Posts Tagged Force measurement

[WEB SITE] New Activforce Dynamometer Aims to Track Strength Gains

Published on 

ActivForce-466x345

ActivBody introduces the Activforce, a digital dynamometer platform designed to increase clinician access to precise data, creating a more streamlined and efficient experience with manual muscle testing.

Paired with the Activ5 force measurement device, Activforce allows clinicians the ability to gain precise, objective data during manual muscle testing, and transfer the data in real time to the application and dashboard. Activforce tests, measures, and tracks strength changes, and compiles the data into comprehensive patient reports that can be personalized and managed in the dashboard.

Through the customizable tests feature and preset manual muscle testing protocols of the Activforce platform, physical therapists, athletic trainers, and other clinicians can evaluate muscle strength pre and post-operatively, measure left/right strength symmetry, test endurance of specific muscle groups, and measure and track peak muscle force and force over time according to ActivBody in a media release.

“We believe Activforce will help increase efficiency, giving clinicians objective data in the palm of their hands,” says ActivBody CEO, Dan Stevenson, in the release. “Clinicians and patients will be able to track strength gains along the rehabilitation continuum, which is valuable for patient motivation and tracking and measuring progress.”

For more information, visit ActivBody.

 

via New Activforce Dynamometer Aims to Track Strength Gains – Rehab Managment

, , , ,

Leave a comment

[Abstract] Desktop upper limb rehabilitation robot using omnidirectional drive gear – IEEE Conference Publication

Abstract

Research and development efforts into small upper limb rehabilitation robots for home-based rehabilitation have been made in order to reduce the patient burden associated with making visits to the hospital. However, currently, there are only a few small upper limb rehabilitation robots capable of providing training that is tailored to account for the differences in individual patients. This is because many robots use omni wheels for their movement mechanism, thus causing problems when measuring patient motor function because it is not possible to accurately estimate the position. To solve this problem, in this study, we propose a new small upper limb rehabilitation robot that switches the driving unit from an omni wheel to an omnidirectional drive gear mechanism, as a mechanism that does not cause slips. Although an omnidirectional drive gear poses problems in terms of machining difficulty and weight, these problems can be solved by using a 3D printer. We show that position errors in small upper limb rehabilitation robots are greatly reduced by introducing a gear mechanism.

via Desktop upper limb rehabilitation robot using omnidirectional drive gear – IEEE Conference Publication

, , , , , , , , ,

Leave a comment

[Abstract] Quantification method of motor function recovery of fingers by using the device for home rehabilitation – IEEE Conference Publication

Abstract:

After leaving hospital, patients can carry out rehabilitation by using rehabilitation devices. However, they cannot evaluate the recovery by themselves. For this problem, a device which can both carry out the rehabilitation and evaluation of the degree of recovery is required. This paper proposes the method that quantifies the recovery of the paralysis of fingers to evaluate a patient automatically. A finger movement is measured by a pressure sensor on the rehabilitation device we have developed. A measured data is used as a time-series signal, and the recovery of the paralysis is quantified by calculating the dissimilarity between a healthy subject’s signal and the patient’s signal. The results of those dissimilarities are integrated over all finger to be used as a quantitative scale of recovery. From the experiment conducted with hemiplegia patients and healthy subjects, we could trace the process of the recovery by the proposed method.

Source: Quantification method of motor function recovery of fingers by using the device for home rehabilitation – IEEE Conference Publication

, , , , , , , , , , , ,

Leave a comment

[Abstract] Design of a spring-assisted exoskeleton module for wrist and hand rehabilitation

Abstract:

This paper reports on the development of a low-profile exoskeleton module to enable training of the fingers and thumb in grasp and release tasks. The design has been made as an add-on module for use with the ArmAssist arm rehabilitation system (Tecnalia, Spain). Variable-position springs and adjustable link lengths provide adaptability to fit a variety of users. Additive manufacturing has been utilized for the majority of components allowing easy modifications. A few structural components were machined from aluminum or steel to produce a functional prototype with sufficient strength for direct evaluation. The design includes independent and adjustable assistance in finger and thumb extension using various width elastic bands, and measurement of user grasp/release forces in finger flexion/extension, thumb flexion/extension, and thumb adduction/abduction using low-profile force sensitive resistors.

Source: IEEE Xplore Document – Design of a spring-assisted exoskeleton module for wrist and hand rehabilitation

, , , , , , , , , , , , ,

Leave a comment

[Abstract] Impairment of muscle force transmission in spastic-paretic muscles of stroke survivors

Abstract:

Hemispheric stroke survivors tend to have persistent motor impairments, with muscle weakness and muscle spasticity observed concurrently in the affected muscles.
The objective of this preliminary study was to identify whether impairment of muscle force transmission could contribute to weakness in spastic-paretic muscles of chronic stroke survivors. To characterize the efficiency of the transmission of muscle forces to the tendon, we activated biceps brachii muscle electrically by stimulating the musculocutaneous nerve with maximum current. The ratio between the elicited maximum twitch force amplitude and the maximum M-wave peak-peak amplitude was calculated as a measure of the efficiency of force transmission.
Based on the preliminary results of two stroke survivors, we show that the Force/M-wave ratio was reduced in the affected biceps brachii muscles in comparison with the contralateral muscles, indicating a potential impairment in the muscle force transmission in the affected muscles.
Our findings suggest that disrupted muscle force transmission to the tendon could contribute to weakness in spastic muscles of chronic stroke survivors.

Source: IEEE Xplore Document – Impairment of muscle force transmission in spastic-paretic muscles of stroke survivors

, , , , , , ,

Leave a comment

%d bloggers like this: