Posts Tagged Feedback

[ARTICLE] Does motivation matter in upper-limb rehabilitation after stroke? ArmeoSenso-Reward: study protocol for a randomized controlled trial – Full Text

Abstract

Background

Fifty percent of all stroke survivors remain with functional impairments of their upper limb. While there is a need to improve the effectiveness of rehabilitative training, so far no new training approach has proven to be clearly superior to conventional therapy. As training with rewarding feedback has been shown to improve motor learning in humans, it is hypothesized that rehabilitative arm training could be enhanced by rewarding feedback. In this paper, we propose a trial protocol investigating rewards in the form of performance feedback and monetary gains as ways to improve effectiveness of rehabilitative training.

Methods

This multicentric, assessor-blinded, randomized controlled trial uses the ArmeoSenso virtual reality rehabilitation system to train 74 first-ever stroke patients (< 100 days post stroke) to lift their impaired upper limb against gravity and to improve the workspace of the paretic arm. Three sensors are attached to forearm, upper arm, and trunk to track arm movements in three-dimensional space while controlling for trunk compensation. Whole-arm movements serve as input for a therapy game. The reward group (n = 37) will train with performance feedback and contingent monetary reward. The control group (n = 37) uses the same system but without monetary reward and with reduced performance feedback. Primary outcome is the change in the hand workspace in the transversal plane. Standard clinical assessments are used as secondary outcome measures.

Discussion

This randomized controlled trial will be the first to directly evaluate the effect of rewarding feedback, including monetary rewards, on the recovery process of the upper limb following stroke. This could pave the way for novel types of interventions with significantly improved treatment benefits, e.g., for conditions that impair reward processing (stroke, Parkinson’s disease).

Electronic supplementary material

The online version of this article (doi:10.1186/s13063-017-2328-2) contains supplementary material, which is available to authorized users.

 

Background

After stroke, 50% of survivors are left with impairments in arm function [12], which is associated with reduced health-related quality of life [3]. While there is evidence for a positive correlation between therapy dose and functional recovery [46], a higher therapy dose is challenging to implement, as it usually leads to an increase in costs commonly not covered by health insurances. However, when dose is matched, most randomized controlled trials introducing new types of rehabilitative interventions (e.g., robot-assisted therapy [7]) failed to show a superior effect compared to standard therapy. Thus, the need for improving therapy effectiveness remains. In search for elements of effective therapy, we hypothesize that performance feedback and monetary rewards can improve effectiveness.

It has been shown that reward enhances procedural [8] and motor-skill learning [910] and has a positive effect on motor adaptation [11]. Rewards mainly improve retention of motor skills and motor adaptations [911]. This effect was not explained by training duration (dose) as rewarded and non-rewarded groups underwent similar training schedules [811]. In a functional magnetic resonance imaging (fMRI) study, Widmer et al. reported that adding monetary rewards after good performance leads to better consolidation and higher ventral striatum activation than knowledge of performance alone [10]. The striatum is a key locus of reward processing [12], and its activity was shown to be increased by both intrinsic and extrinsic reward [13]. Being a brain structure that receives substantial dopaminergic input from the midbrain, ventral striatal activity can be seen as a surrogate marker for dopaminergic activity in the substantia nigra/ventral tegmental area [14]. In rodents, Hosp et al. found that dopaminergic projections from the midbrain also terminate directly in the primary motor cortex (M1) [15]. Dopamine in M1 is necessary for long-term potentiation of certain cortico-cortical connections and successful motor-skill learning [16]. As mechanisms of motor learning are also thought to play a role in motor recovery [17], rehabilitative interventions may benefit from neuroplasticity enhanced by reward.

Here, we describe a trial protocol to test the effect of enhanced feedback and reward on arm rehabilitation after stroke at matched training dose (time and intensity). We use the ArmeoSenso, a standardized virtual reality (VR)-based training system [18] that is delivered in two versions for two different study groups, one version with and one without reward and enhanced performance feedback.[…]

 

Continue —>  Does motivation matter in upper-limb rehabilitation after stroke? ArmeoSenso-Reward: study protocol for a randomized controlled trial

An external file that holds a picture, illustration, etc.Object name is 13063_2017_2328_Fig2_HTML.jpg

Fig. 2
a Healthy subject using the ArmeoSenso training system. b Arm workspace assessment: gray cubic voxels arranged in the transverse plane reflecting 10 cm × 10 cm active workspace relative to the patient’s trunk

, , , , , , , , , ,

Leave a comment

[Proceeding] Mobile, Exercise-agnostic, Sensor-based Serious Games for Physical Rehabilitation at Home – Full Text PDF

Serious games can improve the physical rehabilitation of patients with different conditions. By monitoring exercises and offering feedback, serious games promote the correct execution of exercises outside the clinic. Nevertheless, existing serious games are limited to specific exercises, which reduces their practical impact. This paper describes the design of three exercise-agnostic games, that can be used for a multitude of rehabilitation scenarios. The developed games are displayed on a smartphone and are controlled by a wearable device, containing inertial and electromyography sensors. Results from a preliminary evaluation with 10 users are discussed, together with plans for future work.

Full Text PDF

via Mobile, Exercise-agnostic, Sensor-based Serious Games for Physical Rehabilitation at Home

, , , , , , ,

Leave a comment

[ARTICLE] Effectiveness of Mirror Therapy in Rehabilitation of Hand Function in Sub-Acute Stroke – Full Text

Abstract

Aim: Three quarters of strokes occur in the region supplied by the middle cerebral artery. As a consequence, the upper limb will be affected in a large number of patients. Purpose of the study is to examine the effectiveness of mirror therapy in rehabilitation of hand function in sub-acute stroke.

Methodology: An experimental study design, 30 subjects with sub-acute stroke with impaired hand function randomly allocated 15 subjects into each experimental group and conventional group. Both groups received conventional physiotherapy. The experimental group in addition, received Mirror Therapy program of 30 repetition of each exercises per day for 5 days in a week for 4 weeks (total = 20 sessions). Hand functions were measured using Upper extremity motor activity log (UE MAL) and Action research arm test (ARAT) before and after 4 week of intervention.

Results: Results of the study suggested that both the experimental and conventional group had a significant improvement in hand function (AROM, functional task with objects, object manipulation), however experimental group showed significantly more improvement than conventional group, providing Mirror Therapy with conventional treatment is more effective than conventional treatment alone.

Conclusion: Mirror therapy with conventional physiotherapy brings more improvement in hand function than conventional physiotherapy alone.

Introduction

World Health Organization [WHO; Stroke; 1989] defines the clinical syndrome of stroke as ‘rapidly developed clinical signs of focal (or global) distribution of cerebral function with symptoms lasting more than 24 hours or longer or leading to death, with no apparent cause other than vascular origin’.

Prevalence rates reported for stroke or CerebroVascular Accident (CVA) worldwide vary between 500 to 800 per 100,000 population [N.K. Sehi et al 2007] with about 20 million people suffer from stroke each year; out of that 5 million will die as a consequences and 15 million will survive with long term disabilities of varied spectrum. Many surviving stroke patients will often depends on other people‘s continuous support to survive.

Stroke is the most common cause of chronic disability [1]. Of survivors, an estimated one third will be functionally dependent after 1 year experiencing difficulty with activities of daily living (ADL), ambulation, speech, and so forth [2]. Cognitive impairment occurs frequently after stroke, commonly involving memory, orientation, language, and attention. The presence of cognitive impairment in patients with stroke has important functional consequences, independent of the effects of physical impairment (T K Tatemichi et al 1994).

Recovery of function after stroke may occur, but it is unclear whether interventions can improve function beyond the spontaneous process. In particular, recovery of hand function plateaus in about 1 year, and common knowledge is that the patient will remain at that level for the rest of his or her life [3,4]. Typically in such situations, upper arm function is better than that in the hand [5]. An emerging concept in neural plasticity is that there is competition among body parts for territory in the brain [6-11].

Several studies have been conducted to examine the recovery of the hemiplegic arm in stroke patients. Up to 85% of patients show an initial deficit in the arm. Three to six months later, problems remain in 55% to 75% of patients [12-15]. While recovery of arm function is poor in a significant number of patients. Three quarters of strokes occur in the region supplied by the middle cerebral artery [16]. As a consequence, the upper limb will be affected in a large number of patients. Functional recovery of the arm includes grasping, holding, and manipulating objects, which requires the recruitment and complex integration of muscle activity from shoulder to fingers.

Functional brain imaging studies of healthy subjects suggest that excitability of the primary motor cortex ipsilateral to a unilateral hand movement is facilitated by viewing a mirror reflection of the moving hand [17]. Reorganization of motor functions immediately around the stroke site (ipsilesional) is likely to be important in motor recovery after stroke, and a contribution of other brain areas in the affected hemisphere is also possible. Activation when a subject is doing motor tasks can also occur in the bilateral inferior parietal area, the supplementary motor area, and in the premotor cortex. Furthermore, central adaptations occur in networks controlling the paretic as well as the nonparetic lower limb after stroke [18].

The aim of this study is to find the effect of mirror therapy in rehabilitation of hand function in sub-acute stroke. […]

 

Continue —> Effectiveness of Mirror Therapy in Rehabilitation of Hand Function in Sub-Acute Stroke

, , , , , , , , , ,

Leave a comment

[ARTICLE] Does motivation matter in upper-limb rehabilitation after stroke? ArmeoSenso-Reward: study protocol for a randomized controlled trial – Full Text

Abstract

Background

Fifty percent of all stroke survivors remain with functional impairments of their upper limb. While there is a need to improve the effectiveness of rehabilitative training, so far no new training approach has proven to be clearly superior to conventional therapy. As training with rewarding feedback has been shown to improve motor learning in humans, it is hypothesized that rehabilitative arm training could be enhanced by rewarding feedback. In this paper, we propose a trial protocol investigating rewards in the form of performance feedback and monetary gains as ways to improve effectiveness of rehabilitative training.

Methods

This multicentric, assessor-blinded, randomized controlled trial uses the ArmeoSenso virtual reality rehabilitation system to train 74 first-ever stroke patients (< 100 days post stroke) to lift their impaired upper limb against gravity and to improve the workspace of the paretic arm. Three sensors are attached to forearm, upper arm, and trunk to track arm movements in three-dimensional space while controlling for trunk compensation. Whole-arm movements serve as input for a therapy game. The reward group (n = 37) will train with performance feedback and contingent monetary reward. The control group (n = 37) uses the same system but without monetary reward and with reduced performance feedback. Primary outcome is the change in the hand workspace in the transversal plane. Standard clinical assessments are used as secondary outcome measures.

Discussion

This randomized controlled trial will be the first to directly evaluate the effect of rewarding feedback, including monetary rewards, on the recovery process of the upper limb following stroke. This could pave the way for novel types of interventions with significantly improved treatment benefits, e.g., for conditions that impair reward processing (stroke, Parkinson’s disease).

Background

After stroke, 50% of survivors are left with impairments in arm function [12], which is associated with reduced health-related quality of life [3]. While there is evidence for a positive correlation between therapy dose and functional recovery [456], a higher therapy dose is challenging to implement, as it usually leads to an increase in costs commonly not covered by health insurances. However, when dose is matched, most randomized controlled trials introducing new types of rehabilitative interventions (e.g., robot-assisted therapy [7]) failed to show a superior effect compared to standard therapy. Thus, the need for improving therapy effectiveness remains. In search for elements of effective therapy, we hypothesize that performance feedback and monetary rewards can improve effectiveness.

It has been shown that reward enhances procedural [8] and motor-skill learning [910] and has a positive effect on motor adaptation [11]. Rewards mainly improve retention of motor skills and motor adaptations [91011]. This effect was not explained by training duration (dose) as rewarded and non-rewarded groups underwent similar training schedules [891011]. In a functional magnetic resonance imaging (fMRI) study, Widmer et al. reported that adding monetary rewards after good performance leads to better consolidation and higher ventral striatum activation than knowledge of performance alone [10]. The striatum is a key locus of reward processing [12], and its activity was shown to be increased by both intrinsic and extrinsic reward [13]. Being a brain structure that receives substantial dopaminergic input from the midbrain, ventral striatal activity can be seen as a surrogate marker for dopaminergic activity in the substantia nigra/ventral tegmental area [14]. In rodents, Hosp et al. found that dopaminergic projections from the midbrain also terminate directly in the primary motor cortex (M1) [15]. Dopamine in M1 is necessary for long-term potentiation of certain cortico-cortical connections and successful motor-skill learning [16]. As mechanisms of motor learning are also thought to play a role in motor recovery [17], rehabilitative interventions may benefit from neuroplasticity enhanced by reward.

Here, we describe a trial protocol to test the effect of enhanced feedback and reward on arm rehabilitation after stroke at matched training dose (time and intensity). We use the ArmeoSenso, a standardized virtual reality (VR)-based training system [18] that is delivered in two versions for two different study groups, one version with and one without reward and enhanced performance feedback. […]

 

Continue —> Does motivation matter in upper-limb rehabilitation after stroke? ArmeoSenso-Reward: study protocol for a randomized controlled trial | Trials | Full Text

Fig. 2a Healthy subject using the ArmeoSenso training system. b Arm workspace assessment: gray cubic voxels arranged in the transverse plane reflecting 10 cm × 10 cm active workspace relative to the patient’s trunk

, , , , , , , , ,

Leave a comment

[ARTICLE] Encouragement-induced real-world upper limb use after stroke by a tracking and feedback device: a study protocol for a multi-center, assessor-blinded, randomized controlled trial – Full Text

Introduction: Retraining the paretic upper limb after stroke should be intense and specific to be effective. Hence, the best training is daily life use, which is often limited by motivation and effort. Tracking and feedback technology have the potential to encourage self-administered, context-specific training of upper limb use in the patients’ home environment. The aim of this study is to investigate post-intervention and long-term effects of a wrist-worn activity tracking device providing multimodal feedback on daily arm use in hemiparetic subjects beyond 3 months post-stroke.

Methods and Analysis: A prospective, multi-center, assessor-blinded, Phase 2 randomized controlled trial with a superiority framework. Sixty-two stroke patients will be randomized in two groups, with a 1:1 allocation ratio, stratified based on arm paresis severity (Fugl-Meyer Assessment – Upper Extremity subscale <32 and ≥32). The experimental group receives a wrist-worn activity tracking device providing multimodal feedback on daily arm use for 6 weeks. Controls wear an identical device providing no feedback. Sample size: 31 participants per group, based on a difference of 0.75±1.00 points on the Motor Activity Log – 14 Item Version, Amount of Use subscale (MAL-14 AOU), 80% power, two-sided alpha of 0.05, and a 10% attrition rate.

Outcomes: Primary outcome is the change in patient-reported amount of daily life upper limb use (MAL-14 AOU) from baseline to post-intervention. Secondary outcomes are change in upper limb motor function, upper limb capacity, global disability, patient-reported quality of daily life upper limb use, and quality of life from baseline to post-intervention and 6-week follow-up, as well as compliance and safety.

Discussion: The results of this study will show the possible efficacy of a wrist-worn tracking and feedback device on patient-reported amount of daily life upper limb use.

Ethics and Dissemination: The study is approved by the Cantonal Ethics Committees Zurich, and Northwest and Central Switzerland (BASEC-number 2017-00948) and registered in https://clinicaltrials.gov (NCT03294187) before recruitment started. This study will be carried out in compliance with the Declaration of Helsinki, ICH-GCP, ISO 14155:2011, and Swiss legal and regulatory requirements. Dissemination will include submission to a peer-reviewed journal, patient and healthcare professional magazines, and congress presentations.

Continue —>  Frontiers | Encouragement-induced real-world upper limb use after stroke by a tracking and feedback device: a study protocol for a multi-center, assessor-blinded, randomized controlled trial | Neurology

, , , , , , , , ,

Leave a comment

[ARTICLE] Functional Electrical Stimulation with Augmented Feedback Training Improves Gait and Functional Performance in Individuals with Chronic Stroke: A Randomized Controlled Trial – Full Text

Purpose: The purpose of this study was to compare the effects of the FES-gait with augmented feedback training to the FES alone on the gait and functional performance in individuals with chronic stroke.
Methods: This study used a pretest and posttest randomized control design. The subjects who signed the agreement were randomly divided into 12 experimental groups and 12 control groups. The experimental groups performed two types of augmented feedback training (knowledge of performance and knowledge of results) together with FES, and the control group performed FES on the TA and GM without augmented feedback and then walked for 30 minutes for 40 meters. Both the experimental groups and the control groups received training five times a week for four weeks.
Results: The groups that received the FES with augmented feedback training significantly showed a greater improvement in single limb  support (SLS) and gait velocity than the groups that received FES alone. In addition, timed up and go (TUG) test and six minute walk test (6MWT) showed a significant improvement in the groups that received FES with augmented feedback compared to the groups that received FES alone.
Conclusion: Compared with the existing FES gait training, augmented feedback showed improvements in gait parameters, walking ability, and dynamic balance. The augmented feedback will be an important method that can provide motivation for motor learning to stroke patients.

Continue —>  Functional Electrical Stimulation with Augmented Feedback Training Improves Gait and Functional Performance in Individuals with Chronic Stroke: A Randomized Controlled Trial (PDF Download Available)

Download Full Text PDF

, , , , ,

Leave a comment

[ARTICLE] Hemiparetic Stroke Rehabilitation Using Avatar and Electrical Stimulation Based on Non-invasive Brain Computer Interface – Full Text

Abstract
Brain computer interfaces (BCIs) have been employed in rehabilitation training for post-stroke patients. Patients in the chronic stage, and/or with severe paresis, are particularly challenging for conventional rehabilitation. We present results from two such patients who participated in BCI training with first-person avatar feedback. Five assessments were conducted to assess any behavioural changes after the intervention, including the upper extremity Fugl-Meyer assessment (UE-FMA) and 9 hole-peg test (9HPT). Patient 1 (P1) increased his UE-FMA score from 25 to 46 points after the intervention. He could not perform the 9HPT in the first session. After the 18th session, he was able to perform the 9HPT and reduced the time from 10 min 22 sec to 2 min 53 sec. Patient 2 (P2) increased her UE-FMA from 17 to 28 points after the intervention. She could not perform the 9HPT throughout the training session. However, she managed to complete the test in 17 min 17 sec during the post-assessment session.
These results show that the feasibility of this BCI approach with chronic patients with severe paresis, and further support the growing consensus that these types of tools might develop into a new paradigm for rehabilitation tool for stroke patients. However, the results are from only two chronic stroke patients. This approach should be furthe validated in broader randomized controlled studies involving more patients.

Download Full Text PDF

, , , , , , , , , ,

Leave a comment

[VIDEO] The ArmTutor by MediTouch HD – YouTube

Published on Jun 8, 2017

The ArmTutor allows for isolated elbow and shoulder and combination elbow and shoulder functional exercise practice. The system provides detailed exercise instructions and precise feedback on the patients exercise performance and improvement. Controlled practice of multi joints within the normal movement pattern prevents the development of undesired and compensatory joint movement and ensures better performance of functional tasks.

The system is used by many leading physical and occupational therapy centres worldwide and has CE and FDA certification.

, , , , , , , ,

Leave a comment

[ARTICLE] Functional Electrical Stimulation with Augmented Feedback Training Improves Gait and Functional Performance in Individuals with Chronic Stroke: A Randomized Controlled Trial – Full Text PDF

Abstract

Purpose: The purpose of this study was to compare the effects of the FES-gait with augmented feedback training to the FES alone on the gait and functional performance in individuals with chronic stroke.

Methods: This study used a pretest and posttest randomized control design. The subjects who signed the agreement were randomly divided into 12 experimental groups and 12 control groups. The experimental groups performed two types of augmented feedback training (knowledge of performance and knowledge of results) together with FES, and the control group performed FES on the TA and GM without augmented feedback and then walked for 30 minutes for 40 meters. Both the experimental groups and the control groups received training five times a week for four weeks.

Results: The groups that received the FES with augmented feedback training significantly showed a greater improvement in single limb support (SLS) and gait velocity than the groups that received FES alone. In addition, timed up and go (TUG) test and six minute walk test (6MWT) showed a significant improvement in the groups that received FES with augmented feedback compared to the groups that received FES alone.

Conclusion: Compared with the existing FES gait training, augmented feedback showed improvements in gait parameters, walking ability, and dynamic balance. The augmented feedback will be an important method that can provide motivation for motor learning to stroke patients.

Full Text PDF

, , , ,

Leave a comment

[Abstract] An Interactive System for Fine Motor Rehabilitation – Rehabilitation Nursing

Abstract

Purpose

One of the most important aspects in neuromotor rehabilitation is the need of feedback for patients. The rehabilitation system’s efficiency relies on the therapist’s judgment, who tells the patient whether he/she is performing the exercises correctly. This process may be quite subjective, because it depends on the therapist’s personal opinion. On the other hand, recent studies have shown that vibrotactile biofeedback can improve the effectiveness of interaction as it is a very helpful tool in the physiological process of neuromotor rehabilitation.

Design

We designed an interactive system focused on rehabilitation of the upper limbs using active markers and image processing, which consists of drawing activities in both augment and virtual reality.

Methods

System gives to the user a correction through multimodal stimuli feedback (vibrotactile, visual and sound stimulus) and force measurement to let the patients know if they are not achieving the tasks’ goals.

Findings

The developed system could be used by nursing assistants to better help patients. The purpose of this system was assisting patients with injuries to shoulders, elbows or wrists, providing an audio-vibrotactile feedback as a factor of correction in the movements of the patient. To examine our system, 11 participants were asked to participate in an experiment where they performed activities focussed to strengthen their fine motor movements.

Conclusions and Clinical Relevance

Our results show that patients’ fine motor skills improved 10% on average by comparing their error rates throughout the sessions.

Articles related to the one you are viewing

Source: An Interactive System for Fine Motor Rehabilitation – Posada-Gómez – 2016 – Rehabilitation Nursing – Wiley Online Library

, , , , ,

Leave a comment

%d bloggers like this: