Posts Tagged FES

[WEB SITE] New technology is helping patients to get moving again – News

A ground-breaking ’bicycle’ which simulates muscle movements is helping a range of patients with long-term mobility problems caused by head or spinal injuries, stroke or MS. Julie Blackburn watched a demonstration.

One morning in April last year Jason Moffatt from Peel woke up with a headache.

And not just any normal headache, as he recalls: ’I don’t usually do headaches and this one was the worst: it felt like my head was about to explode out of the top.’

He put up with it for a while then decided it ’might be worth popping into the A&E’. It was lucky he did because an examination and subsequent scan revealed dried blood on his brain. He had suffered a bleed.

Jason was flown off the island to Walton Hospital in Liverpool for an operation but during surgery he suffered a stroke which left him paralysed down the left side of his body.

’I then spent three months in Liverpool, learning to walk again and do everyday tasks,’ he says.

While there, Jason realised that strokes do not just happen to older people, but to plenty of younger ones too.

Back on the island his rehabilitation programme has included sessions on a Functional Electrical Stimulation (FES) bicycle.

FES is a technique that uses low energy electrical pulses and has been found to be effective in restoring voluntary functions.

These pulses artificially generate body movements in specific muscle groups through electrodes placed on the patient’s body.

Jason’s physiotherapist is Christine Wright, from the Community Adult Therapy Services team. She specialises in helping patients with long-term neurological conditions and she demonstrated how the machine works.

Once the electrodes are positioned on the muscle groups which Jason needs to get working, he sits in a chair which is attached to the machine with his legs strapped onto the ’pedals’.

His session starts with a warm-up of around one and a half minutes before the resistance increases and he is working hard, concentrating on putting in more effort on his left leg.

Having started his treatments with around 10 to 15 minutes on the bike, Jason has now built up to 30 minutes in each session.

’I’ll be sweating at the end of this,’ he says.

As she keeps an eye on his progress, Christine explains: ’Although it’s a bike, the pattern of movement is simulating walking: each turn of the bike gives Jason a step.

’Numbers of repetitions lead to changes in the brain and the development of new neural pathways.

’The bike also strengthens the muscles so that, when those connections in the brain reform, those muscles are there, ready to be used.’

It has probably served Jason well that he was a keen cyclist before he became ill, having done the End2End mountain bike race, as well as the Parish Walk to Peel and the End to End walk.

He knows that he is also fortunate to have the use of the FES bicycle. When he was doing rehab in Liverpool, at a large, dedicated 30-bed rehab centre there, they didn’t have one: ’It was basically just a gym,’ he recalls. This is true of most rehab units where FES simulators are not part of the standard kit.

’We’re incredibly lucky to have this,’ Christine says.

This machine was purchased for the Community Physiotherapy Department two years ago with £11,695 provided by the Henry Bloom Noble Healthcare Trust.

The Trust’s main remit is to provide equipment over and above what the DHSC in the island would be able to buy.

It has been a great success for Christine and the other physiotherapists, Graihagh Betteridge and Rosie Callow, who are also trained to use the machine.

As well as working on patients’ lower limbs, the simulator can be detached from the bicycle element and used as a portable machine.

It can then be taken to people’s homes and used to help them regain shoulder and arm movement.

At the moment the department has to ration the machine’s use.

They take around 25 to 30 patients at a time, usually for a six-eight week course, with a session once a week on the bike.

They have a waiting list, both with new patients and patients who have had a course already and need further treatment. Because of this the Henry Bloom Noble Healthcare Trust has agreed to purchase a second bicycle so more patients will have the chance to use one.

Chairman of the Trust, Terry Groves, said: ’Jason’s story, and many others, have shown the value of this FES bicycle in managing differing conditions and rehabilitation.

’Recognising the continuing donations made to our Healthcare Trust we are delighted to fund the acquisition of this second FES bicycle from our funds so that continuing strides in this important area of aftercare can be made.’

Jason himself is delighted with the progress he has made using the bicycle: ’I can see an improvement. I can walk further and with a better balance,’ he says.

His aim now is to get back on his (real) bike.

Christine smiles when he says this. ’You will do it,’ she assures him.

via New technology is helping patients to get moving again | News |

, , , , , ,

Leave a comment

[VIDEO] Stroke Rehabilitation: Functional Electrical Stimulation (FES) for grasp and release – YouTube

Stroke Rehab ideas for incorporating your electrical stimulation (SaeboStim Pro) device in practicing grasp and release with your affected arm and hand. Home therapy series from Saebo UK

 

, , , , ,

Leave a comment

[WEB SITE] Staying One Step Ahead – Rehab Managment

Staying One Step Ahead

photo caption: Patient walks with an AFO which supports his ankle. While the loss of muscles in his lower leg will be permanent, the orthosis will stabilize the foot and aid in walking.

by Polly Swingle, PT, GCS, CEEAA, and Brian Paulson, CPO

Foot drop is a potentially painful—and even disabling—condition where an individual has difficulty raising (or a complete inability to raise) the front of the foot. Foot drop—also referred to as dropped foot or drop foot—is caused by a damage or impairment to the muscles and nerves responsible for lifting the foot. The resulting weakness or paralysis leads to characteristic symptoms that most obviously manifest in an altered gait. Because individuals suffering from foot drop cannot properly lift their foot, they may drag their toes on the ground while walking. To avoid this potentially painful and dangerous impairment (which can damage the foot and increase the risk of falling), foot drop patients may utilize a “steppage gait,” a common compensation tactic where they lift their knee(s) higher in a marching-style walk or swing their leg(s) outward.

Causes of Foot Drop

It is important to understand foot drop is not a disease; it is a symptom. There are several types of damage or diseases that can weaken nerves and/or muscles and lead to foot drop, but the three most common are an injury to the peroneal nerve that controls the muscles responsible for lifting the foot; muscular compromise due to a disorder such as amyotrophic lateral sclerosis (ALS) or muscular dystrophy; and neurological conditions such as multiple sclerosis (MS) or stroke.

Patient has a diagnosis of Cauda Equina injury due to a lumbar discectomy that had complications, and resulted in loss of his distal muscles controlling the ankle. The intervention for this injury is physical therapy for strengthening the intact muscle above the ankle, as well as balance activities and a solid AFO.

Treatment Options

There are four basic categories of treatment options for foot drop. Because successfully treating foot drop almost always depends on addressing/correcting the underlying cause of the condition, the best course of treatment and therapeutic care can vary significantly from one patient to the next.

Treatment options include the following:

Surgical intervention

Surgical treatment options can be effective for foot drop patients whose condition has been caused by physical damage to nerves or muscles. A herniated disc, tumor, or other spinal condition that has damaged or pinched a nerve can often be addressed surgically. Damaged muscles or tendons in the leg or foot can also be repaired in surgery. Patients suffering from persistent or chronic foot drop that is resistant to treatment may benefit from surgical intervention that fuses the bones of the ankle or foot, or even surgery that transplants and/or reconfigures tendon and muscle.

Functional electrical stimulation (FES)

In cases where peroneal nerve damage or impairment is causing foot drop, functional electrical stimulation (FES) can be an effective form of treatment. Therapeutic FES treatment in conjunction with physical therapy can help stimulate damaged nerves and muscles and promote motor recovery.

FES treatment uses sophisticated equipment to deliver targeted pulses of electrical current that evoke muscle contraction and activity. This can improve muscle functionality, enhance blood flow and range of motion, reverse muscle atrophy, and—in some cases—help foot drop sufferers regain some or all of their ability to lift their foot/feet and walk normally. Portable FES devices designed specifically for foot drop patients are also available. These systems deliver low-level FES impulses targeting the peroneal nerve, allowing wearers to achieve improved foot dorsiflexion and walk more naturally—with improved speed, stability, and confidence. These two-part systems use a specialized sensor to monitor the motion and position of the leg, in conjunction with a stimulator that delivers the electrical impulse and stimulates the peroneal nerve.

Physical therapy

Physical therapy is an important and often effective treatment option for foot drop that can be used alone or in conjunction with another treatment. The overall goal of any therapeutic or rehabilitation program for foot drop is to strengthen the muscles in the foot, ankle, and lower leg, enhance joint function and range of motion, prevent stiffness, minimize the chances of re-injury, improve balance and stability, and ultimately achieve improved mobility and regain a normal gait.

While the specific details of a therapy program for foot drop symptoms may vary from patient to patient, strength and balance training, stretching, and range of motion exercises are standard. Exercises include stretching with towels or exercise bands, seated or standing lifts, ankle dorsiflexion and plantar flexion exercises (pulling the foot toward you and pushing it away from you) with resistance from exercise bands, and even picking up small objects with your toes.

Foot drop patients should participate in a personalized therapeutic program under the guidance of a physical therapist with demonstrated experience working with foot drop patients. While in-office visits and therapy sessions are critical, most programs also include a home component with a series of exercises that the patient can perform independently.

External support and bracing

After determining the root cause for the foot drop and beginning a therapy program that incorporates the many facets of therapeutic care, including strength training, range-of-motion stretches, balance training, etc, the next step involves orthotic treatment to improve function and safety while reducing the risk of joint damage until the patient has fully recovered. An ankle-foot orthosis (AFO) can help to stabilize the affected foot and help foot drop patients maintain a normal foot position.

It is highly advisable that doctors and therapists who frequently see patients with foot drop take the time to establish a good working relationship with an orthotist. That relationship is the key to ensuring a collaborative, multidisciplinary approach where the patient, the therapist, and the orthotist are all on the same page.

Patient Safety

The highest priority of orthotic care is patient safety. Safety can be greatly improved by use of an AFO by restricting or reducing plantar flexion during swing phase of gait, and thereby reducing the risk of a fall due to catching the toes on the ground. Without the use of an AFO, many gait deviations are utilized to clear the foot during swing phase, including circumduction, hip hiking, and contralateral vaulting. These deviations increase the energy expenditure of the gait and can create muscle imbalances that often lead to further issues and complications.

Early Intervention

Early orthotic intervention is also beneficial for reducing the risk of joint contractures in patients with increased tone, such as a post-CVA foot drop with resulting equinovarus foot position. The AFO can properly position the foot in the coronal and sagittal plane to help maintain functional joint range of motion.

Innovations and Options

Revolutionary changes have taken place in the orthotic industry in the past 20 years. New lightweight materials have been introduced that are not only supportive, but can also provide energy storage and return to assist with push-off at terminal stance for patients with weak calf muscles.

When determining what kind of orthosis would provide the optimal treatment for a foot drop patient, one concept should always be remembered: joint motion should be permitted in an orthosis when sufficient muscle control and strength are present to move the joint normally through the available range. What this means is that, while support is crucial, “overbracing” a patient can create many negative consequences; some of which include muscular atrophy, dependence on the orthosis, and replacing one gait deviation with another by taking away the essential three rockers of gait. It is essential that when a patient has sufficient strength to control the ankle joint in a certain motion, that the orthotic allows them to do so.

One example of overbracing would be putting a patient with a flaccid foot drop (weak dorsiflexors) but strong plantar flexors into a solid ankle AFO. This AFO solution would prevent them from using their calf musculature at terminal stance for push-off. It also would prevent anterior tibial translation during the second rocker of gait, creating an unsmooth rigid transition through mid-stance. That could subsequently lead to genu recurvatum by restricting dorsiflexion of the ankle. A more appropriate AFO selection may be something with flexibility that has enough plantar flexion resistance to improve clearance of the foot during swing phase, but also lets the patient use their own musculature for other motions that they can control appropriately.

Manufacturers provide plentiful options to the physical therapy market for off-the-shelf and custom AFOs. Rockaway, NJ-headquartered Allard USA offers AFOs designed especially for foot drop that provide mild, moderate, and maximum stability. The company’s ToeOFF is a carbon composite dynamic response floor reaction AFO designed to keep the foot up during swing phase and provide a soft heel strike in addition to stability in stand and good toe-off. The company also offers the ToeOFF and the BlueROCKER as custom AFOs when more specific needs must be met, such as fit issues related to unique leg shapes, alignment issues, or calf atrophy/hypertrophy. Another manufacturer, DJO Global, Dallas, offers a line of AFOs including the lightweight Posterior Leaf Splint AFO, designed to provide utility for mild to moderate foot drop needs. Cascade Dafo Inc, Ferndale, Wash, offers a versatile line of pediatric dynamic AFOs that are available as customized products and feature colors and design elements that will appeal to children.

Ongoing Consultation

As recovery progresses, the orthotist should be consulted on a regular basis so that the AFO can be changed or modified throughout each stage of rehabilitation. As the patient’s condition changes, the therapeutic remedies (from exercises to AFO solutions) should change with them. The ultimate goal is to eventually eliminate the need for the brace entirely, because full function has been regained. In the meantime, the proper orthosis can be very beneficial in improving function and safety until independence is possible without it. RM

Polly Swingle, PT, GCS, CEEAA, is co-founder and lead physical therapist of The Recovery Project, which provides progressive, effective, evidence-based neuro rehab therapies that improve the quality of life and functionality of patients with spinal cord, neurological, and traumatic brain injuries at its three Michigan-based locations.

Brian Paulson, CPO, is a clinical manager for Wright and Filippis, a Michigan-based provider of prosthetics, orthotics, custom mobility products, and accessibility solutions with over 70 years of experience. For more information, contact RehabEditor@medqor.com.

 

via Staying One Step Ahead – Rehab Managment

, , , , , , ,

Leave a comment

[WEB PAGE] Gaining Ground Against Neurological Injury

Gaining Ground Against Neurological Injury

photo caption: Elizabeth Watson, PT, DPT, NCS, works with a client on gait training using a robot-assisted over-treadmill dynamic body weight support system.

by Elizabeth Watson, PT, DPT, NCS

Recovery following a neurological injury is a long, slow process and does not follow a set time frame. Recovery is about more than just walking; it is about regaining function and improving overall quality of life.

This article explores a specialized program at Magee Rehabilitation Hospital-Jefferson Health in Philadelphia called Gaining Ground. The goal of Gaining Ground is to extend Magee’s mission beyond traditional physical and cognitive therapy services and reduce the barriers to continued exercise and wellness. This article also highlights the different technologies used during this program and the impact on the quality of life of the participants.

Increased evidence supports the benefits of exercise and physical activity on the physiologic and psychosocial function of individuals following neurological injuries.1 In addition, physical inactivity following a neurological injury leads to increased vulnerability to secondary health complications, including cardiovascular disease and loss of bone density and muscle mass.1 Evidence-based physical activity guidelines have been established for the general population and those with disabilities. These guidelines highlight the importance of moderate-intensity aerobic exercise and strength training for individuals with spinal cord injuries and stroke survivors.2,3

Making Progress Accessible

Barriers to continued exercise following a neurological injury include lack of accessible fitness facilities, absence of personal assistants knowledgeable about exercise programs appropriate for those with neurological injuries, absence of specialized equipment, and fear of injury. Gaining Ground was developed to reduce these barriers.

Gaining Ground is an individualized exercise program, taking into account the goals and abilities of the client. The intensive, boot camp-style program takes place 3 days a week for 4 weeks. Clients vary in presentation from those at a power wheelchair level to ambulatory patients. Some are more recently injured, just finishing outpatient therapy and looking to be challenged further and establish a wellness program. Other clients have been injured for more than 20 years and are exploring newer technologies and treatment techniques that did not exist when they were first injured. These clients find that the program’s intense nature often encourages a continued wellness program after Gaining Ground ends.

Program Structure

Each day includes 4 hours of exercise. A one-on-one training session with an activity-based therapy specialist focuses on increasing cardiovascular endurance, muscle strength and flexibility, sitting or standing tolerance, and balance. Working with a physical therapist provides the opportunity to continue working toward goals not reached during traditional therapy, as well as a chance to trial different technologies and specialized equipment working toward more neurological recovery. Once a client’s program is established, he or she is set up on specialized equipment such as a locomotor device or FES cycle for an hour of activity-based exercise.

A daily group exercise class helps increase strength, improve cardiovascular endurance, and enhance overall well-being. Exercises emphasize the muscle groups of the upper extremity and core necessary to complete daily functional activities. Group sessions include a circuit using the multi-station wheelchair-accessible weight machine, a wheelchair-accessible upper extremity exerciser, a conventional weight machine, a free weight and therapy band circuit training program, and getting onto the floor to work on whole body exercises. This allows clients the opportunity to practice getting on and off the floor in a safe environment and reduce the negative association of being on the floor related to falls. The group environment fosters interaction with others working toward a common goal.

Cardiorespiratory and strength training presented in a group setting with peers provides not just physical but also emotional improvements.1,4 Depression scores and bodily pain scores decreased after participation in a group exercise program for individuals with spinal cord injuries. Past participants of Gaining Ground have commented on the motivating environment of the group sessions.

Equipment utilized during the program may include functional electrical stimulation systems, gait training devices such as the robot-assisted over-treadmill dynamic body weight support system, mobile robotic over-ground body weight support system, lower extremity robotic exoskeletons, vibration therapy plate, computerized balance system, wheelchair-accessible upper extremity exerciser, multi-station wheelchair accessible weight machine, resistance circuit trainer, rowing ergometer, recumbent trainer, and upper body ergometer. A few of the more advanced technologies are detailed below.

Most Gaining Ground clients utilize the robot-assisted body weight support system two to three times a week.
One-on-one training focuses on cardiovascular endurance, strength and flexibility, sitting or standing tolerance, and balance.

Body Weight Support Training

The robot-assisted over-treadmill dynamic body weight support system utilizes robotic-assisted gait training. A harness suspends the patient over a treadmill while the legs are guided through the walking pattern using a robotic orthosis. Speed, the amount of load through the legs, and the amount of guidance provided by the robotic orthosis, are all variables that can be adjusted to appropriately challenge the client. The robot-assisted over-treadmill body weight support system enables effective and intensive training promoting neuroplasticity and recovery potential.

This system can be used with various augmented performance feedback games. The level of difficulty can be chosen based on the client’s ability and therapy focus. Studies have shown that when using augmented performance feedback, muscle activation and cardiovascular exertion can be considerably increased.5 Most clients in the Gaining Ground Program utilize this device two to three times a week.

The mobile robotic over-ground body weight support system allows a therapist to work on overground balance and gait training, bridging the gap between treadmill-based activities and free walking. The system can provide body-weight support equally or asymmetrically depending on a client’s impairments. Therapists can steer this device or choose the mode that allows a patient to work on self-directed gait. Therapists can challenge the patient with various balance and functional activities by using a balance board, steps, or varied terrain within the width of the device’s frame.

Exoskeleton Training

Another type of equipment used for upright positioning and gait training are robotic exoskeletons designed for the lower limbs. These wearable bionic suits help patients with lower extremity weakness or paralysis to stand and walk overground using a reciprocal pattern with full weight bearing using a walker, crutches, or cane. Sensors in the device trigger a step once the patient shifts weight in the appropriate manner. Motors in the hip and knee joints power the movement in place of decreased leg function. During the Gaining Ground program, therapists use the exoskeletal devices in two ways. The robotic exoskeleton allows those with motor complete spinal cord injuries the opportunity to be upright and reap the benefits of dynamic weight bearing. These include maintenance of bone mass, improved balance and trunk activation, improved sleep, mental outlook, mood and motivation, improved bowel and bladder function with decreased incidence of UTIs, decreased pain, decreased incidence of pressure ulcers, reduction in fat mass, and increase in lean body mass.

These devices can also be used to retrain weight shifting and gait patterns of clients with incomplete spinal cord injuries, and post stroke or traumatic brain injury. As a client relearns the appropriate gait pattern, the amount of assistance provided by the motors is adjusted at each leg and each joint individually to challenge the client. Improved gait parameters and gait speed have been seen following gait retraining using exoskeletal devices with individuals who have incomplete paralysis.

Functional Electrical Stimulation

Functional electrical stimulation (FES) is used in various forms during the Gaining Ground program. Some clients are set up on the FES cycle or FES seated elliptical. Electrodes are placed on up to 12 muscles of the upper extremity, core, or lower extremities. The therapist can customize the stimulation settings to evoke the desired muscle contraction for each muscle group. The motor of the cycle provides the support necessary to complete the cycling motion in conjunction with the stimulation-producing muscle contractions for either upper extremity or lower extremity cycling.

Many patients with neurological injuries experience decreased mobility and physiological function. This more sedentary lifestyle caused by immobility contributes to secondary health complications and the chance of re-hospitalization. The benefits of the FES systems extend beyond reducing muscle atrophy and improving motor function. Studies have shown a positive therapeutic benefit affecting many health conditions including pneumonia, hypertension, heart disease, spasticity, bone density, pressure wounds, urinary tract infections, sepsis, diabetes, weight gain, depression, and quality of life.6

The task-specific integrated functional electrical stimulation systems are utilized by therapists in the Gaining Ground program to work on coordinated, dynamic movement patterns and functional skills with up to 12 channels of stimulation. Each activity has the correct sequenced stimulation pattern to perform the prescribed activity. Common programs worked on during the Gaining Ground program include seated postural correction, bridging, sit to stands, standing, and UE movement patterns. One client with a diagnosis of C4 AIS B tetraplegia demonstrated improved self-feeding and the ability to access the controls on his power wheelchair joystick versus switch options after using the forward reach and grasp program for two consecutive rounds of Gaining Ground.

A robotic exoskeleton was used to help retrain Nicole’s weight shifting and gait patterns during Gaining Ground therapy sessions.

Case Study

Nicole suffered a T2 AIS B injury on August 18, 2018, after an auto accident. In addition to several broken vertebrae, she also suffered six broken ribs, a collapsed lung, and lacerations to her head, face, and hands. Doctors performed two surgeries on her spine, and she underwent intense respiratory therapy. Nicole attended Gaining Ground about 7 months after her injury. She “loved how it pushed [her] out of her comfort zone.” Nicole recognized the individualized nature of the program and how it could be customized to fit her goals. Nicole’s program incorporated use of the exoskeleton or the task-specific integrated FES system for postural retraining and standing during her therapy hours and the robotic over-treadmill dynamic body weight support system three times a week. The training sessions with the activity-based therapy specialist demonstrated what she could achieve independently to continue to challenge herself after the program. As a personal trainer prior to injury, Nicole found this especially valuable. Nicole demonstrated significant progress in her ability to get up and down off the floor each week and realized how important a skill this is.

Magee’s Gaining Ground Program offers clients the opportunity to improve their functional independence and emotional well-being, while setting goals for future wellness initiatives. The small group setting has proven beneficial in helping individuals achieve these goals and make new friends in the process. RM

Elizabeth Watson, PT, DPT, NCS, is clinical supervisor of the Locomotor Training Clinic at Magee Rehabilitation in Philadelphia. She also serves as adjunct professor for area physical therapy programs. In 2018, Dr Watson received the SCI Spinal Interest Group Award for Excellence. Watson earned her DPT from Temple University and is ABPTS certified in Neurologic Physical Therapy. She has presented nationally and published case studies on locomotor training. For more information, contact RehabEditor@medqor.com.

References

  1. Crane DA, Hoffman JM, Reyes MR. Benefits of an exercise wellness program after spinal cord injury. J Spinal Cord Med. 2017;40(2):154-158.
  2. Martin Ginis KA, van der Scheer JW, Latimer-Cheung AE, et al. Evidence-based scientific exercise guidelines for adults with spinal cord injury: an update and a new guideline. Spinal Cord. 2018;45:308-321.
  3. Gordon NF, Gulanick M, Costa F, et al. Physical activity and exercise recommendations for stroke survivors: an American Heart Association scientific statement from the Council on Clinical Cardiology, Subcommittee on Exercise, Cardiac Rehabilitation, and Prevention; the Council on Cardiovascular Nursing; the Council on Nutrition, Physical Activity, and Metabolism; and the Stroke Council. Stroke. 2004;35(5):1230-1240.
  4. Saunders DH, Greig CA, Mead GE. Physical activity and exercise after stroke, review of multiple meaningful benefits. Stroke. 2014;45: 3742–3747.
  5. Zimmerli L, Jacky M, LÜnenburger L, Reiner R, Bolliger M. Increasing patient engagement during virtual reality-based motor rehabilitation. Arch Phys Med Rehabil. 2013;94(9):1737-1746.
  6. Dolbow DR, Gorgey AS, Ketchum JM, Gater DR. Home-based functional electrical stimulation cycling enhances quality of life in individuals with spinal cord injury. Top Spinal Cord Inj Rehabil. 2013 Fall;19(4):324-329.

via Gaining Ground Against Neurological Injury – Rehab Managment

, , , , , ,

Leave a comment

[Book Chapter] A Sensorimotor Rhythm-Based Brain–Computer Interface Controlled Functional Electrical Stimulation for Handgrasp Rehabilitation. (Abstract + References)

Abstract

Each year, 795,000 stroke patients suffer a new or recurrent stroke and 235,000 severe traumatic brain injuries (TBIs) occur in the US. These patients are susceptible to a combination of significant motor, sensory, and cognitive deficits, and it becomes difficult or impossible for them to perform activities of daily living due to residual functional impairments. Recently, sensorimotor rhythm (SMR)-based brain–computer interface (BCI)-controlled functional electrical stimulation (FES) has been studied for restoration and rehabilitation of motor deficits. To provide future neuroergonomists with the limitations of current BCI-controlled FES research, this chapter presents the state-of-the-art SMR-based BCI-controlled FES technologies, such as current motor imagery (MI) training procedures and guidelines, an EEG-channel montage used to decode MI features, and brain features evoked by MI.

References

  1. Ang, K. K., Chin, Z. Y., Zhang, H., & Guan, C. (2008). Filter Bank Common Spatial Pattern (FBCSP) in brain-computer interface. In IEEE International Joint Conference on Neural Networks (IEEE World Congress on Computational Intelligence), 2390–2397.Google Scholar
  2. Ang, K. K., Guan, C., Ang, Kai Keng, & Guan, Cuntai. (2015). Brain-computer interface for neurorehabilitation of upper limb after stroke. Proceedings of the IEEE, 103(6), 944–953.CrossRefGoogle Scholar
  3. Bashashati, A., Fatourechi, M., Ward, R. K., & Birch, G. E. (2007). A survey of signal processing algorithms in brain-computer interfaces based on electrical brain signals. Journal of Neural Engineering, 4(2), R32–R57.CrossRefGoogle Scholar
  4. Berrar, D., Bradbury, I., & Dubitzky, W. (2006). Avoiding model selection bias in small-sample genomic datasets. Bioinformatics22(10), 1245–1250. Oxford Univ Press.Google Scholar
  5. Blanchard, G., & Blankertz, B. (2004). BCI competition 2003—Data set IIa: Spatial patterns of self-controlled brain rhythm modulations. IEEE Transactions on Biomedical Engineering, 51(6), 1062–1066.CrossRefGoogle Scholar
  6. Choi, I., Bond, K., Krusienski, D., & Nam, C. S. (2015). Comparison of stimulation patterns to elicit steady-state somatosensory evoked potentials (SSSEPs): Implications for hybrid and SSSEP-based BCIs. Systems, Man, and Cybernetics (SMC)2015 IEEE International Conference on (pp. 3122–3127).Google Scholar
  7. Choi, I., Bond, K., & Nam, C. S. (2016). A hybrid BCI-controlled FES system for hand-wrist motor function. IEEE International Conference on Systems, Man, and Cybernetics.Google Scholar
  8. Daly, J. J., Cheng, R., Rogers, J., Litinas, K., Hrovat, K., & Dohring, M. (2009). Feasibility of a new application of noninvasive brain computer interface (BCI): A case study of training for recovery of volitional motor control after stroke. Journal of Neurologic Physical Therapy33(4), 203–211.Google Scholar
  9. Delorme, A., & Makeig, S. (2004). EEGLAB: An open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. Journal of Neuroscience Methods, 134(1), 9–21.CrossRefGoogle Scholar
  10. Delorme, A., Makeig, S., & Sejnowski, T. (2001). Automatic artifact rejection for EEG data using high-order statistics and independent component analysis. Proceedings of the third international ICA conference (pp. 9–12).Google Scholar
  11. Doucet, B. M., Lam, A., & Griffin, L. (2012). Neuromuscular electrical stimulation for skeletal muscle function. Yale J Biol Med, 85(2), 201–215.Google Scholar
  12. Elnady, A. M., Zhang, X., Xiao, Z. G., Yong, X., Randhawa, B. K., Boyd, L., & Menon, C. (2015). A single-session preliminary evaluat on of an affordable BCI-controlled arm exoskeleton and motor-proprioception platform. Frontiers in Human Neuroscience9, 168. Switzerland.Google Scholar
  13. Ferree, T. C., Clay, M. T., & Tucker, D. M. (2001). The spatial resolution of scalp EEG. Neurocomputing, 38–40, 1209–1216.CrossRefGoogle Scholar
  14. Forrester, B. J., & Petrofsky, J. S. (2004). Effect of electrode size, shape, and placement during electrical stimulation. Journal of Applied Research, 4(2), 346–354.Google Scholar
  15. Gordon, C. C., Churchill, T., Clauser, C. E., Bradtmiller, B., & McConville, J. T. (1989). Anthropometric survey of US army personnel: methods and summary statistics 1988.Google Scholar
  16. Gu, Y., Dremstrup, K., & Farina, D. (2009). Single-trial discrimination of type and speed of wrist movements from EEG recordings. Clinical Neurophysiology120(8), 1596–1600. International Federation of Clinical Neurophysiology.Google Scholar
  17. Hamedi, M., Salleh, S.-H., & Noor, A. M. (2016). Electroencephalographic motor imagery brain connectivity analysis for BCI: A review. Neural Computation, 28(6), 999–1041.MathSciNetCrossRefGoogle Scholar
  18. Hyvärinen, a, & Oja, E. (2000). Independent component analysis: algorithms and applications. Neural networks : the official journal of the International Neural Network Society13(4–5), 411–430.Google Scholar
  19. Kayser, J., & Tenke, C. E. (2003). Optimizing PCA methodology for ERP component identification and measurement: Theoretical rationale and empirical evaluation. Clinical Neurophysiology, 114(12), 2307–2325.CrossRefGoogle Scholar
  20. Kim, T., Kim, S., & Lee, B. (2016). Effects of action observational training plus brain-computer interface-based functional electrical stimulation on paretic arm motor recovery in patient with stroke: A randomized controlled trial. Occupational therapy international23(1), 39–47. England.Google Scholar
  21. Lawrence, M. (2009). Transcutaneous electrode technology for neuroprostheses, (18213).Google Scholar
  22. Lee, H., & Choi, S. (2003). PCA + HMM + SVM for EEG pattern classification. Seventh International Symposium on Signal Processing and Its Applications, 2003. Proceedings.1(2), 1–4.Google Scholar
  23. Liu, Y., Li, M., Zhang, H., Wang, H., Li, J., Jia, J., Wu, Y., et al. (2014). A tensor-based scheme for stroke patients’ motor imagery EEG analysis in BCI-FES rehabilitation training. Journal of neuroscience methods222, 238–249. Elsevier.Google Scholar
  24. Looned, R., Webb, J., Xiao, Z. G., & Menon, C. (2014). Assisting drinking with an affordable BCI-controlled wearable robot and electrical stimulation: a preliminary investigation. Journal of neuroengineering and rehabilitation11, 51. England.Google Scholar
  25. Lotte, F., Congedo, M., Lécuyer, A., Lamarche, F., & Arnaldi, B. (2007). A review of classification algorithms for EEG-based brain-computer interfaces. Journal of Neural Engineering, 4(2), R1–R13.CrossRefGoogle Scholar
  26. Lyons, G. M., Leane, G. E., Clarke-Moloney, M., O’Brien, J. V., & Grace, P. A. (2004). An investigation of the effect of electrode size and electrode location on comfort during stimulation of the gastrocnemius muscle. Medical Engineering & Physics, 26(10), 873–878.CrossRefGoogle Scholar
  27. McGie, S. C., Zariffa, J. J., Popovic, M. R., & Nagai, M. K. (2015). Short-term neuroplastic effects of brain-controlled and muscle-controlled electrical stimulation. Neuromodulation18(3), 233–240. United States.Google Scholar
  28. Moher, D., Shamseer, L., Clarke, M., Ghersi, D., Liberati, A., Petticrew, M., et al. (2015). Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015 statement. Systematic Reviews, 4(1), 1.CrossRefGoogle Scholar
  29. Mukaino, M., Ono, T., Shindo, K., Fujiwara, T., Ota, T., Kimura, A., Liu, M., et al. (2014). Efficacy of brain-computer interface-driven neuromuscular electrical stimulation for chronic paresis after stroke. Journal of rehabilitation medicine46(4), 378–382. Sweden: Medical Journals Limited.Google Scholar
  30. Müller, G. R. R., Neuper, C., Rupp, R., Keinrath, C., Gerner, H. J. J., & Pfurtscheller, G. (2003). Event-related beta EEG changes during wrist movements induced by functional electrical stimulation of forearm muscles in man. Neuroscience Letters, 340(2), 143–147.CrossRefGoogle Scholar
  31. Nam, C. S., Lee, J., Bahn, S., Li, Y., & Choi, I. (2014). Brain-computer interface supported collaborative work. Proceedings of 5th International Brain-Computer Interface Meeting.Google Scholar
  32. Nam, C. S., Moore, M., Choi, I., & Li, Y. (2015). Designing better, cost-effective brain-computer interfaces. Ergonomics in Design: The Quarterly of Human Factors Applications, 23(4), 13–19. SAGE.Google Scholar
  33. Nicolas-Alonso, L. F., & Gomez-Gil, J. (2012). Brain computer interfaces, a review. Sensors.Google Scholar
  34. Noirhomme, Q., Lesenfants, D., Gomez, F., Soddu, A., Schrouff, J., Garraux, G., Luxen, A., et al. (2014). Biased binomial assessment of cross-validated estimation of classification accuracies illustrated in diagnosis predictions. NeuroImage: Clinical4, 687–694.CrossRefGoogle Scholar
  35. Nolan, H., Whelan, R., & Reilly, R. B. (2010). FASTER: fully automated statistical thresholding for EEG artifact rejection. Journal of neuroscience methods192(1), 152–162. Elsevier.Google Scholar
  36. Novi, Q., Guan, C., Dat, T. H., & Xue, P. (2007). Sub-band common spatial pattern (SBCSP) for brain-computer interface. Proceedings of the 3rd International IEEE EMBS Conference on Neural Engineering, 204–207.Google Scholar
  37. Pfurtscheller, G., & Lopes, F. H. (1999). Event-related EEG/MEG synchronization and desynchronization: basic principles. Clinical Neurophysiology, 110, 1842–1857.CrossRefGoogle Scholar
  38. Pfurtscheller, G., Müller-Putz, G. R., Pfurtscheller, J. J., Rupp, R. R., Muller-Putz, G. R., Pfurtscheller, J. J., Rupp, R. R., et al. (2005). EEG-based asynchronous BCI controls functional electrical stimulation in a tetraplegic patient. EURASIP Journal on Applied Signal Processing2005(19), 3152–3155. Hindawi, USA.Google Scholar
  39. Pfurtscheller, G., Müller, G. R., Pfurtscheller, J. J., Gerner, H. J. J., Rupp, R. R., Muller, G. R., Pfurtscheller, J. J., et al. (2003). “Thought”—control of functional electrical stimulation to restore hand grasp in a patient with tetraplegia. Neuroscience letters351(1), 33–36. Ireland.CrossRefGoogle Scholar
  40. Pfurtscheller, G., & Neuper, C. (2006). Future prospects of ERD/ERS in the context of brain—computer interface (BCI) developments. Progress in Brain Research, 159, 433–437.CrossRefGoogle Scholar
  41. Pfurtscheller, G., Solis-Escalante, T., Ortner, R., Linortner, P., & Muller-Putz, G. R. (2010). Self-paced operation of an SSVEP-based orthosis with and without an imagery-based “brain switch”: A feasibility study towards a hybrid BCI. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 18(4), 409–414.CrossRefGoogle Scholar
  42. Polikar, R. (2006). Ensemble based systems in decision making. Circuits and Systems Magazine, IEEE, 6(3), 21–45.CrossRefGoogle Scholar
  43. Powers, J. C., Bieliaieva, K., Wu, S., & Nam, C. S. (2015). The human factors and ergonomics of P300-based brain-computer interfaces. Brain sciences5(3), 318–56. Switzerland.Google Scholar
  44. Reynolds, C., Osuagwu, B. A., & Vuckovic, A. (2015). Influence of motor imagination on cortical activation during functional electrical stimulation. Clinical neurophysiology : official journal of the International Federation of Clinical Neurophysiology126(7), 1360–1369. Netherlands.Google Scholar
  45. Rohm, M., Muller-Putz, G. R., Kreilinger, A., von Ascheberg, A., & Rupp, R. (2010). A hybrid-Brain Computer Interface for control of a reaching and grasping neuroprosthesis. Biomedizinische Technik55(suppl. 1). Fachverlag Schiele & Schon GmbH, Germany.Google Scholar
  46. Rohm, M., Schneiders, M., Müller, C., Kreilinger, A., Kaiser, V., Müller-Putz, G. R., Rupp, R. R. R., et al. (2013). Hybrid brain-computer interfaces and hybrid neuroprostheses for restoration of upper limb functions in individuals with high-level spinal cord injury. Artificial Intelligence in Medicine59(2), 133–142. Netherlands: Elsevier Science B.V., Netherlands.Google Scholar
  47. Roset, S. A., Gant, K., Prasad, A., & Sanchez, J. C. (2014). An adaptive brain actuated system for augmenting rehabilitation. Frontiers in neuroscience8, 415. Switzerland.Google Scholar
  48. Rosner, B. (2015). Fundamentals of biostatistics. Nelson Education.Google Scholar
  49. Schalk, G., & Mellinger, J. (2010). A practical guide to brain–computer interfacing with BCI2000: General-purpose software for brain-computer interface research, data acquisition, stimulus presentation, and brain monitoring. Springer Science & Business Media.Google Scholar
  50. Sun, S., Zhang, C., & Zhang, D. (2007). An experimental evaluation of ensemble methods for EEG signal classification. Pattern Recognition Letters, 28(15), 2157–2163.CrossRefGoogle Scholar
  51. Tan, H. G., Shee, C. Y., Kong, K. H., Guan, C., Ang, W. T., et al. (2011). EEG controlled neuromuscular electrical stimulation of the upper limb for stroke patients. Frontiers of Mechanical Engineering6(1), 71–81. SP Higher Education Press, Germany.Google Scholar
  52. Vuckovic, A., Wallace, L., & Allan, D. B. (2015). Hybrid brain-computer interface and functional electrical stimulation for sensorimotor training in participants with tetraplegia: a proof-of-concept study. Journal of neurologic physical therapy : JNPT39(1), 3–14. United States.Google Scholar
  53. Wang, D., Miao, D., & Blohm, G. (2012). Multi-class motor imagery EEG decoding for brain-computer interfaces. Frontiers in Neuroscience6(OCT), 1–13.Google Scholar
  54. Wolpaw, J. R., Birbaumer, N., McFarland, D. J., Pfurtscheller, G., & Vaughan, T. M. (2002). Brain-computer interfaces for communication and control. Clinical Neurophysiology, 113(6), 767–791.CrossRefGoogle Scholar
  55. Young, B. M., Nigogosyan, Z., Walton, L. M., Remsik, A., Song, J., Nair, V. A., Tyler, M. E., et al. (2015). Dose-response relationships using brain-computer interface technology impact stroke rehabilitation. Frontiers in human neuroscience9, 361. Switzerland.Google Scholar
  56. Young, B. M., Nigogosyan, Z., Nair, V. A., Walton, L. M., Song, J., Tyler, M. E., Edwards, D. F., et al. (2014). Case report: post-stroke interventional BCI rehabilitation in an individual with preexisting sensorineural disability. Frontiers in neuroengineering7, 18. Switzerland.Google Scholar
  57. Zickler, C., Riccio, A., Leotta, F., Hillian-Tress, S., Halder, S., Holz, E., Staiger-Salzer, P., et al. (2011). A brain-computer interface as input channel for a standard assistive technology software. Clinical EEG and neuroscience42(4), 236–244.CrossRefGoogle Scholar

via A Sensorimotor Rhythm-Based Brain–Computer Interface Controlled Functional Electrical Stimulation for Handgrasp Rehabilitation | SpringerLink

, , , , ,

Leave a comment

[Abstract] An Omnidirectional Assistive Platform Integrated With Functional Electrical Stimulation for Gait Rehabilitation: A Case Study

Abstract

This paper presents a novel omnidirectional platform for gait rehabilitation of people with hemiparesis after stroke. The mobile platform, henceforth the “walker”, allows unobstructed pelvic motion during walking, helps the user maintain balance and prevents falls. The system aids mobility actively by combining three types of therapeutic intervention: forward propulsion of the pelvis, controlled body weight support, and functional electrical stimulation (FES) for compensation of deficits in angular motion of the joints. FES is controlled using gait data extracted from a set of inertial measurement units (IMUs) worn by the user. The resulting closed-loop FES system synchronizes stimulation with the gait cycle phases and automatically adapts to the variations in muscle activation caused by changes in residual muscle activity and spasticity. A pilot study was conducted to determine the potential outcomes of the different interventions. One chronic stroke survivor underwent five sessions of gait training, each one involving a total of 30 minutes using the walker and FES system. The patient initially exhibited severe anomalies in joint angle trajectories on both the paretic and the non-paretic side. With training, the patient showed progressive increase in cadence and self-selected gait speed, along with consistent decrease in double-support time. FES helped correct the paretic foot angle during swing phase, and likely was a factor in observed improvements in temporal gait symmetry. Although the experiments showed favorable changes in the paretic trajectories, they also highlighted the need for intervention on the non-paretic side.

Similar articles

via An Omnidirectional Assistive Platform Integrated With Functional Electrical Stimulation for Gait Rehabilitation: A Case Study – PubMed

, , , , ,

Leave a comment

[VIDEO] Functional electrical stimulation (FES) for stroke patient to improve walking ability. – YouTube

Functional electrical stimulation (FES) for Walking its important training for Improvement the waking in Stroke patient, FES is guide training for patient foot to pick up from ground. It’s also showed improvement in walking after training with FES. I am thankful to my patient for giving me consent for this Video. I am want to thank MGM MCRI Hospital and MGM Physiotherapy Rehabilitation and Fitness Centre, Aurangabad, Maharashtra for constant support. Neuro Physiotherapist: Dr. Gaurav C. Mhaske (PT)

via Functional electrical stimulation (FES) for stroke patient to improve walking ability. – YouTube

, , , , , ,

Leave a comment

[ARTICLE] The Integration of Brain-Computer Interface (BCI) as Control Module for Functional Electrical Stimulation (FES) Intervention in Post-Stroke Upper Extremity Rehabilitation – Full Text

ABSTRACT

One of the prevalent disabilities after stroke is the loss of upper extremity motor function, leading survivors to suffer from an increased dependency in their activities of daily living and a general decrease in their overall quality of life. Therefore, the restoration of upper extremity function to improve survivors’ independency is crucial. Conventional stroke rehabilitation interventions, while effective, fall short of helping individuals achieve maximum recovery potential. Functional Electrical Stimulation (FES), both with passive and active approaches, has been found to moderately increase function in the affected limbs. This paper discusses a novel EEG-Based BCI-FES system that provides FES stimulation to the affected limbs based on the brain activity patterns of the patient specifically in the sensory motor cortex, while the patient imagines moving the affected limb. This system allows the synchronization of brain activity with peripheral movements, which may lead to brain reorganization and restoration of motor function by affecting motor learning or re-learning, and therefore induce brain plasticity to restore normal-like brain function.

INTRODUCTION

Stroke is one of the leading causes of severe motor disability, with approximately 800,000 individuals each year are experiencing a new or recurrent stroke in the US alone (1). Advances in healthcare and medical technology, and the high incidence of stroke and its increasing rate in the growing elderly population, have contributed to a relatively large population of stroke survivors currently estimated at 4 million individuals in the United States alone (1). These survivors are left with several devastating long-term neurological impairments.

The most apparent defect after a stroke is motor impairments, with impairment of upper extremity (UE) functions standing as the most disabling motor deficit. Approximately 80% of survivors suffering from UE paresis, and only about one-tenth of the them regain complete functional recovery (2). Stroke survivors generally suffer from a decrease in their quality of life, and an increase dependency in their activities of daily living. Statistically, close to one quarter of the stroke survivors become dependent in activities of daily living (3). Thus, the optimal restoration of arm and hand function is crucial to improve their independence.

Recently, several remarkable advancements in the medical management of stroke have been made. However, a widely applicable or effective medical treatment is still missing, and most post-stroke care will continue to depend on rehabilitation interventions (4). The available UE stroke rehabilitation interventions can be categorized as: conventional physical and occupational therapy, constraint-induced movement therapy (CIT), functional electrical stimulation (FES), and robotic-aided and sensor-based therapy systems (5). Although an increased effort has been made to enhance the recovery process following a stroke, survivors generally do not reach their full recovery potential. Thus, the growing population of stroke survivors is in a vital need for innovative strategies in stroke rehabilitation, especially in the domain of UE motor rehabilitation. This paper presents an innovative integration of a brain-computer interface (BCI) system to actively control the delivery of FES. Early research and product development activities are advancing the reality of this becoming a mainstream intervention option.

PASSIVE VS. ACTIVE DELIVERY OF FES

The use of FES on the impaired arm is an accepted intervention for stroke rehabilitation aiming to improve motor function. A systematic review with meta-analysis of 18 randomized control trials found that FES had a moderate effect on activity compared with no intervention or placebo and a large effect on UE activity compared to control groups, suggesting that FES should be used in stroke rehabilitation to improve the ability to perform activities (6). Specifically, improvements in UE motor function after intensive FES intervention can be ascribed to the increased ability to voluntarily contract impaired muscles, the reduction in spasticity and improved muscle tone in the stimulated muscles, and the increased range of motion in all joints (7). These improvements in UE after FES could be attributable to multiple neural mechanisms, with one mechanism suggesting that proprioceptive sensory input and visual perception of the movement could promote neural reorganization and motor learning (8). A potential limiting factor to the application of FES is that the stimulation is administered manually, usually from a therapist, without any regard to the concurrent brain activity of the patient. This makes the delivery a passive process with no to minimal coordination with the mental task required to happen concurrently from the patient.

On the other hand, electromyography (EMG)-triggered FES systems made the delivery of FES an active process. Such systems are activated through detecting a preset electrical threshold in certain muscles, which provide the user (patient) the ability to actively control the delivery of FES and make the delivery concurrent with the patient’s brain activity. However, a systematic review of 8 randomized controlled trials (n=157) that assessed the effects of EMG-triggered neuromuscular electrical stimulation for improving hand function in stroke patients found no statistically significant differences in effects when compared to patients receiving usual care (9). A possibility to explain the shortcoming of EMG-triggered FES systems, is that the ability of the brain to generate and send efficient neural signals to the peripheral nervous system is disrupted after stroke, which could affect the control mechanism of these systems. Thus, the synchronization of FES with brain activity maybe critical for the optimization of recovery.

AN ACTIVE EEG-BASED BCI-FES SYSTEM

BCI technology can be used to actively control the FES application through detecting the brain neural activity directly when imagining or attempting a movement. Performing or mentally imagining (or as it commonly called motor imagery) a movement results in the generation of neurophysiological phenomena called event-related desynchronization or synchronization (ERD or ERS). ERD or ERS can be observed from Mu (9–13 Hz) or Beta rhythms (22–29 Hz) over the primary sensorimotor area contralateral to the imagined part of the body (10). These rhythms can be detected using electroencephalography (EEG). Therefore, an EEG based BCI system can be utilized to provide automated FES neurofeedback through detecting either actual movement or motor imagery (MI) and can be used to train the voluntary modulation of these rhythms. The ability to modulate these rhythms alongside the real-time neurofeedback from the FES application may induce neuroplastic change in a disrupted motor system to allow for more normal motor-related brain activity, and thus promote functional recovery. Figure 1 provides an overview of the BCI-FES system.

Any BCI-FES intervention session includes two screening tasks: an open-loop screening followed by a closed-loop task. The open-loop screening task is used to identify appropriate EEG-based control features to guide all subsequent closed-loop tasks. In the open-loop screening task, subjects are instructed to perform attempted movement of either hand by following on-screen cues of “right”, “left”, and “rest”. The attempted movement can vary across subjects, depending on the subject’s baseline abilities and recovery goals. For example, subjects can perform opening and closing of the hand or wrist flexion/extension movements. During this screening task, no feedback is provided to the subject.

figure 2 shows a screenshot of the closed-loop task interface, with a ball at the center and a target to the right, in order to provide a cue for the user to move his/her right hand.

Figure 2. Screenshot of Closed-loop Task

Data from the open-loop screening task will then be analyzed to identify appropriate EEG-based control features by determine the EEG channels the presents the largest r-squared values within the frequency ranges of the Mu and Beta rhythms for each attempted movement using left or right hand (11). The identified channels and the specific frequency bins will then be used to control the signals for the closed-loop neurofeedback task.

In the closed-loop screening task, a real-time visual feedback is given to the subject in a form of a game. A ball appears on the center of a computer monitor with a vertical rectangle (target) to either the right or left side of the screen (Figure 2). The movement of the ball is controlled by the BCI system in which the detection of an attempted movement in either hand will be translated into moving the ball toward the same side. For example, if the target appeared on the left side of the screen and the BCI system detected a movement attempt of the user’s left hand, the ball then moves toward the left. Users are instructed to perform or attempt the same movement that they used during the open-loop task. The FES electrodes are placed on the subject’s affected side over a specific muscle of the forearm. The selection of which muscle to be innervated with FES is dependent on the rehabilitation goal for the subject. For example, if a subject is having a difficulty extending his/her wrist, the FES electrodes are placed over the extensor muscles of the impaired forearm.

The FES neurofeedback is triggered when cortical activity related to attempted movement of the impaired limb is detected by the BCI system, and the subject is cued to attempt movement of the impaired hand. Thus, since both ball movement and FES are controlled by the same set of EEG signals, FES is only applied when the ball moves correctly toward the target on the affected side of the body. This triggering of the FES ensures that only consistent, desired patterns of brain activity associated with attempted movement of the impaired hand are rewarded with feedback from the FES device.

DISCUSSION

The growing population of stroke survivors constitutes an increasing need for new strategies in stroke rehabilitation. Thus, it is imperative to explore novel intervention technologies that present promise to aid in the recovery process of this population. Some studies suggest that noninvasive EEG-based BCI systems hold a potential for facilitating upper extremities motor recovery after stroke (12,13). Although several groups had gave up on the idea of using non-invasive EEG-based BCI systems for control, there might be several implementations of these systems in the context of rehabilitation that yet need to be explored. The active EEG-based BCI-FES system is one example. However, more research and clinical studies are needed to investigate the efficacy of the system in order to be accepted and integrated into regular stroke rehabilitation practice.

REFERENCES

(1) Norrving B, Kissela B. The global burden of stroke and need for a continuum of care. Neurology 2013 Jan 15;80(3 Suppl 2):S5-12.

(2) Langhorne P, Coupar F, Pollock A. Motor recovery after stroke: a systematic review. The Lancet Neurology 2009;8(8):741-754.

(3) Sanchez RJ, Liu J, Rao S, Shah P, Smith R, Rahman T, et al. Automating arm movement training following severe stroke: functional exercises with quantitative feedback in a gravity-reduced environment. IEEE Transactions on neural systems and rehabilitation engineering 2006;14(3):378-389.

(4) Langhorne P, Bernhardt J, Kwakkel G. Stroke rehabilitation. The Lancet 2011;377(9778):1693-1702.

(5) Loureiro RC, Harwin WS, Nagai K, Johnson M. Advances in upper limb stroke rehabilitation: a technology push. Med Biol Eng Comput 2011;49(10):1103.

(6) Howlett OA, Lannin NA, Ada L, McKinstry C. Functional electrical stimulation improves activity after stroke: a systematic review with meta-analysis. Arch Phys Med Rehabil 2015;96(5):934-943.

(7) Kawashima N, Popovic MR, Zivanovic V. Effect of intensive functional electrical stimulation therapy on upper-limb motor recovery after stroke: case study of a patient with chronic stroke. Physiotherapy Canada 2013;65(1):20-28.

(8) Wang R. Neuromodulation of effects of upper limb motor function and shoulder range of motion by functional electric stimulation (FES). Operative Neuromodulation: Springer; 2007. p. 381-385.

(9) Meilink A, Hemmen B, Seelen H, Kwakkel G. Impact of EMG-triggered neuromuscular stimulation of the wrist and finger extensors of the paretic hand after stroke: a systematic review of the literature. Clin Rehabil 2008;22(4):291-305.

(10) Ang KK, Guan C. EEG-Based Strategies to Detect Motor Imagery for Control and Rehabilitation. IEEE Transactions on Neural Systems and Rehabilitation Engineering 2017;25(4):392-401.

(11) Wilson JA, Schalk G, Walton LM, Williams JC. Using an EEG-based brain-computer interface for virtual cursor movement with BCI2000. J Vis Exp 2009 Jul 29;(29). pii: 1319. doi(29):10.3791/1319.

(12) Caria A, Weber C, Brötz D, Ramos A, Ticini LF, Gharabaghi A, et al. Chronic stroke recovery after combined BCI training and physiotherapy: a case report. Psychophysiology 2011;48(4):578-582.

(13) Young BM, Nigogosyan Z, Remsik A, Walton LM, Song J, Nair VA, et al. Changes in functional connectivity correlate with behavioral gains in stroke patients after therapy using a brain-computer interface device. Frontiers in neuroengineering 2014;7:25.

ACKNOWLEDGMENT

This project is supported in part by UW-Madison Institute for Clinical and Translational Research, and College of Health Sciences, UW-Milwaukee.

 

via The Integration of Brain-Computer Interface (BCI) as Control Module for Functional Electrical Stimulation (FES) Intervention in Post-Stroke Upper Extremity Rehabilitation

, , , , , , , ,

Leave a comment

[ARTICLE] A portable assist-as-need upper-extremity hybrid exoskeleton for FES-induced muscle fatigue reduction in stroke rehabilitation – Full Text

Abstract

Background

Hybrid exoskeletons are a recent development which combine Functional Electrical Stimulation with actuators to improve both the mental and physical rehabilitation of stroke patients. Hybrid exoskeletons have been shown capable of reducing the weight of the actuator and improving movement precision compared to Functional Electrical Stimulation alone. However little attention has been given towards the ability of hybrid exoskeletons to reduce and manage Functional Electrical Stimulation induced fatigue or towards adapting to user ability. This work details the construction and testing of a novel assist-as-need upper-extremity hybrid exoskeleton which uses model-based Functional Electrical Stimulation control to delay Functional Electrical Stimulation induced muscle fatigue. The hybrid control is compared with Functional Electrical Stimulation only control on a healthy subject.

Results

The hybrid system produced 24° less average angle error and 13.2° less Root Mean Square Error, than Functional Electrical Stimulation on its own and showed a reduction in Functional Electrical Stimulation induced fatigue.

Conclusion

As far as the authors are aware, this is the study which provides evidence of the advantages of hybrid exoskeletons compared to use of Functional Electrical Stimulation on its own with regards to the delay of Functional Electrical Stimulation induced muscle fatigue.

Background

Stroke is the second largest cause of disability worldwide after dementia [1]. Temporary hemiparesis is common among stroke survivors. Regaining strength and movement in the affected side takes time and can be improved with the use of rehabilitation therapy involving repetitive and function-specific tasks [2]. Muscle atrophy is another common issue that occurs after a stroke due to lack of use of the muscle. For each day a patient is in hospital lying in bed with minimal activity approximately 13% of muscular strength is lost (Ellis. Liam, Jackson. Samuel, Liu. Cheng-Yueh, Molloy. Peter, Paterson. Kelsey, Lower Limb Exoskeleton Final Report, unpublished). Electromechanically actuated exoskeletons offer huge advantages in their ability to repetitively and precisely provide assistance/resistance to a user. However electromechanical actuators which provide the required forces are often heavy in weight and have high power requirements which limits portability. Furthermore, muscle atrophy can only be prevented by physically working the muscles either through the patient’s own volition or the use of Functional Electrical Stimulation (FES).

FES is the application of high frequency electrical pulses to the nerves or directly to the muscle belly in order to elicit contractions in the muscle. FES devices are typically lightweight and FES is well suited to reducing muscle atrophy in patients with no or extremely limited movement. The trade off to this is that precise control of FES is extremely difficult and controlling specific, repetitive, and functional movement is not easily accomplished. Furthermore, extended use of FES is limited by the introduction of muscle fatigue caused by the unnatural motor unit recruitment order [3]. The forces required for large movements, such as shoulder abduction, are too great to be provided by the use of FES which is much better suited to smaller movements such as finger extension [45]. Some patients also find the use of FES painful.

Combining the use of FES and an electromechanical actuator within an exoskeleton can potentially overcome the limitations of each individual system. Despite the potential advantages of hybrid exoskeletons, so far only limited studies have been done on their effectiveness. A recent review was conducted into upper-extremity hybrid exoskeletons [6] which highlighted the advantages hybrid exoskeletons (exoskeletons which combine FES with an actuator) have with regards to improving the precision of FES induced movements. However, little attention has been given towards reduction and management of FES-induced fatigue. FES control systems used for upper-extremity hybrid exoskeletons simply manually ramp up stimulation intensity when fatigue is observed.

This work describes the design and testing of an assist-as-need upper-extremity hybrid exoskeleton which uses model-based control of FES with a focus on reducing FES-induced muscle fatigue. The control system is described in Section “Theory”, and the results are presented in Section “Results”. A discussion of the results is given in Section “Discussion”. Conclusions are summarised in Section “Conclusion”. Methods, physical structure of the exoskeleton, and the sensing system is described in Section “Material and methods”.[…]

 

Continue —->  A portable assist-as-need upper-extremity hybrid exoskeleton for FES-induced muscle fatigue reduction in stroke rehabilitation | BMC Biomedical Engineering | Full Text

figure10

Fig. 10 The Powered Exoskeleton (Right Arm)

, , , , , , , , ,

Leave a comment

[Abstract] The effects of a robot-assisted arm training plus hand functional electrical stimulation on recovery after stroke: a randomized clinical trial

Abstract

Objective

To compare the effects of unilateral, proximal arm robot-assisted therapy combined with hand functional electrical stimulation to intensive conventional therapy for restoring arm function in subacute stroke survivors.

Design

This was a single blinded, randomized controlled trial.

Setting

Inpatient Rehabilitation University Hospital.

Participants

Forty patients diagnosed with ischemic stroke (time since stroke <8 weeks) and upper limb impairment were enrolled.

Interventions

Participants randomized to the experimental group received 30 sessions (5 sessions/week) of robot-assisted arm therapy and hand functional electrical stimulation (RAT + FES). Participants randomized to the control group received a time-matched intensive conventional therapy (ICT).

Main outcome measures

The primary outcome was arm motor recovery measured with the Fugl-Meyer Motor Assessment. Secondary outcomes included motor function, arm spasticity and activities of daily living. Measurements were performed at baseline, after 3 weeks, at the end of treatment and at 6-month follow-up. Presence of motor evoked potentials (MEPs) was also measured at baseline.

Results

Both groups significantly improved all outcome measures except for spasticity without differences between groups. Patients with moderate impairment and presence of MEPs who underwent early rehabilitation (<30 days post stroke) demonstrated the greatest clinical improvements.

Conclusions

A robot-assisted arm training plus hand functional electrical stimulation was no more effective than intensive conventional arm training. However, at the same level of arm impairment and corticospinal tract integrity, it induced a higher level of arm recovery.

 

via The effects of a robot-assisted arm training plus hand functional electrical stimulation on recovery after stroke: a randomized clinical trial – ScienceDirect

, , , , , , , , , ,

Leave a comment

%d bloggers like this: