), EMBASE (1980 to May 2014), CINAHL (1982 to May 2014), AMED (1985 to May 2014), PsycINFO (1967 to May 2014), Digital Dissertations (1861 to May 2014), British Nursing Index (1985 to May 2014), PEDro (searched May 2014) and PsycBITE (searched May 2014). We also searched four ongoing trials registries, scanned reference lists, performed citation tracking of included trials and contacted experts.
SELECTION CRITERIA: Two review authors independently scrutinised all titles and abstracts and excluded obviously irrelevant studies. We obtained the full texts for potentially relevant studies and three review authors independently applied the inclusion criteria. We included randomised controlled trials (RCTs) that compared an intervention with a control, or compared different interventions for PSF.
DATA COLLECTION AND ANALYSIS: Two review authors independently extracted data and assessed risk of bias for each included trial. The primary outcomes were severity of fatigue, or proportion of people with fatigue after treatment. We performed separate analyses for trials investigating efficacy in treating PSF, trials investigating efficacy in preventing PSF and trials not primarily investigating efficacy in PSF but which reported fatigue as an outcome. We pooled results from trials that had a control arm. For trials that compared different potentially active interventions without a control arm, we performed analyses for individual trials without pooling.We calculated standardised mean difference (SMD) as the effect size for continuous outcomes and risk ratio (RR) for dichotomous outcomes. We pooled the results using a random-effects model and assessed heterogeneity using the I(2) statistic. We performed separate subgroup analyses for pharmacological and non-pharmacological interventions. We also performed sensitivity analyses to assess the influence of methodological quality. MAIN RESULTS: We retrieved 12,490 citations, obtained full texts for 58 studies and included 12 trials (three from the 2008 search and nine from the 2014 search) with 703 participants. Eight trials primarily investigated the efficacy in treating PSF, of which six trials with seven comparisons provided data suitable for meta-analysis (five pharmacological interventions: fluoxetine, enerion, (-)-OSU6162, citicoline and a combination of Chinese herbs; and two non-pharmacological interventions: a fatigue education programme and a mindfulness-based stress reduction programme). The fatigue severity was lower in the intervention groups than in the control groups (244 participants, pooled SMD -1.07, 95% confidence interval (CI) -1.93 to -0.21), with significant heterogeneity between trials (I(2) = 87%, degrees of freedom (df) = 6, P value < 0.00001). The beneficial effect was not seen in trials that had used adequate allocation concealment (two trials, 89 participants, SMD -0.38, 95% CI -0.80 to 0.04) or trials that had used adequate blinding of outcome assessors (four trials, 198 participants, SMD -1.10, 95% CI -2.31 to 0.11).No trial primarily investigated the efficacy in preventing PSF.Four trials (248 participants) did not primarily investigate the efficacy on fatigue but other symptoms after stroke. None of these interventions showed any benefit on reducing PSF, which included tirilazad mesylate, continuous positive airway pressure for sleep apnoea, antidepressants and a self management programme for recovery from chronic diseases.
AUTHORS’ CONCLUSIONS: There was insufficient evidence on the efficacy of any intervention to treat or prevent fatigue after stroke. Trials to date have been small and heterogeneous, and some have had a high risk of bias. Some of the interventions described were feasible in people with stroke, but their efficacy should be investigated in RCTs with a more robust study design and adequate sample sizes.

Source: Interventions for post-stroke fatigue. | Nursing VHL Search Portal

, , ,

Leave a comment

[ARTICLE] Immediate affective responses of gait training in neurological rehabilitation: A randomized crossover trial – Full Text HTML

Abstract

Objective: To examine the immediate effects of physical therapy and robotic-assisted gait training on affective responses of gait training in neurological rehabilitation.

Design: Randomized crossover trial with blinded observers.

Patients: Sixteen patients with neurological disorders (stroke, traumatic brain injury, spinal cord injury, multiple sclerosis).

Methods: All patients underwent 2 single treatment sessions: physical therapy and robotic-assisted gait training. Both before and after the treatment sessions, the self-report Mood Survey Scale was used to assess the effects of the treatment on distinct affective states. The subscales of the Mood Survey Scale were tested for pre–post changes and differences in effects between treatments, using non-parametric tests.

Results: Fourteen participants completed the study. Patients showed a significant increase in activation (r = 0.55), elation (r = 0.79), and calmness (r = 0.72), and a significant decrease in anger (r = 0.64) after robotic-assisted gait training compared with physical therapy.

Conclusion: Affective responses might be positively influenced by robotic-assisted gait training, which may help to overcome motivational problems during the rehabilitation process in neurological patients.

Introduction

Patients with neurological impairment are known to have reduced quality of life and increased risk for depressive symptoms, which may hinder their ability to perform daily rehabilitation programmes, such as physical therapy (PT) or robotic-assisted gait training (RAGT) (1). During the continuum of rehabilitation it is necessary to consider factors such as choice and enjoyment in order to determine specifically how an individual would participate in rehabilitation programmes. The inclusion of participation scales is recommended when assessing the outcome of rehabilitation programmes (2). According to Self-Determination Theory (3), positive affective responses (e.g. activation, elation, or calmness) are connected with high intrinsic motivation and are an important regulation process in human behaviour. Therefore affective responses to the treatment sessions, as defined by Ekkekakis & Petruzello (4), might be important predictors of motivation, adoption, and maintenance of treatment regimes in the rehabilitation process.

Fatigue is a common and distressing complaint among people with neurological impairment (5). Patients often are afraid that engagement in exercise may increase fatigue (6). In patients with traumatic brain injury, “lack of energy” was rated as 1 of the top 5 problems for participation (7). Therefore it is important to emphasize that it is more likely that a higher level of energy will be achieved after exercise (8, 9). Although not yet a widely recognized determinant of exercise behaviour, affective valence is viewed in psychology and behavioural economics as one of the major factors in human decision-making (10). Findings from exercise psychology have demonstrated that the affective components of pleasure and activation might be crucial for bridging the intention–behaviour gap at the beginning of engagement in exercise (10). Regular participation in physical activity, in the long-term, may be mediated by an individual’s belief in the exercise–psychological wellbeing association. It may also lead to anti-depressive effects (11). Both PT and RAGT can be considered as forms of physical activity; therefore one might speculate that the effects mentioned above could be transferred to neurological patients. While increases in energy and mood in response to a single bout of moderate intensity exercise have been shown in healthy people and several risk-groups (6, 8, 9), no such study has been carried out involving neurological patients.

To our knowledge, only 2 studies concerning RAGT and psychological effects have been published. Koenig et al. (12) described a method to observe mental engagement during RAGT. Recently, Calabro et al. (13) reported positive long-term effects of RAGT on mood and coping strategies in a case study. To our knowledge, apart from these studies, affective responses have not been researched in PT or RAGT.

Thus, the aim of this study was to determine, for patients with neurological impairment: (i) whether a single session of PT and RAGT has immediate effects on affective responses (e.g. activation, elation, or calmness) and; (ii) whether possible affective responses differ between PT and RAGT.

Continue —> Journal of Rehabilitation Medicine – Immediate affective responses of gait training in neurological rehabilitation: A randomized crossover trial – HTML

, , , , ,

Leave a comment

%d bloggers like this: