Posts Tagged Functional electrical stimulation

[Project] Functional Electrical Stimulation for at Home Rehabilitation | WalkHome Project | H2020 | CORDIS | European Commission

Objective

The Context
Stroke has huge human and economic cost. 1 million people suffer strokes in Europe every year, with an average life expectancy after stroke of 8 years. Roughly 20% of stroke survivors suffer from drop foot, with 45 billion euros spent on rehabilitating stroke patients in Europe every year.
The opportunity:
FES offers the tantalising prospect of retraining voluntary motor functions such as walking. However:
– FES rehabilitation must be carried out in a hospital with the support of trained healthcare professionals;
– Transporting patients and supervising treatment is expensive;
– Patient’s treatment plan is sub-optimal;
– Per patient rehabilitation costs reach 32,000 euros
Our solution:
Fesia WalkHome is a FES rehabilitation device for drop foot patients which can be administered by the patient in their own home. This not only reduces costs by 43% but also means patients can have an optimal treatment plan, improving their speed of recovery.
The use of Fesia Walk at home will give autonomy, independence and improve the quality of life for chronic patients. It will also mean a substantial reduction of waiting lists, health costs, number of physician office visits, and carer support.
The Project:
WalkHome represents a disruptive change of paradigm for the FES rehabilitation standard of care. The aim of the phase 1 project is to improve our understanding of the EU market for FES rehabilitation, identifying regional market variations in terms of key decision makers, appropriate business models, pricing structure and identifying which are the most attractive markets for us to use as a beachhead. We will also analyse what key improvements need to be made to the existing technology to create the new FES home care rehabilitation market.
The Market:
Currently, there is no FES rehabilitation technology that is offered outside of a clinical setting. We estimate that this new home FES rehabilitation market could be worth up to 40 billion euros in Europe alone.

via Functional Electrical Stimulation for at Home Rehabilitation | WalkHome Project | H2020 | CORDIS | European Commission

, , , ,

Leave a comment

[Abstract + References] A Wireless BCI-FES Based on Motor Intent for Lower Limb Rehabilitation

Abstract

Recent investigations have proposed brain computer interfaces combined with functional electrical stimulation as a novel approach for upper limb motor recovery. These systems could detect motor intention movement as a power decrease of the sensorimotor rhythms in the electroencephalography signal, even in people with damaged brain cortex. However, these systems use a large number of electrodes and wired communication to be employed for gait rehabilitation. In this paper, the design and development of a wireless brain computer interface combined with functional electrical stimulation aimed at lower limb motor recovery is presented. The design requirements also account the dynamic of a rehabilitation therapy by allowing the therapist to adapt the system during the session. A preliminary evaluation of the system in a subject with right lower limb motor impairment due to multiple sclerosis was conducted and as a performance metric, the true positive rate was computed. The developed system evidenced a robust wireless communication and was able to detect lower limb motor intention. The mean of the performance metric was 75%. The results encouraged the possibility of testing the developed system in a gait rehabilitation clinical study.

References

  1. 1.
    Pfurtscheller, G., Mcfarland, D.: BCIs that use sensorimotor rhythms. In: Wolpaw, J.R., Wolpaw, E. (eds.) Brain-Computer Interfaces: Principles and Practice, pp. 227–240. Oxford University Press (2012)Google Scholar
  2. 2.
    Carrere, L.C., Tabernig, C.B.: Detection of foot motor imagery using the coefficient of determination for neurorehabilitation based on BCI technology. IFMBE Proc. 49, 944–947 (2015).  https://doi.org/10.1007/978-3-319-13117-7_239CrossRefGoogle Scholar
  3. 3.
    Sannelli, C., Vidaurre, C., Müller, K.R., Blankertz, B.: A large scale screening study with a SMR-based BCI: categorization of BCI users and differences in their SMR activity (2019)Google Scholar
  4. 4.
    Do, A.H., Wang, P.T., King, C.E., Schombs, A., Cramer, S.C., Nenadic, Z.: Brain-computer interface controlled functional electrical stimulation device for foot drop due to stroke, pp. 6414–6417 (2012)Google Scholar
  5. 5.
    Ramos-Murguialday, A., Broetz, D., Rea, M., Yilmaz, Ö., Brasil, F.L., Liberati, G., Marco, R., Garcia-cossio, E., Vyziotis, A., Cho, W., Cohen, L.G., Birbaumer, N.: Brain-Machine-interface in chronic stroke rehabilitation: a controlled study. Ann. Neurol. 74, 100–108 (2014).  https://doi.org/10.1002/ana.23879.Brain-Machine-InterfaceCrossRefGoogle Scholar
  6. 6.
    Biasiucci, A., Leeb, R., Iturrate, I., Perdikis, S., Al-Khodairy, A., Corbet, T., Schnider, A., Schmidlin, T., Zhang, H., Bassolino, M., Viceic, D., Vuadens, P., Guggisberg, A.G., Millán, J.D.R.: Brain-actuated functional electrical stimulation elicits lasting arm motor recovery after stroke. Nat. Commun. 9, 1–13 (2018).  https://doi.org/10.1038/s41467-018-04673-zCrossRefGoogle Scholar
  7. 7.
    Tabernig, C.B., Lopez, C.A., Carrere, L.C., Spaich, E.G., Ballario, C.H.: Neurorehabilitation therapy of patients with severe stroke based on functional electrical stimulation commanded by a brain computer interface. J. Rehabil. Assist. Technol. Eng. 5, 205566831878928 (2018).  https://doi.org/10.1177/2055668318789280CrossRefGoogle Scholar
  8. 8.
    McCrimmon, C.M., King, C.E., Wang, P.T., Cramer, S.C., Nenadic, Z., Do, A.H.: Brain-controlled functional electrical stimulation therapy for gait rehabilitation after stroke: a safety study. J. Neuroeng. Rehabil. 12 (2015).  https://doi.org/10.1186/s12984-015-0050-4
  9. 9.
    g.Nautilus wireless biosignal acquisition Homepage. http://www.gtec.at/Products/Hardware-and-Accessories/g.Nautilus-Specs-Features
  10. 10.
    Emotiv EpocFlex flexible wireless EEG system Homepage. https://www.emotiv.com/epoc-flex/
  11. 11.
    Vuckovic, A., Wallace, L., Allan, D.: Hybrid brain-computer interface and functional electrical stimulation for sensorimotor training in participants with tetraplegia: a proof-of-concept study. J. Neurol. Phys. Ther. 39, 3–14 (2015)CrossRefGoogle Scholar
  12. 12.
    Schalk, G., McFarland, D.J., Hinterberger, T., Birbaumer, N., Wolpaw, J.R.: BCI2000: a general-purpose brain-computer interface (BCI) system. IEEE Trans. Biomed. Eng. 51, 1034–1043 (2004).  https://doi.org/10.1109/TBME.2004.827072CrossRefGoogle Scholar
  13. 13.
    McCrimmon, C.M., Fu, J.L., Wang, M., Lopes, L.S., Wang, P.T., Karimi-Bidhendi, A., Liu, C.Y., Heydari, P., Nenadic, Z., Do, A.H.: Performance assessment of a custom, portable, and low-cost brain-computer interface platform. IEEE Trans. Biomed. Eng. 64, 2313–2320 (2017).  https://doi.org/10.1109/TBME.2017.2667579CrossRefGoogle Scholar

via A Wireless BCI-FES Based on Motor Intent for Lower Limb Rehabilitation | SpringerLink

, , , , , , ,

Leave a comment

[Abstract + References] Upper-Limb Exoskeletons for Stroke Rehabilitation – Conference paper

Abstract

Upper-limb exoskeletons provide high-intensity, repetitive, task-specific, interactive and individualized training, making effective use of neuroplasticity for functional recovery in neurological patients. Most exoskeletons have robot axes aligned with the anatomical axes of the subject and provide direct control of individual joints. Recently, novel mechanical structures and actuation mechanisms have been proposed, but still result in bulky and heavy exoskeletons, limiting their applicability into clinical practice. Technological efforts are needed to promote light and wearable exoskeletons that implement active-assistive controllers, providing “assisted-as-needed” rehabilitation therapy, towards patient’s motivation and self-esteem. An overview of upper-limb exoskeletons, including mechanical design and control algorithms, will be provided. Special focus will be put on the current evidence about the efficacy of wearable robotic technologies on motor recovery and about other therapies that can be combined with exoskeletons to improve their therapeutic effects.

References

  1. 1.
    Ambrosini, E., et al.: A myocontrolled neuroprosthesis integrated with a passive exoskeleton to support upper limb activities. J. Electromyogr. Kinesiol. 24(2), 307–317 (2014). Official Journal of the International Society of Electrophysiological KinesiologyGoogle Scholar
  2. 2.
    Basteris, A., et al.: Training modalities in robot-mediated upper limb rehabilitation in stroke: a framework for classification based on a systematic review. J. NeuroEng. Rehabil. 11(1), 111 (2014)Google Scholar
  3. 3.
    Bertani, R., et al.: Effects of robot-assisted upper limb rehabilitation in stroke patients: a systematic review with meta-analysis. Neurol. Sci. 38(9), 1561–1569 (2017)Google Scholar
  4. 4.
    Calanca, A., et al.: A review of algorithms for compliant control of stiff and fixed-compliance robots. IEEE/ASME Trans. Mechatron. 21(2), 613–624 (2016)Google Scholar
  5. 5.
    Chang, W.H., Kim, Y.-H.: Robot-assisted therapy in stroke rehabilitation. J. Stroke 15(3), 174–181 (2013)Google Scholar
  6. 6.
    Gandolla, M., et al.: The neural correlates of long-term carryover following functional electrical stimulation for stroke. Neural Plast. 2016, 1–13 (2016)Google Scholar
  7. 7.
    Grimm, F., et al.: Closed-loop task difficulty adaptation during virtual reality reach-to-grasp training assisted with an exoskeleton for stroke rehabilitation. Front. Neurosci. 10, 518 (2016)Google Scholar
  8. 8.
    Howlett, O.A., et al.: Functional electrical stimulation improves activity after stroke: a systematic review with meta-analysis. Arch. Phys. Med. Rehabil. 96(5), 934–943 (2015)Google Scholar
  9. 9.
    Immick, N., et al.: Hybrid robotic system for arm training after stroke: preliminary results of a randomized controlled trial. In: International Conference on NeuroRehabilitation, pp. 94–97 (2019)Google Scholar
  10. 10.
    Islam, M.R., et al.: A brief review on robotic exoskeletons for upper extremity rehabilitation to find the gap between research prototype and commercial type. Adv. Robot. Autom. 06(03), 1–12 (2018)Google Scholar
  11. 11.
    Kim, B., Deshpande, A.D.: An upper-body rehabilitation exoskeleton Harmony with an anatomical shoulder mechanism: Design, modeling, control, and performance evaluation. Int. J. Robot. Res. 36(4), 414–435 (2017)Google Scholar
  12. 12.
    Krebs, H.I., et al.: Robot-aided neurorehabilitation: a robot for wrist rehabilitation. IEEE Trans. Neural Syst. Rehabil. Eng. 15(3), 327–335 (2007)Google Scholar
  13. 13.
    Langhorne, P., et al.: Motor recovery after stroke: a systematic review. Lancet Neurol. 8(8), 741–754 (2009)Google Scholar
  14. 14.
    Laver, K.E., et al.: Virtual reality for stroke rehabilitation. In: Laver, K.E. (ed.) Cochrane Database of Systematic Reviews. Wiley, Chichester (2011)Google Scholar
  15. 15.
    Lawrence, E.S., et al.: Estimates of the prevalence of acute stroke impairments and disability in a multiethnic population. Stroke 32(6), 1279–1284 (2001)Google Scholar
  16. 16.
    Lo, H.S., Xie, S.Q.: Exoskeleton robots for upper-limb rehabilitation: state of the art and future prospects. Med. Eng. Phys. 34(3), 261–268 (2012)Google Scholar
  17. 17.
    Mazzoleni, S., et al.: Combining upper limb robotic rehabilitation with other therapeutic approaches after stroke: current status, rationale, and challenges. BioMed Res. Int. 2017, 1–11 (2017)Google Scholar
  18. 18.
    Meadmore, K.L., et al.: Functional electrical stimulation mediated by iterative learning control and 3D robotics reduces motor impairment in chronic stroke. J. Neuroeng. Rehabil. 9, 32 (2012)Google Scholar
  19. 19.
    Mehrholz, J., et al.: Electromechanical and robot-assisted arm training for improving activities of daily living, arm function, and arm muscle strength after stroke. Cochrane Database Syst. Rev. (11), CD006876 (2015)Google Scholar
  20. 20.
    Nef, T., et al.: ARMin III – arm therapy exoskeleton with an ergonomic shoulder actuation. Appl. Bionics Biomech. 6(2), 127–142 (2009)Google Scholar
  21. 21.
    Pedrocchi, A., et al.: MUNDUS project: Multimodal Neuroprosthesis for Daily Upper limb Support. J. NeuroEng. Rehabil. 10(1), 66 (2013)Google Scholar
  22. 22.
    Pirondini, E., et al.: Evaluation of the effects of the arm light exoskeleton on movement execution and muscle activities: a pilot study on healthy subjects. J. NeuroEng. Rehabil. 13(1), 1–21 (2016)Google Scholar
  23. 23.
    Proietti, T., et al.: Upper-limb robotic exoskeletons for neurorehabilitation: a review on control strategies. IEEE Rev. Biomed. Eng. 9, 4–14 (2016)Google Scholar
  24. 24.
    Qian, Q., et al.: Early stroke rehabilitation of the upper limb assisted with an electromyography-driven neuromuscular electrical stimulation-robotic arm. Front. Neurol. 8, 447 (2017)Google Scholar
  25. 25.
    Rong, W., et al.: A Neuromuscular Electrical Stimulation (NMES) and robot hybrid system for multi-joint coordinated upper limb rehabilitation after stroke. J. NeuroEng. Rehabil. 14(1), 34 (2017)Google Scholar
  26. 26.
    Sensinger, J.W., Weir, R.F.F.: Improvements to series elastic actuators. In: Proceedings of the 2nd IEEE/ASME International Conference on Mechatronic and Embedded Systems and Applications, MESA 2006 (2007)Google Scholar
  27. 27.
    Stienen, A.H.A., et al.: Self-aligning exoskeleton axes through decoupling of joint rotations and translations. IEEE Trans. Rob. 25(3), 628–633 (2009)Google Scholar
  28. 28.
    Veerbeek, J.M., et al.: Effects of robot-assisted therapy for the upper limb after stroke. Neurorehabil. Neural Repair 31(2), 107–121 (2017)Google Scholar
  29. 29.
    Zhang, C., et al.: Robotic approaches for the rehabilitation of upper limb recovery after stroke. Int. J. Rehabil. Res. 40(1), 19–28 (2017)Google Scholar

via Upper-Limb Exoskeletons for Stroke Rehabilitation | SpringerLink

, , , , , , , , ,

Leave a comment

[WEB PAGE] Treatments for foot drop compared

 

Continue —> Treatments for foot drop compared | MS Trust

, , , , ,

1 Comment

[Wikipedia audio article] Electrical stimulation

This is an audio version of the Wikipedia Article: https://en.wikipedia.org/wiki/Functio…

00:01:21 1 Principles

00:09:14 2 History

00:10:01 3 Common applications

00:10:11 3.1 Spinal cord injury

00:11:09 3.1.1 Walking in spinal cord injury

00:15:01 3.2 Stroke and upper limb recovery

00:16:21 3.3 Drop foot

00:18:08 3.4 Stroke

00:18:58 3.5 Multiple sclerosis

00:20:06 3.6 Cerebral palsy

00:21:07 3.7 National Institute for Health and Care Excellence Guidelines (NICE) (UK)

00:21:47 4 In popular culture

00:22:10 5 See also

Listening is a more natural way of learning, when compared to reading. Written language only began at around 3200 BC, but spoken language has existed long ago.

Learning by listening is a great way to:

  • – increases imagination and understanding
  • – improves your listening skills
  • – improves your own spoken accent
  • – learn while on the move
  • – reduce eye strain

Now learn the vast amount of general knowledge available on Wikipedia through audio (audio article). You could even learn subconsciously by playing the audio while you are sleeping! If you are planning to listen a lot, you could try using a bone conduction headphone, or a standard speaker instead of an earphone.

Listen on Google Assistant through Extra Audio: https://assistant.google.com/services…

Other Wikipedia audio articles at: https://www.youtube.com/results?searc…

Upload your own Wikipedia articles through: https://github.com/nodef/wikipedia-tts

Speaking Rate: 0.9170272343252982 Voice name: en-AU-Wavenet-B

“I cannot teach anybody anything, I can only make them think.” – Socrates

SUMMARY 

Functional electrical stimulation (FES) is a technique that uses low-energy electrical pulses to artificially generate body movements in individuals who have been paralyzed due to injury to the central nervous system. More specifically, FES can be used to generate muscle contraction in otherwise paralyzed limbs to produce functions such as grasping, walking, bladder voiding and standing. This technology was originally used to develop neuroprostheses that were implemented to permanently substitute impaired functions in individuals with spinal cord injury (SCI), head injury, stroke and other neurological disorders. In other words, a person would use the device each time he or she wanted to generate a desired function. FES is sometimes also referred to as neuromuscular electrical stimulation (NMES).FES technology has been used to deliver therapies to retrain voluntary motor functions such as grasping, reaching and walking. In this embodiment, FES is used as a short-term therapy, the objective of which is restoration of voluntary function and not lifelong dependence on the FES device, hence the name functional electrical stimulation therapy, FES therapy (FET or FEST). In other words, the FEST is used as a short-term intervention to help the central nervous system of the person to re-learn how to execute impaired functions, instead of making the person dependent on neuroprostheses for the rest of her or his life.

, , , , , , ,

Leave a comment

[VIDEO] Stroke Rehabilitation: Use of electrical stimulation to help arm and hand recovery

This video demonstrates how to use FES, Functional Electrical Stimulation, to engage the muscles of the arm to extend the fingers.

, , , , , ,

Leave a comment

[Abstract] Bilateral Contralaterally Controlled Functional Electrical Stimulation Reveals New Insights Into the Interhemispheric Competition Model in Chronic Stroke

Background. Upper-limb chronic stroke hemiplegia was once thought to persist because of disproportionate amounts of inhibition imposed from the contralesional on the ipsilesional hemisphere. Thus, one rehabilitation strategy involves discouraging engagement of the contralesional hemisphere by only engaging the impaired upper limb with intensive unilateral activities. However, this premise has recently been debated and has been shown to be task specific and/or apply only to a subset of the stroke population. Bilateral rehabilitation, conversely, engages both hemispheres and has been shown to benefit motor recovery. To determine what neurophysiological strategies bilateral therapies may engage, we compared the effects of a bilateral and unilateral based therapy using transcranial magnetic stimulation.

Methods. We adopted a peripheral electrical stimulation paradigm where participants received 1 session of bilateral contralaterally controlled functional electrical stimulation (CCFES) and 1 session of unilateral cyclic neuromuscular electrical stimulation (cNMES) in a repeated-measures design. In all, 15 chronic stroke participants with a wide range of motor impairments (upper extremity Fugl-Meyer score: 15 [severe] to 63 [mild]) underwent single 1-hour sessions of CCFES and cNMES. We measured whether CCFES and cNMES produced different effects on interhemispheric inhibition (IHI) to the ipsilesional hemisphere, ipsilesional corticospinal output, and ipsilateral corticospinal output originating from the contralesional hemisphere.

Results. CCFES reduced IHI and maintained ipsilesional output when compared with cNMES. We found no effect on ipsilateral output for either condition. Finally, the less-impaired participants demonstrated a greater increase in ipsilesional output following CCFES.

Conclusions. Our results suggest that bilateral therapies are capable of alleviating inhibition on the ipsilesional hemisphere and enhancing output to the paretic limb.

 

via Bilateral Contralaterally Controlled Functional Electrical Stimulation Reveals New Insights Into the Interhemispheric Competition Model in Chronic Stroke – David A. Cunningham, Jayme S. Knutson, Vishwanath Sankarasubramanian, Kelsey A. Potter-Baker, Andre G. Machado, Ela B. Plow, 2019

, , , , , , , , , , , ,

Leave a comment

[Abstract] Bilateral Contralaterally Controlled Functional Electrical Stimulation Reveals New Insights Into the Interhemispheric Competition Model in Chronic Stroke

Background. Upper-limb chronic stroke hemiplegia was once thought to persist because of disproportionate amounts of inhibition imposed from the contralesional on the ipsilesional hemisphere. Thus, one rehabilitation strategy involves discouraging engagement of the contralesional hemisphere by only engaging the impaired upper limb with intensive unilateral activities. However, this premise has recently been debated and has been shown to be task specific and/or apply only to a subset of the stroke population. Bilateral rehabilitation, conversely, engages both hemispheres and has been shown to benefit motor recovery. To determine what neurophysiological strategies bilateral therapies may engage, we compared the effects of a bilateral and unilateral based therapy using transcranial magnetic stimulation.

Methods. We adopted a peripheral electrical stimulation paradigm where participants received 1 session of bilateral contralaterally controlled functional electrical stimulation (CCFES) and 1 session of unilateral cyclic neuromuscular electrical stimulation (cNMES) in a repeated-measures design. In all, 15 chronic stroke participants with a wide range of motor impairments (upper extremity Fugl-Meyer score: 15 [severe] to 63 [mild]) underwent single 1-hour sessions of CCFES and cNMES. We measured whether CCFES and cNMES produced different effects on interhemispheric inhibition (IHI) to the ipsilesional hemisphere, ipsilesional corticospinal output, and ipsilateral corticospinal output originating from the contralesional hemisphere.

Results. CCFES reduced IHI and maintained ipsilesional output when compared with cNMES. We found no effect on ipsilateral output for either condition. Finally, the less-impaired participants demonstrated a greater increase in ipsilesional output following CCFES.

Conclusions. Our results suggest that bilateral therapies are capable of alleviating inhibition on the ipsilesional hemisphere and enhancing output to the paretic limb.

via Bilateral Contralaterally Controlled Functional Electrical Stimulation Reveals New Insights Into the Interhemispheric Competition Model in Chronic Stroke – David A. Cunningham, Jayme S. Knutson, Vishwanath Sankarasubramanian, Kelsey A. Potter-Baker, Andre G. Machado, Ela B. Plow,

, , , , , , , , , , , , ,

Leave a comment

[ARTICLE] Long-term outcomes of semi-implantable functional electrical stimulation for central drop foot – Full Text

Abstract

Background

Central drop foot is a common problem in patients with stroke or multiple sclerosis (MS). For decades, it has been treated with orthotic devices, keeping the ankle in a fixed position. It has been shown recently that semi-implantable functional electrical stimulation (siFES) of the peroneal nerve can lead to a greater gait velocity increase than orthotic devices immediately after being switched on. Little is known, however, about long-term outcomes over 12 months, and the relationship between quality of life (QoL) and gait speed using siFES has never been reported applying a validated tool. We provide here a report of short (3 months) and long-term (12 months) outcomes for gait speed and QoL.

Methods

Forty-five consecutive patients (91% chronic stroke, 9% MS) with central drop foot received siFES (Actigait®). A 10 m walking test was carried out on day 1 of stimulation (T1), in stimulation ON and OFF conditions, and repeated after 3 (T2) and 12 (T3) months. A 36-item Short Form questionnaire was applied at all three time points.

Results

We found a main effect of stimulation on both maximum (p < 0.001) and comfortable gait velocity (p < 0.001) and a main effect of time (p = 0.015) only on maximum gait velocity. There were no significant interactions. Mean maximum gait velocity across the three assessment time points was 0.13 m/s greater with stimulation ON than OFF, and mean comfortable gait velocity was 0.083 m/s faster with stimulation ON than OFF. The increase in maximum gait velocity over time was 0.096 m/s, with post hoc testing revealing a significant increase from T1 to T2 (p = 0.012), which was maintained but not significantly further increased at T3. QoL scores showed a main effect of time (p < 0.001), with post hoc testing revealing an increase from T1 to T2 (p < 0.001), which was maintained at T3 (p < 0.001). Finally, overall absolute QoL scores correlated with the absolute maximum and comfortable gait speeds at T2 and T3, and the increase in overall QoL scores correlated with the increase in comfortable gait velocity from T1 to T3. Pain was reduced at T2 (p < 0.001) and was independent of gait speed but correlated with overall QoL (p < 0.001).

Conclusions

Peroneal siFES increased maximal and comfortable gait velocity and QoL, with the greatest increase in both over the first three months, which was maintained at one year, suggesting that 3 months is an adequate follow-up time. Pain after 3 months correlated with QoL and was independent of gait velocity, suggesting pain as an independent outcome measure in siFES for drop foot.

 

Introduction

Drop foot is a common symptom in patients suffering from first motor neuron lesions, such as due to stroke and multiple sclerosis (MS). It is characterized by impaired lifting of the forefoot from the ground during the swing phase of walking and by a lack of stability during the early stance phase. Drop foot results in an altered gait pattern [3] and increased risk of falls [8]. Application of an ankle foot orthosis (AFO) is the traditional approach to improving gait pattern and reducing falls. However, it is not well-tolerated in all patients [10]. In recent years, gait improvement has been achieved using functional electrical stimulation (FES) [110162325], which combines the orthotic benefits of an AFO with a more physiological approach that involves muscle contraction and the related sensory feedback [1025]. Transcutaneous FES (tcFES) of the peroneal nerve has been associated with significantly reduced falls compared to intensive physiotherapy [7]. Indeed, 69% of the falls in this FES group occurred when the system was not used. Moreover, a systematic review of FES in MS patients indicates increased gait speed using FES [19]. Semi-implantable FES (siFES) of the peroneal nerve has been found to increase gait speed and improve gait patterns compared with a baseline without stimulation [61017], compared to orthotic devices [123], and also compared to tcFES [17]. The findings of a systematic review, including predominantly chronic stroke patients, however, did not suggest a difference between tcFES and siFES in terms of walking speed [13]. An implantable stimulator does, however, offer the advantage of avoiding the need for daily optimization of stimulator location [28] and potential skin lesions associated with surface stimulation electrodes. Moreover, the possibility of using a 4-channel implantable system, with independent control of each channel, means that the volume of tissue activated within the nerve can be individually selected, in order to optimize dorsiflexion of the foot while avoiding stimulation of the sensory fascicles of the common peroneal nerve [10]. Here we retrospectively hypothesised that increases in gait speed are associated with improvements in quality of life (QoL). Furthermore, we assumed pain scores had improved under therapy and expected them to be related to the overall QoL, and we hypothesised that increased gait velocity would have resulted in improvement of both physical and emotional subscores of the QoL. To address these hypotheses, we evaluated improvement in gait velocity in the largest cohort of patients to date, with stimulation ON and OFF, at three time points over 1 year, to assess the short- and long-term effects of siFES, examining correlation between gait speed and QoL, as well as between changes in these factors, over a year of continuous treatment.

Most studies of implantable systems for stroke to date cover observation periods of 3 to 6 months post-surgery and suggest siFES provides a promising approach to managing drop foot. An increase in gait velocity and endurance, as well as an improvement in QoL, was observed 3–6 weeks post-operatively in a cohort of 27 patients receiving siFES [17]. Trials applying tcFES, which has been available since the early seventies [27], have tended to employ standardized and stratified re-examination, with early and long-term follow-up periods, such as 6 and 12 weeks [16], 3 and 12 months [25], and 24 days and 3 years [28]. A recent long-term multi-centre study applying siFES reported an improved gait pattern in a cohort of 10 stroke patients 6 months following siFES activation and in a separate cohort of 12 stroke patients 1 year after activation [1]. Their findings suggested greater knee stability, ankle plantarflexion power, and propulsion than that provided by an AFO. Here, we examined both the short- and long-term effects of using multichannel peroneal siFES in the largest patient group thus far reported, including both stroke and MS patients. The independent association between slow gait velocity and an increased risk of falls [8] renders gait velocity a valid surrogate parameter for the orthotic functionality of devices aiming to improve the limitations of drop foot. We aimed to investigate whether gait velocity improvements translate into QoL changes. Long-term follow-up (one year or longer) has been reported for large cohorts (more than 20 patients) using tcFES [2528], and for a smaller cohort (N = 12) using siFES [1]. Long-term follow-up in a large cohort of patients receiving siFES and evaluating QoL has not yet been reported. The particular strengths of the current study are the large cohort, the inclusion of short- and long-term follow-up, and the evaluation of QoL and its correlation with gait speed.[…]

 

Continue —>  Long-term outcomes of semi-implantable functional electrical stimulation for central drop foot | Journal of NeuroEngineering and Rehabilitation | Full Text

Fig. 1Gait speed (m/s) in relation to duration of therapy with stimulation ON and OFF. a. Maximum gait velocity. Main effect of stimulation and time. Post hoc testing: significant difference from day 1 to month 3 (*). b. Comfortable gait velocity. Main effect of stimulation only. Error bars = standard error of the mean

, , , , ,

Leave a comment

[VIDEO] FES (Functional Electrical Stimulation) System by FES Center India – YouTube

Functional Electrical Stimulation (FES): Best and latest treatment for Neurological rehabilitation/ Physiotherapy

FES is a technique that utilizes patterned electrical stimulation of neural tissue with the purpose of restoring or enhancing a lost or diminished function. It produces contractions in paralysed muscles by the application of small pulses of electrical stimulation to nerves that supply the paralysed muscle. The stimulation is controlled in such a way that the movement produced provides useful function.

FES is used as a tool to assist walking and also as a means of practicing various functional movements for therapeutic benefit. FES may be used to replace the natural electrical signals from the brain, helping the weak or paralyzed limbs move again. With continued stimulation over time, the brain may even be able to recapture and relearn this movement without the stimulation.

Use of “FES (Functional Electrical Stimulation) System India” for treatment of Foot Drop due to Hemiplegia. FES is a novel device for treatment/ rehabilitation of Neurological diseases. FES System India has many applications like

  1. Sit to stand training
  2. Pre Gait Training
  3. Correction of Foot Drop,
  4. Correction of Circumductory Gait

  5. for Paraplegia (Incomplete SCI) using FES unit on both sides

  6. Shoulder subluxation and shoulder rehabilitation

  7. Hand Function (Grasp and release)

This novel treatment is useful for all type of UMN disorders like hemiplegia (Cerebro Vascular Accident, Head Injury, Traumatic Brain injury, Brain tumor ), multiple scerosis, cerebral palsy, incomplete paraplegia etc.

contact “FES Center India” to buy FES System.

mail: fescenterindia@gmail.com

For more details visit: http://www.fescenterindia.com

via FES (Functional Electrical Stimulation) System by FES Center India – YouTube

, , , , ,

Leave a comment

%d bloggers like this: