Posts Tagged FES-Assisted Cycling

[BOOK Chapter] Overview of FES-Assisted Cycling Approaches and Their Benefits on Functional Rehabilitation and Muscle Atrophy – Abstract + References

Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1088)

Abstract

Central nervous system diseases include brain or spinal cord impairments and may result in movement disorders almost always manifested by paralyzed muscles with preserved innervations and therefore susceptible to be activated by electrical stimulation. Functional electrical stimulation (FES)-assisted cycling is an approach mainly used for rehabilitation purposes contributing, among other effects, to restore muscle trophism. FES-assisted cycling has also been adapted for mobile devices adding a leisure and recreational benefit to the physical training. In October 2016, our teams (Freewheels and EMA-trike) took part in FES-bike discipline at the Cybathlon competition, presenting technologies that allow pilots with spinal cord injury to use their paralyzed lower limb muscles to propel a tricycle. Among the many benefits observed and reported in our study cases for the pilots during preparation period, we achieved a muscle remodeling in response to FES-assisted cycling that is discussed in this chapter. Then, we have organized some sections to explore how FES-assisted cycling could contribute to functional rehabilitation by means of changes in the skeletal muscle disuse atrophy.

References

  1. 1.
    Beiter T, Hoene M, Prenzler F, Mooren FC, Steinacker JM, Weigert C et al (2015) Exercise, skeletal muscle and inflammation: ARE-binding proteins as key regulators in inflammatory and adaptive networks. Exerc Immunol Rev 21:42–57PubMedGoogle Scholar
  2. 2.
    Sanchez AMJ, Candau RB, Bernardi H (2014) FoxO transcription factors: their roles in the maintenance of skeletal muscle homeostasis. Cell Mol Life Sci 71(9):1657–1671CrossRefGoogle Scholar
  3. 3.
    Aihara M, Hirose N, Katsuta W (2017) A new model of skeletal muscle atrophy induced by immobilization using a hook-and-loop fastener in mice. J Phys Ther Sci:1779–1783CrossRefGoogle Scholar
  4. 4.
    Pigna E, Greco E, Morozzi G, Grottelli S, Rotini A, Minelli A et al (2017) Denervation does not induce muscle atrophy through oxidative stress. Eur J Transl Myol [Internet] 27(1):43–50. Available from: http://www.pagepressjournals.org/index.php/bam/article/view/6406Google Scholar
  5. 5.
    Kern H, Hofer C, Loefler S, Zampieri S, Gargiulo P, Baba A et al (2017) Atrophy, ultra-structural disorders, severe atrophy and degeneration of denervated human muscle in SCI and aging. Implications for their recovery by functional electrical stimulation, updated 2017. Neurol Res 6412(April):1–7Google Scholar
  6. 6.
    Oki R, Uchino A, Izumi Y, Ogawa H, Murayama S, Kaji R (2016) An autopsy case of progressive generalized muscle atrophy over 14 years due to post-polio syndrome. Rinsho Shinkeigaku [Internet] 56(1):12–16. Available from: https://www.jstage.jst.go.jp/article/clinicalneurol/56/1/56_cn-000761/_article/-char/ja/CrossRefGoogle Scholar
  7. 7.
    Panisset MG, Galea MP, El-Ansary D (2016) Does early exercise attenuate muscle atrophy or bone loss after spinal cord injury? Spinal Cord [Internet] 54(2):84–92. Available from:  https://doi.org/10.1038/sc.2015.150CrossRefGoogle Scholar
  8. 8.
    Fang J, Liu MS, Guan YZ, Du H, Li BH, Cui B et al (2016) Pattern differences of small hand muscle atrophy in amyotrophic lateral sclerosis and mimic disorders. Chin Med J 129(7):792–798CrossRefGoogle Scholar
  9. 9.
    Bargiela A, Cerro-Herreros E, Fernandez-Costa JM, Vilchez JJ, Llamusi B, Artero R (2015) Increased autophagy and apoptosis contribute to muscle atrophy in a myotonic dystrophy type 1 Drosophila model. Dis Model Mech [Internet] 8(7):679–690. Available from: http://dmm.biologists.org/cgi/doi/10.1242/dmm.018127CrossRefGoogle Scholar
  10. 10.
    Stouth DW, vanLieshout TL, Shen NY, Ljubicic V (2017) Regulation of skeletal muscle plasticity by protein arginine methyltransferases and their potential roles in neuromuscular disorders. Front Physiol 8(November):870CrossRefGoogle Scholar
  11. 11.
    Serum L, Silva-couto MDA, Prado-medeiros CL, Oliveira AB, Alca CC. People With Chronic Stroke 94(7)Google Scholar
  12. 12.
    Carraro U, Kern H, Gava P, Hofer C, Loefler S, Gargiulo P et al (2015) Biology of muscle atrophy and of its recovery by FES in aging and mobility impairments: roots and by-products. Eur J Transl Myol [Internet] 25(4):221–230. Available from: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=4748978&tool=pmcentrez&rendertype=abstract
  13. 13.
    Snijders T, Nederveen JP, McKay BR, Joanisse S, Verdijk LB, van Loon LJC et al (2015) Satellite cells in human skeletal muscle plasticity. Front Physiol 6(OCT):1–21Google Scholar
  14. 14.
    Kupr B, Handschin C (2015) Complex coordination of cell plasticity by a PGC-1α-controlled transcriptional network in skeletal muscle. Front Physiol 6(NOV):1–7Google Scholar
  15. 15.
    Handschin C (2010) Regulation of skeletal muscle cell plasticity by the peroxisome proliferator-activated receptor γ coactivator 1α. J Recept Signal Transduct 30(6):376–384CrossRefGoogle Scholar
  16. 16.
    Schnyder S, Kupr B, Handschin C (2017) Coregulator-mediated control of skeletal muscle plasticity – a mini-review. Biochimie 136:49–54CrossRefGoogle Scholar
  17. 17.
    Salvini TF, Durigan JLQ, Peviani SM, Russo TL (2012) Effects of electrical stimulation and stretching on the adaptation of denervated skeletal muscle: implications for physical therapy. Rev Bras Fisioter 16(June):175–183CrossRefGoogle Scholar
  18. 18.
    Mohr T, Andersen JL, Biering-Sørensen F, Galbo H, Bangsbo J, Wagner A et al (1997) Long-term adaptation to electrically induced cycle training in severe spinal cord injured individuals. Spinal cord Off J Int Med Soc Paraplegia 35(1):1–16CrossRefGoogle Scholar
  19. 19.
    McGlory C, Phillips SM (2014) Assessing the regulation of skeletal muscle plasticity in response to protein ingestion and resistance exercise: Recent developments. Curr Opin Clin Nutr Metab Care 17(5):412–417CrossRefGoogle Scholar
  20. 20.
    Margolis LM, Rivas DA (2015) Implications of exercise training and distribution of protein intake on molecular processes regulating skeletal muscle plasticity. Behav Genet 45(2):211–221Google Scholar
  21. 21.
    Hoppeler H (2016) Molecular networks in skeletal muscle plasticity. J Exp Biol [Internet] 219(2):205–213. Available from: http://jeb.biologists.org/cgi/doi/10.1242/jeb.128207CrossRefGoogle Scholar
  22. 22.
    Sanchez AMJ, Bernardi H, Py G, Candau RB (2014) Autophagy is essential to support skeletal muscle plasticity in response to endurance exercise. AJP Regul Integr Comp Physiol [Internet] 307(8):R956–R969. Available from: http://ajpregu.physiology.org/cgi/doi/10.1152/ajpregu.00187.2014CrossRefGoogle Scholar
  23. 23.
    Price M (2010) Energy expenditure and metabolism during exercise in persons with a spinal cord injury. Sports Med 40(8):681–696CrossRefGoogle Scholar
  24. 24.
    Doucet BM, Lam A, Griffin L (2012) Neuromuscular electrical stimulation for skeletal muscle function. Yale J Biol Med [Internet] 85(2012):201–215. Available from: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3375668&tool=pmcentrez&rendertype=abstract
  25. 25.
    Guimaraes JA, da Fonseca LO, de Sousa AC, Paredes MEG, Brindeiro GA, Bo APL et al (2017) FES Bike Race preparation to Cybathlon 2016 by EMA team: a short case report. Eur J Transl Myol 27(4):7169PubMedPubMedCentralGoogle Scholar
  26. 26.
    Frotzler A, Coupaud S, Perret C, Kakebeeke TH, Hunt KJ, Eser P (2009) Effect of detraining on bone and muscle tissue in subjects with chronic spinal cord injury after a period of electrically-stimulated cycling: a small cohort study. J Rehabil Med 41(4):282–285CrossRefGoogle Scholar
  27. 27.
    Tanhoffer RA, Tanhoffer AIP, Raymond J, Hills AP, Davis GM (2012) Comparison of methods to assess energy expenditure and physical activity in people with spinal cord injury. J Spinal Cord Med [Internet] 35(1):35–45. Available from: http://www.tandfonline.com/doi/full/10.1179/2045772311Y.0000000046CrossRefGoogle Scholar
  28. 28.
    Bodine SC (2013) Disuse-induced muscle wasting. Int J Biochem Cell Biol 45(10):1–17CrossRefGoogle Scholar
  29. 29.
    Hong Z, Sui M, Zhuang Z, Liu H, Zheng X, Cai C et al (2018) Effectiveness of neuromuscular electrical stimulation on lower limb hemiplegic patients following chronic stroke: a systematic review. Arch Phys Med Rehabil [Internet]. Available from: http://www.ncbi.nlm.nih.gov/pubmed/29357280
  30. 30.
    Teixeira-Salmela LF, Olney SJ, Nadeau S, Brouwer B (1999 Oct) Muscle strengthening and physical conditioning to reduce impairment and disability in chronic stroke survivors. Arch Phys Med Rehabil 80(10):1211–1218CrossRefGoogle Scholar
  31. 31.
    Patten C, Lexell J, Brown HE (2004) Weakness and strength training in persons with poststroke hemiplegia: rationale, method, and efficacy. J Rehabil Res Dev 41(3A):293–312CrossRefGoogle Scholar
  32. 32.
    Finnerup NB (2017) Neuropathic pain and spasticity: intricate consequences of spinal cord injury. Spinal Cord [Internet] (February):1–5. Available from: http://www.nature.com/doifinder/10.1038/sc.2017.70
  33. 33.
    Rezende-Cunha F, de Oliveira-Souza R (2011) The pyramidal syndrome and the pyramidal tract: a brief historical note. Arq Neuropsiquiatr [Internet] 69(5):836–837. Available from: http://www.ncbi.nlm.nih.gov/pubmed/22042191CrossRefGoogle Scholar
  34. 34.
    Urso ML (2009) Disuse atrophy of human skeletal muscle: cell signaling and potential interventions. Med Sci Sports Exerc 41(10):1860–1868CrossRefGoogle Scholar
  35. 35.
    Naritomi H, Moriwaki H (2013) Prevention of post-stroke disuse muscle atrophy with a free radical scavenger. Clin Recover from CNS Damage 32:139–147CrossRefGoogle Scholar
  36. 36.
    Carda S, Cisari C, Invernizzi M (2013) Sarcopenia or muscle modifications in neurologic diseases: a lexical or patophysiological difference? Eur J Phys Rehabil Med 49(1):119–130PubMedGoogle Scholar
  37. 37.
    Psatha M, Wu Z, Gammie FM, Ratkevicius A, Wackerhage H, Lee JH et al (2012) A longitudinal MRI study of muscle atrophy during lower leg immobilization following ankle fracture. J Magn Reson Imaging 35(3):686–695CrossRefGoogle Scholar
  38. 38.
    Silva-couto MDA, Prado-Medeiros CL, Oliveira AB, Alcântara CC, Guimarães AT, Salvini TF et al (2014) Muscle atrophy, voluntary activation disturbances, and low serum concentrations of IGF-1 and IGFBR-3 are associated with weakness in people with chronic stroke. Phys Ther 94(7):957–967CrossRefGoogle Scholar
  39. 39.
    Gefen A (2014) Tissue changes in patients following spinal cord injury and implications for wheelchair cushions and tissue loading: a literature review. Ostomy Wound Manage 60(2):34–45PubMedGoogle Scholar
  40. 40.
    Bauman WA, Spungen AM, Adkins RH, Kemp BJ (1999) Metabolic and endocrine changes in persons aging with spinal cord injury. Assist Technol [Internet] 11(2):88–96. Available from: http://www.tandfonline.com/doi/abs/10.1080/10400435.1999.10131993CrossRefGoogle Scholar
  41. 41.
    Potempa K, Braun LT, Tinkne T, Popovich J (1996) Benefits of aerobic exercise after stroke. Sport Med. 21(5):337–346CrossRefGoogle Scholar
  42. 42.
    Power PW, Orto AED (2004) Families living with chronic illness and disability: interventions, challenges, and opportunities. Springer Publishing Company, New York, 289 pGoogle Scholar
  43. 43.
    Chen HY, Chen SC, Chen JJJ, Fu LL, Wang YL (2005) Kinesiological and kinematical analysis for stroke subjects with asymmetrical cycling movement patterns. J Electromyogr Kinesiol 15(6):587–595CrossRefGoogle Scholar
  44. 44.
    Akkurt H, Karapolat HU, Kirazli Y, Kose T (2017) The effects of upper extremity aerobic exercise in patients with spinal cord injury: a randomized controlled study. Eur J Phys Rehabil Med 53(2):219–227PubMedGoogle Scholar
  45. 45.
    Do Espírito Santo CC, Swarowsky A, Recchia TL, Lopes APF, Ilha J (2015) Is body weight-support treadmill training effective in increasing muscle trophism after traumatic spinal cord injury? A systematic review. Spinal Cord 53(3):176–181CrossRefGoogle Scholar
  46. 46.
    Giangregorio L, Mccartney N (2006) Bone loss and muscle atrophy in spinal cord injury: epidemiology, fracture prediction, and rehabilitation strategies. J Spinal Cord Med 29(5):489–500CrossRefGoogle Scholar
  47. 47.
    Giangregorio L, Craven C, Richards K, Kapadia N, Hitzig SL, Masani K et al (2012) A randomized trial of functional electrical stimulation for walking in incomplete spinal cord injury: effects on body composition. J Spinal Cord Med 35(5):351–360CrossRefGoogle Scholar
  48. 48.
    Johnston TE, Smith BT, Oladeji O, Betz RR, Lauer RT (2008) Outcomes of a home cycling program using functional electrical stimulation or passive motion for children with spinal cord injury: a case series. J Spinal Cord Med 31(2):215–221CrossRefGoogle Scholar
  49. 49.
    Frotzler A, Coupaud S, Perret C, Kakebeeke TH, Hunt KJ, Donaldson N d N et al (2008) High-volume FES-cycling partially reverses bone loss in people with chronic spinal cord injury. Bone 43(1):169–176CrossRefGoogle Scholar
  50. 50.
    Lopes ACG, Ochoa-Diaz C, Baptista RS, Fonseca LO, Coste CA, Bó APL et al (2016) Electrical stimulation to reduce the overload in upper limbs during sitting pivot transfer in paraplegic: a preliminary study. Eur J Transl Myol 26(4):4–7CrossRefGoogle Scholar
  51. 51.
    Araujo Guimarães J, Oliveira da Fonseca L, Cardoso dos Santos-Couto-Paz C, Padilha Lanari Bó A, Fattal C, Azevedo-Coste C et al (2016) Towards parameters and protocols to recommend FES-Cycling in cases of paraplegia: a preliminary report. Eur J Transl Myol [Internet] 26(3):209–214. Available from: http://www.pagepressjournals.org/index.php/bam/article/view/6085Google Scholar
  52. 52.
    Dolbow D, Gorgey A, Cifu D, Moore J, Gater D (2011) Feasibility of home-based functional electrical stimulation cycling: case report. Spinal Cord 50(2):170–171CrossRefGoogle Scholar
  53. 53.
    Bo APL, Fonseca L, Guimaraes J, Fachin-Martins E, Gutierrez Paredes ME, Brindeiro GA et al (2017) Cycling with Spinal Cord Injury: A Novel System for Cycling Using Electrical Stimulation for Individuals with Paraplegia, and Preparation for Cybathlon 2016. IEEE Robot Autom Mag 24:58CrossRefGoogle Scholar
  54. 54.
    Fonseca LOD, Bó APL, Guimarães JA, Gutierrez ME, Fachin-Martins E (2017) Cadence tracking and disturbance rejection in functional electrical stimulation cycling for paraplegic subjects: a case study. Artif Organs 41(11):E185CrossRefGoogle Scholar
  55. 55.
    Bae J, Tomizuka M (2011) A gait rehabilitation strategy inspired by an iterative learning algorithm. In: IFAC Proceedings Volumes (IFAC-PapersOnline), pp 2857–2864CrossRefGoogle Scholar
  56. 56.
    Nilsson A, Vreede KS, Häglund V, Kawamoto H, Sankai Y, Borg J (2014) Gait training early after stroke with a new exoskeleton – the hybrid assistive limb: a study of safety and feasibility. J Neuroeng Rehabil [Internet] 92:11. Available from:  https://doi.org/10.1186/1743-0003-11-92%5Cnhttps://jneuroengrehab.biomedcentral.com/track/pdf/10.1186/1743-0003-11-92?site=jneuroengrehab.biomedcentral.com
  57. 57.
    Igo Krebs H, Hogan N, Aisen M, Volpe B (1998) Robot-aided neurorehabilitation. IEEE Trans Rehabil Eng 6(1):75–87CrossRefGoogle Scholar
  58. 58.
    Giangregorio LM, Gibbs JC, Craven BC (2016) Measuring muscle and bone in individuals with neurologic impairment; lessons learned about participant selection and pQCT scan acquisition and analysis. Osteoporos Int 27(8):2433–2446CrossRefGoogle Scholar
  59. 59.
    Galea MP (2012) Spinal cord injury and physical activity: preservation of the body. Spinal Cord 50(5):344–351CrossRefGoogle Scholar
  60. 60.
    Fu J, Wang H, Deng L, Li J (2016) Exercise training promotes functional recovery after spinal cord injury. Neural Plast 2016Google Scholar
  61. 61.
    Martins EF, de Sousa PHC, Barbosa PHFDA, de Menezes LT, Costa AS (2011) A Brazilian experience to describe functioning and disability profiles provided by combined use of ICD and ICF in chronic stroke patients at home-care. Disabil Rehabil [Internet] 33(21–22):2064–2074. Available from: http://www.ncbi.nlm.nih.gov/pubmed/21401335CrossRefGoogle Scholar
  62. 62.
    Sheffler LR, Chae J (2007) Neuromuscular electrical stimulation in neurorehabilitation. Muscle Nerve [Internet] 35(5):562–590. Available from: http://doi.wiley.com/10.1002/mus.20758CrossRefGoogle Scholar
  63. 63.
    Moe JH, Post HW (1962) Functional electrical stimulation for ambulation in hemiplegia. J Lancet 82:285–288PubMedGoogle Scholar
  64. 64.
    Pons JL, Raya R, González J (2016) Emerging therapies in neurorehabilitation II, 1st edn. Springer International Publishing, ChamCrossRefGoogle Scholar
  65. 65.
    Hachmann JT, Grahn PJ, Calvert JS, Drubach DI, Lee KH, Lavrov IA (2017) Electrical neuromodulation of the respiratory system after spinal cord injury. Mayo Clin Proc [Internet] 92(9):1401–1414. Available from:  https://doi.org/10.1016/j.mayocp.2017.04.011CrossRefGoogle Scholar
  66. 66.
    Creasey GH, Craggs MD (2012) Functional electrical stimulation for bladder, bowel, and sexual function. In: Handbook of clinical neurology, vol 109, 1st edn. Elsevier B.V, Oxford, 247–257 pGoogle Scholar
  67. 67.
    Popović DB (2014) Advances in functional electrical stimulation (FES). J Electromyogr Kinesiol 24(6):795–802CrossRefGoogle Scholar
  68. 68.
    Bustamante C, Brevis F, Canales S, Millón S, Pascual R (2016) Effect of functional electrical stimulation on the proprioception, motor function of the paretic upper limb, and patient quality of life: a case report. J Hand Ther [Internet] 29(4):507–514. Available from:  https://doi.org/10.1016/j.jht.2016.06.012CrossRefGoogle Scholar
  69. 69.
    Bó APL, Azevedo-Coste C, Geny C, Poignet P, Fattal C (2014) On the use of fixed-intensity functional electrical stimulation for attenuating essential tremor. Artif Organs 38(11):984–991CrossRefGoogle Scholar
  70. 70.
    Pedrocchi A, Ferrante S, Ambrosini E, Gandolla M, Casellato C, Schauer T et al (2013) MUNDUS project: multimodal neuroprosthesis for daily upper limb support. J Neuroeng Rehabil 10(1):1–20CrossRefGoogle Scholar
  71. 71.
    Szecsi J, Schiller M (2009 Jan) FES-propelled cycling of SCI subjects with highly spastic leg musculature. NeuroRehabilitation 24(3):243–253PubMedGoogle Scholar
  72. 72.
    Mazzoleni S, Stampacchia G, Gerini A, Tombini T, Carrozza MC (2013) FES-cycling training in spinal cord injured patients. In: Conference proceedings: annual international conference of the IEEE engineering in medicine and biology society. pp 5339–5341Google Scholar
  73. 73.
    Jovic J (2012) Towards a functional assistance in transfer and posture of paraplegics using FES: from simulations to experiments. Université Montpellier 2Google Scholar
  74. 74.
    LIBERSON WT, HOLMQUEST HJ, SCOT D, DOW M (1961 Feb) Functional electrotherapy: stimulation of the peroneal nerve synchronized with the swing phase of the gait of hemiplegic patients. Arch Phys Med Rehabil 42:101–105PubMedGoogle Scholar
  75. 75.
    Petrofsky JS, Heaton H, Phillips CA (1983) Outdoor bicycle for exercise in paraplegics and quadriplegics. J Biomed Eng 5(4):292–296CrossRefGoogle Scholar
  76. 76.
    Horch KW, Dhillon GS (2004) Neuroprosthetics: theory and practice. World Scientific, London, 1263 pCrossRefGoogle Scholar
  77. 77.
    Hunt KJ, Fang J, Saengsuwan J, Grob M, Laubacher M (2012) On the efficiency of FES cycling: a framework and systematic review. Technol Health Care 20(5):395–422PubMedGoogle Scholar
  78. 78.
    Peng CW, Chen SC, Lai CH, Chen CJ, Chen CC, Mizrahi J et al (2011) Review: clinical benefits of functional electrical stimulation cycling exercise for subjects with central neurological impairments. J Med Biol Eng 31(1):1–11CrossRefGoogle Scholar
  79. 79.
    Davis GM, Servedio FJ, Glaser RM, Gupta SC, Suryaprasad AG (1990) Cardiovascular responses to arm cranking and FNS-induced leg exercise in paraplegics. J Appl Physiol 69(2):671–677CrossRefGoogle Scholar
  80. 80.
    Fachin-Martins E, Guimarães JA, Lopes ACG, Ramalho SHR, Fonseca LO, Bó APL, et al. (2018) Soluções tecnológicas que incorporaram estimulação elétrica funcional de músculos paralisadors como mecanismo propulsor de produtos assistivos para pessoas com paraplegia. In: Garcia CSNB, Facchinetti LD, editors. PROFISIO Programa de Atualização em Fisioterapia Neurofuncional: Ciclo 5. Artmed Pan. Porto Alegre: ABRAFIN & Secad, pp 33–90Google Scholar
  81. 81.
    Fonseca LO, Lopes ACG, Ochoa-diaz C, Azevedo-Coste C, Fachin-Martins E, Bó APL (2017) Towards transfers in paraplegia assisted by electrical stimulation and inertial system. IEEE Life Sci Conf:1–4Google Scholar
  82. 82.
    Coste CA, Mayr W (2017) Functional electrical stimulation. Artif Organs 41(11):997–978CrossRefGoogle Scholar
  83. 83.
    Coste Azevedo C, Wolf P (2018) FES-Cycling at Cybathlon 2016: overview on teams and results. Artif Organs 42(3):336–341CrossRefGoogle Scholar
  84. 84.
    Sijobert B, Fattal C, Daubigney A, Azevedo-Coste C (2017) Participation to the first cybathlon: an overview of the FREEWHEELS team FES-cycling solution. Eur J Transl Myol [Internet] 27(4):7120. Available from: http://www.ncbi.nlm.nih.gov/pubmed/29299223http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC5745382Google Scholar
  85. 85.
    Coste CA, Bergeron V, Berkelmans R, Martins F, Fornusek C, Jetsada A et al (2016) Comparison of strategies and performance of functional electrical stimulation cycling in spinal cord injury pilots for competition in the first ever CYBATHLON. Eur J Transl Myol 27(4):251–254Google Scholar
  86. 86.
    Ferrante S, Pedrocchi A, Ferrigno G, Molteni F (2008) Cycling induced by functional electrical stimulation improves the muscular strength and the motor control of individuals with post-acute stroke. Europa Medicophysica-SIMFER 2007 Award Winner. Eur J Phys Rehabil Med [Internet] 44(2):159–167. Available from: http://www.ncbi.nlm.nih.gov/pubmed/18418336Google Scholar
  87. 87.
    Bauer P, Krewer C, Golaszewski S, Koenig E, Müller F (2015) Functional electrical stimulation-assisted active cycling – therapeutic effects in patients with hemiparesis from 7 days to 6 months after stroke: a randomized controlled pilot study [Internet]. Vol. 96, Archives of Physical Medicine and Rehabilitation. Elsevier Ltd, 188–196 p. Available from:  https://doi.org/10.1016/j.apmr.2014.09.033CrossRefGoogle Scholar
  88. 88.
    Gorgey AS, Khalil RE, Lester RM, Dudley GA, Gater DR (2018) Paradigms of lower extremity electrical stimulation training after spinal cord injury. J Vis Exp [Internet] (132):1–11. Available from: https://www.jove.com/video/57000/paradigms-lower-extremity-electrical-stimulation-training-after
  89. 89.
    Sadowsky CL, Hammond ER, Strohl AB, Commean PK, Eby SA, Damiano DL et al (2013) Lower extremity functional electrical stimulation cycling promotes physical and functional recovery in chronic spinal cord injury. J Spinal Cord Med [Internet] 36(6):623–631. Available from: http://www.tandfonline.com/doi/full/10.1179/2045772313Y.0000000101CrossRefGoogle Scholar
  90. 90.
    Skold C, Lonn L, Harms-Ringdahl K, Hultling C, Levi R, Nash M et al (2002) Effects of functional electrical stimulation training for six months on body composition and spasticity in motor complete tetraplegic spinal cord-injured individuals. J Rehabil Med 34(1):25–32CrossRefGoogle Scholar
  91. 91.
    Scremin AM, Kurta L, Gentili A, Wiseman B, Perell K, Kunkel C et al (1999) Increasing muscle mass in spinal cord injured persons with a functional electrical stimulation exercise program. Arch Phys Med Rehabil 80(12):1531–1536CrossRefGoogle Scholar
  92. 92.
    McDaniel J, Lombardo LM, Foglyano KM, Marasco PD, Triolo RJ (2017) Setting the pace: insights and advancements gained while preparing for an FES bike race Olivier Lambercy; Roger Gassert. J Neuroeng Rehabil 14(1):1–8CrossRefGoogle Scholar
  93. 93.
    Martin JH (1996) Neuroanatomy: text and atlas, 2nd edn. Lange, Stamford/Appleton, 578 pGoogle Scholar
  94. 94.
    Bó APL, Fonseca LO, Guimarães JA, Fachin-Martins E, Paredes MEG, Brindeiro GA et al (2017) Cycling with Spinal Cord Injury: A Novel System for Cycling Using Electrical Stimulation for Individuals with Paraplegia, and Preparation for Cybathlon 2016. IEEE Robot Autom Mag 99(December):1Google Scholar

via Overview of FES-Assisted Cycling Approaches and Their Benefits on Functional Rehabilitation and Muscle Atrophy | SpringerLink

, , , , , ,

Leave a comment

%d bloggers like this: