Posts Tagged Functional electrical stimulation

[ARTICLE] Adaptive hybrid robotic system for rehabilitation of reaching movement after a brain injury: a usability study – Full Text



Brain injury survivors often present upper-limb motor impairment affecting the execution of functional activities such as reaching. A currently active research line seeking to maximize upper-limb motor recovery after a brain injury, deals with the combined use of functional electrical stimulation (FES) and mechanical supporting devices, in what has been previously termed hybrid robotic systems. This study evaluates from the technical and clinical perspectives the usability of an integrated hybrid robotic system for the rehabilitation of upper-limb reaching movements after a brain lesion affecting the motor function.


The presented system is comprised of four main components. The hybrid assistance is given by a passive exoskeleton to support the arm weight against gravity and a functional electrical stimulation device to assist the execution of the reaching task. The feedback error learning (FEL) controller was implemented to adjust the intensity of the electrical stimuli delivered on target muscles according to the performance of the users. This control strategy is based on a proportional-integral-derivative feedback controller and an artificial neural network as the feedforward controller. Two experiments were carried out in this evaluation. First, the technical viability and the performance of the implemented FEL controller was evaluated in healthy subjects (N = 12). Second, a small cohort of patients with a brain injury (N = 4) participated in two experimental session to evaluate the system performance. Also, the overall satisfaction and emotional response of the users after they used the system was assessed.


In the experiment with healthy subjects, a significant reduction of the tracking error was found during the execution of reaching movements. In the experiment with patients, a decreasing trend of the error trajectory was found together with an increasing trend in the task performance as the movement was repeated. Brain injury patients expressed a great acceptance in using the system as a rehabilitation tool.


The study demonstrates the technical feasibility of using the hybrid robotic system for reaching rehabilitation. Patients’ reports on the received intervention reveal a great satisfaction and acceptance of the hybrid robotic system.


Upper limb hemiparesis is one of the most common consequences after a brain injury accident [1]. This motor impairment has an adverse impact on the quality of life of survivors since it hinders the execution of activities of daily living. From the rehabilitation perspective, it is widely accepted that high-intensity and repetitive task-specific practice is the most effective principle to promote motor recovery after a brain injury [12]. However, traditional rehabilitation treatment offers a dose of movement repetition that is in most cases insufficient to facilitate neural reorganization [3]. In response to these current clinical shortcomings, there is a clear interest in alternative rehabilitation methods that improve the arm motor functionality of brain injury survivors.

Hybrid robotic systems for motor rehabilitation are a promising approach that combine the advantages of robotic support or assistive devices and functional electrical stimulation (FES) technologies to overcome their individual limitations and to offer more robust rehabilitation interventions [4]. Despite the potential benefits of using hybrid robotic systems for arm rehabilitation, a recent published review shows that only a few hybrid systems presented in the literature were tested with stroke patients [4]. Possible reasons could be the difficulties arising from the integration of both assistive technologies or the lack of integrated platforms that can be easily setup and used.

End-effector robotic devices combined with FES represent the most typical hybrid systems used to train reaching tasks under constrained conditions [567]. With these systems, patients’ forearms are typically restricted to the horizontal plane to isolate the training of the elbow extension movement. The main advantage of this approach is the simplicity of the setup, with only 1 Degree of Freedom (DoF). However, to maximize the treatment’s outcomes and achieve functional improvement it is necessary to train actions with higher range of motion (> 1 DoF) and functional connotations [89]. Yet, the complexity for driving a successful movement execution in such scenarios requires the implementation of a robust and reliable FES controller.

The appropriate design and implementation of FES controllers play a key role to achieve stable and robust motion control in hybrid robotic systems. The control strategy must be able to drive all the necessary joints to realize the desired movement, and compensate any disturbances to the motion, i.e. muscle fatigue onset as well as the strong nonlinear and time-varying response of the musculoskeletal system to FES [1011]. Consequently, open-loop and simple feedback controllers (e.g. proportional-integral-derivative -PID-) are not robust enough to cope with these disturbances [812]. Meadmore et al. presented a more suitable hybrid robotic system for functional rehabilitation scenarios [13]. They implemented a model-based iterative learning controller (ILC) that adjusts the FES intensity based on the tracking error of the previously executed movement (see [1314] for a detail description of the system). This iterative adjustment allows compensating for disturbances caused by FES. Although this approach addresses some of the issues regarding motion control with FES, it requires a detailed mathematical description of the musculoskeletal system to work properly. In this context, unmodeled dynamics and the linearization of the model can reduce the robustness of the controller performance. Also, the identification of the model’s parameters is complex and time consuming, which limits its applicability in clinical settings [1112].

The Feedback Error Learning (FEL) scheme proposed by Kawato [15] can be considered as an alternative to ILC. This scheme was developed to describe how the central nervous system acquires an internal model of the body to improve the motor control. Under this scheme, the motor control command of a feedback controller is used to train a feedforward controller to learn implicitly the inverse dynamics of the controlled system on-line (i.e. the arm). Complementary, this on-line learning procedure also allows the controller to adapt and compensate for disturbances. In contrast with the ILC, the main advantage of this strategy is that the controller does not require an explicit model of the controlled system to work correctly and that it can directly learn the non-linear characteristic of the controlled system. Therefore, using the FEL control strategy to control a hybrid robotic system can simplify the setup of the system considerably, which makes easier to deploy it in clinical settings as well as personalize its response according to each patient’s musculoskeletal characteristics and movement capabilities. The FEL has been used previously to control the wrist [16] and the lower limb [17] motion with FES in healthy subjects; but it has not been tested on brain injury patients. In a previous pilot study, we partially showed the suitability of the FEL scheme in hybrid robotic systems for reaching rehabilitation with healthy subjects [18]. However, a rigorous and robust analysis has not been presented neither this concept has not been tested with motor impaired patients.

The main objective of this study is to verify the usability of a fully integrated hybrid robotic system based on an FEL scheme for rehabilitation of reaching movement in brain injury patients. To attain such objective two-step experimentation was followed. The first part consists of demonstrating the technical viability and learning capability of the developed FEL controller to drive the execution of a coordinated shoulder-elbow joint movement. The second part consists of testing the usability of the platform with brain injury patients in a more realistic rehabilitation scenario. For this purpose, we assessed the patients’ performance and overall satisfaction and emotional response after using the system.


In this section, we present the hybrid robotic system for the rehabilitation of reaching movement in patients with a brain injury. The system focuses on aiding users to move their paretic arm towards specific distal directions in the space. During the execution of the reaching task, the FEL controller adjusts the intensities of the electrical stimuli delivered to target muscles in order to aid the subjects in tracking accurately the target paths.

Description of the hybrid rehabilitation platform for reaching rehabilitation

Figure 1 shows the general overview of the developed platform. This rehabilitation platform is composed of four main components: the hybrid assistive device (upper limb exoskeleton + FES device); the high-level controller (HLC); the visual feedback and; the user interface. […]

Fig. 1 a General overview of the presented hybrid robotic platform for reaching rehabilitation. bVisual feedback provided to the users. The green ball represents the actual arm position, the blue cross is the reference trajectory, the initial and final position are represented by the gray ball and red square respectively. c Interface for system configuration

Source: Adaptive hybrid robotic system for rehabilitation of reaching movement after a brain injury: a usability study | Journal of NeuroEngineering and Rehabilitation | Full Text


, , , ,

Leave a comment

[VIDEO] Bioness L300 Go Technology Introduction – YouTube

Published on Sep 25, 2017
L300 Go is a functional electrical stimulation (FES) system that satisfies the productivity demands of today’s value-based healthcare system. Key aspects of the L300 experience have been dramatically improved with 3D Motion Detection, multi-channel stimulation, Smart Bluetooth® programming and a home user mobile app that tracks activity to keep patients engaged in the rehabilitation process. All of this in a streamlined design, with a fitting process that is faster and easier than ever before.

, , , , ,

Leave a comment

[WEB SITE] Bioness Announces Commercial Availability of the L300 Go™ System to Healthcare Professionals

Source: Bioness Announces Commercial Availability of the L300 Go™ System to Healthcare Professionals

, , , , , ,

Leave a comment

[Review] Review of devices used in neuromuscular electrical stimulation for stroke rehabilitation – PDF


Neuromuscular electrical stimulation (NMES), specifically functional electrical stimulation (FES) that compensates for voluntary motion, and therapeutic electrical stimulation (TES) aimed at muscle strengthening and recovery from paralysis are widely used in stroke rehabilitation. The electrical stimulation of muscle contraction should be synchronized with intended motion to restore paralysis. Therefore, NMES devices, which monitor electromyogram (EMG) or electroencephalogram (EEG) changes with motor intention and use them as a trigger, have been developed. Devices that modify the current intensity of NMES, based on EMG or EEG, have also been proposed. Given the diversity in devices and stimulation methods of NMES, the aim of the current review was to introduce some commercial FES and TES devices and application methods, which depend on the condition of the patient with stroke, including the degree of paralysis.

Download Full Text PDF

, , , ,

Leave a comment

[Abstract] Preliminary results of testing the recoveriX system on stroke patients 


Motor imagery based brain-computer interfaces (BCI) extract the movement intentions of subjects in real-time and can be used to control a cursor or medical devices. In the last years, the control of functional electrical stimulation (FES) devices drew researchers’ attention for the post-stroke rehabilitation field. In here, a patient can use the movement imagery to artificially induce movements of the paretic arms through FES in real-time.

Five patients who had a stroke that affected the motor system participated in the current study, and were trained across 10 to 24 sessions lasting about 40 min each with the recoveriX® system. The patients had to imagine 80 left and 80 right hand movements. The electroencephalogram (EEG) data was analyzed with Common Spatial Patterns (CSP) and linear discriminant analysis (LDA) and a feedback was provided in form of a cursor on a computer screen. If the correct imagination was classified, the FES device was also activated to induce the right or left hand movement.

In at least one session, all patients were able to achieve a maximum accuracy above 96%. Moreover, all patients exhibited improvements in motor function. On one hand, the high accuracies achieved within the study show that the patients are highly motivated to participate into a study to improve their lost motor functions. On the other hand, this study reflects the efficacy of combining motor imagination, visual feedback and real hand movement that activates tactile and proprioceptive systems.

Source: O174 Preliminary results of testing the recoveriX system on stroke patients – Clinical Neurophysiology

, , , , , , , , , , , ,

Leave a comment

[Abstract] Towards an ankle neuroprosthesis for hybrid robotics: Concepts and current sources for functional electrical stimulation


Hybrid rehabilitation robotics combine neuro-prosthetic devices (close-loop functional electrical stimulation systems) and traditional robotic structures and actuators to explore better therapies and promote a more efficient motor function recovery or compensation. Although hybrid robotics and ankle neuroprostheses (NPs) have been widely developed over the last years, there are just few studies on the use of NPs to electrically control both ankle flexion and extension to promote ankle recovery and improved gait patterns in paretic limbs. The aim of this work is to develop an ankle NP specifically designed to work in the field of hybrid robotics. This article presents early steps towards this goal and makes a brief review about motor NPs and Functional Electrical Stimulation (FES) principles and most common devices used to aid the ankle functioning during the gait cycle. It also shows a current sources analysis done in this framework, in order to choose the best one for this intended application.

Source: Towards an ankle neuroprosthesis for hybrid robotics: Concepts and current sources for functional electrical stimulation – IEEE Xplore Document

, , , , , , , , , ,

Leave a comment

[ARTICLE] Robot Assisted Training for the Upper Limb after Stroke (RATULS): study protocol for a randomised controlled trial – Full Text



Loss of arm function is a common and distressing consequence of stroke. We describe the protocol for a pragmatic, multicentre randomised controlled trial to determine whether robot-assisted training improves upper limb function following stroke.


Study design: a pragmatic, three-arm, multicentre randomised controlled trial, economic analysis and process evaluation.

Setting: NHS stroke services.

Participants: adults with acute or chronic first-ever stroke (1 week to 5 years post stroke) causing moderate to severe upper limb functional limitation.

Randomisation groups:

1. Robot-assisted training using the InMotion robotic gym system for 45 min, three times/week for 12 weeks

2. Enhanced upper limb therapy for 45 min, three times/week for 12 weeks

3. Usual NHS care in accordance with local clinical practice

Randomisation: individual participant randomisation stratified by centre, time since stroke, and severity of upper limb impairment.

Primary outcome: upper limb function measured by the Action Research Arm Test (ARAT) at 3 months post randomisation.

Secondary outcomes: upper limb impairment (Fugl-Meyer Test), activities of daily living (Barthel ADL Index), quality of life (Stroke Impact Scale, EQ-5D-5L), resource use, cost per quality-adjusted life year and adverse events, at 3 and 6 months.

Blinding: outcomes are undertaken by blinded assessors.

Economic analysis: micro-costing and economic evaluation of interventions compared to usual NHS care. A within-trial analysis, with an economic model will be used to extrapolate longer-term costs and outcomes.

Process evaluation: semi-structured interviews with participants and professionals to seek their views and experiences of the rehabilitation that they have received or provided, and factors affecting the implementation of the trial.

Sample size: allowing for 10% attrition, 720 participants provide 80% power to detect a 15% difference in successful outcome between each of the treatment pairs. Successful outcome definition: baseline ARAT 0–7 must improve by 3 or more points; baseline ARAT 8–13 improve by 4 or more points; baseline ARAT 14–19 improve by 5 or more points; baseline ARAT 20–39 improve by 6 or more points.


The results from this trial will determine whether robot-assisted training improves upper limb function post stroke.


Stroke is the commonest cause of complex adult disability in high-income countries [1]. Loss of arm function affects 69% of people who have a stroke [2]. Only 12% of people with arm weakness at the onset of stroke make a full recovery [3]. Improving arm function has been identified as a research priority by stroke survivors, carers and health professionals who report that current rehabilitation pays insufficient attention to arm recovery [4].

Robot-assisted training enables a greater number of repetitive tasks to be practised in a consistent and controllable manner. Repetitive task training is known to drive Hebbian plasticity, where wiring of pathways that are coincidently active is strengthened [5, 6]. A dose of greater than 20 h of repetitive task training improves upper limb motor recovery following a stroke [7] and, therefore, robot-assisted training has the potential to improve arm motor recovery after stroke. We anticipate that Hebbian neuroplasticity, which is learning dependent, will operate regardless of the post-stroke phase.

A Cochrane systematic review of electromechanical and robot-assisted arm training after stroke reported outcomes from a total of 1160 patients who participated in 34 randomised controlled trials (RCTs). Improvements in arm function (standardised mean difference (SMD) 0.35, 95% confidence interval (CI), 0.18–0.51) and activities of daily living (SMD 0.37, 95% CI, 0.11–0.64) were found in patients who received this treatment, but studies were often of low quality [8]. In the UK there is currently insufficient evidence to justify the use of this technology in routine clinical practice.

In addition, studies which suggest that robot-assisted training may improve upper limb function after stroke should be treated with caution as participants who were randomised to receive robot-assisted training may have also received an increased intensity of rehabilitation sessions (e.g. frequency or duration) compared to participants in the control groups. Greater intensity of upper limb rehabilitation sessions has been shown to improve upper limb functional outcomes [7], and a meta-analysis of robot-assisted training RCTs reported that if control group therapy sessions were delivered at the same frequency and duration, there was no additional functional improvement [9]. Studies are required which provide further direct evidence of the effectiveness of robot-assisted training without the confounding effect of therapy dose.

The aim of the Robot Assisted Training for the Upper Limb after Stroke (RATULS) trial is to evaluate the clinical and cost-effectiveness of robot-assisted training compared to an upper limb therapy programme of the same frequency and duration, and usual post-stroke care.

The null hypothesis is that there is no difference in upper limb function at 3 months between study participants who receive robot-assisted training and those who receive an enhanced upper limb therapy programme and those who receive usual post-stroke care. The RATULS trial will be making comparisons of the effectiveness of rehabilitation on upper limb function between all three pairs of trial arms.

Source: Robot Assisted Training for the Upper Limb after Stroke (RATULS): study protocol for a randomised controlled trial | Trials | Full Text


, , , , , , , , , , , ,

Leave a comment

[BLOG POST] Foot Drop Implants Market Analysis and Forecasts 2025

Foot drop can be defined as an abnormality in the gait where the forefoot drops due to factors such as weakness of the ankle and toe dorsiflexion. The abnormality is also caused by paralysis of the muscles in the anterior portion of the lower leg or damage to the fibular nerve. Foot drop can be associated with various conditions, including peripheral nerve injuries, neuropathies, drug toxicities, dorsiflexor injuries, and diabetes. Anatomic, muscular, and neurologic are the three categories of foot drop.

Functional electrical stimulation technology is employed in the foot drop implant to improve the gait of patients and avoid foot drop or tripping while walking. Functional electric stimulators (FES) can either be implanted within the patient’s body or employed externally. External FES is tested on the patient prior to its implantation. Implant FES involves a surgery in which the electrodes are directly placed on the nerves of the patient, which are controlled by the implant placed under the skin. The FES device activates the implant through a wireless antenna that is worn outside the body. Sensors are also associated with FES which trigger events in the walking pattern such as lifting of the heel, thereby stimulating the nerves.

The advantages of implant FES include reduction in sensation that is associated with external stimulation. In addition, it eliminates the need to adjust the electrodes on the skin on a daily basis. Rise in number of foot drop disorders due to nerve injuries, growth in knee and hip replacement therapies that lead to foot drop disorders, and increase in the number of sports related injuries contribute to the growth of the foot drop implants market. Foot drop disorders are commonly observed in diabetic retinopathy patients and this prevalence is growing due to increase in incidence of diabetes, which is propelling the growth of the market. Furthermore, the market players are focus on research and development to increase the number of foot drop implant products available in the market, driving the market growth. However, lack of reimbursement, high cost of the implants, and low awareness among the people are likely to hinder the growth of the foot drop implants market in the near future.

Get Sample Copy of this Report @

The global foot drop implants market can be segmented on the basis of product, end-user, and region. On the basis of product, the market is categorized into functional electrical stimulators and internal fixation devices. The internal fixation devices segment is anticipated to record a significant growth during the forecast period owing to increasing demand for the devices and advantages offered by these devices such as elimination of the need to stimulate the electrodes daily. Based on end-user, the market can be segmented into hospitals, orthopedic centers, and palliative care centers, among others. The orthopedic centers segment is anticipated to record a high growth during the forecast period due to the increasing number of foot drop cases due to injuries.

Geographically, the foot drop implants market is distributed over North America, Latin America, Europe, Asia Pacific, and Middle East & Africa. North America dominated the market in 2016 and is anticipated to continue its dominance during the forecast period. The significant growth of the market in the region can be attributed to the strong focus on research and development, increase in health care spending, and growth in awareness about the abnormality. The sluggish economy might have a negative impact on the market growth of Europe. Asia Pacific is anticipated to record a high CAGR during the forecast period, primarily driven by India and China. The rising disposable income is anticipated to contribute to the growth of the Asia Pacific market. In addition, a factor contributing to the market growth is rise in prevalence of diabetes that leads to diabetic retinopathy, which is one of the primary causes of foot drop.

View Report @

Key players operating in the foot drop implants market include Finetech Medical, Arthrex, Inc., Zimmer Biomet, Bioness Inc., Stryker Corporation, Wright Medical Group N.V., Ottobock, Narang Medical Limited, PONTiS Orthopaedics, LLC, and Shanghai MicroPort Orthopedics.

About Us

Transparency Market Research (TMR) is a market intelligence company, providing global business information reports and services. Our exclusive blend of quantitative forecasting and trends analysis provides forward-looking insight for thousands of decision makers. TMR’s experienced team of analysts, researchers, and consultants, use proprietary data sources and various tools and techniques to gather, and analyze information. Our business offerings represent the latest and the most reliable information indispensable for businesses to sustain a competitive edge.

Each TMR syndicated research report covers a different sector – such as pharmaceuticals, chemicals, energy, food & beverages, semiconductors, med-devices, consumer goods and technology. These reports provide in-depth analysis and deep segmentation to possible micro levels. With wider scope and stratified research methodology, TMR’s syndicated reports strive to provide clients to serve their overall research requirement.

US Office Contact

90 State Street, Suite 700

Albany, NY 12207

Tel: +1-518-618-1030

USA – Canada Toll Free: 866-552-3453



Source: Foot Drop Implants Market Analysis and Forecasts 2025 | Medgadget

, , , , , ,

Leave a comment

[ARTICLE] Neural Plasticity in Moderate to Severe Chronic Stroke Following a Device-Assisted Task-Specific Arm/Hand Intervention – Full Text

Currently, hand rehabilitation following stroke tends to focus on mildly impaired individuals, partially due to the inability for severely impaired subjects to sufficiently use the paretic hand. Device-assisted interventions offer a means to include this more severe population and show promising behavioral results. However, the ability for this population to demonstrate neural plasticity, a crucial factor in functional recovery following effective post-stroke interventions, remains unclear. This study aimed to investigate neural changes related to hand function induced by a device-assisted task-specific intervention in individuals with moderate to severe chronic stroke (upper extremity Fugl-Meyer < 30). We examined functional cortical reorganization related to paretic hand opening and gray matter (GM) structural changes using a multimodal imaging approach. Individuals demonstrated a shift in cortical activity related to hand opening from the contralesional to the ipsilesional hemisphere following the intervention. This was driven by decreased activity in contralesional primary sensorimotor cortex and increased activity in ipsilesional secondary motor cortex. Additionally, subjects displayed increased GM density in ipsilesional primary sensorimotor cortex and decreased GM density in contralesional primary sensorimotor cortex. These findings suggest that despite moderate to severe chronic impairments, post-stroke participants maintain ability to show cortical reorganization and GM structural changes following a device-assisted task-specific arm/hand intervention. These changes are similar as those reported in post-stroke individuals with mild impairment, suggesting that residual neural plasticity in more severely impaired individuals may have the potential to support improved hand function.


Nearly 800,000 people experience a new or recurrent stroke each year in the US (1). Popular therapies, such as constraint-induced movement therapy (CIMT), utilize intense task-specific practice of the affected limb to improve arm/hand function in acute and chronic stroke with mild impairments (2, 3). Neuroimaging results partially attribute the effectiveness of these arm/hand interventions to cortical reorganization in the ipsilesional hemisphere following training in acute and mild chronic stroke (4). Unfortunately, CIMT requires certain remaining functionality in the paretic hand to execute the tasks, and only about 10% of screened patients are eligible (5), thus disqualifying a large population of individuals with moderate to severe impairments. Recently, studies using device-assisted task-specific interventions specifically targeted toward moderate to severe chronic stroke reported positive clinical results (68). However, these studies primarily focus on clinical measures, but it is widely accepted that neural plasticity is a key factor for determining outcome (911). Consequently, it remains unclear whether moderate to severe chronic stroke [upper extremity Fugl-Meyer Assessment (UEFMA) < 30] maintains the ability to demonstrate neural changes following an arm/hand intervention.

Neural changes induced by task-specific training have been investigated widely using animal models (12). For instance, monkeys or rodents trained on a skilled reach-to-grasp task express enlarged representation of the digits of the hand or forelimb in primary motor cortex (M1) following training as measured by intracortical microstimulation (13, 14). Additionally, rapid local structural changes in the form of dendritic growth, axonal sprouting, myelination, and synaptogenesis occur (1518). Importantly, both cortical and structural reorganization corresponds to motor recovery following rehabilitative training in these animals (19, 20).

The functional neural mechanisms underlying effective task-specific arm/hand interventions in acute and chronic stroke subjects with mild impairments support those seen in the animal literature described above. Several variations of task-specific combined arm/hand interventions, including CIMT, bilateral task-specific training, and hand-specific robot-assisted practice, have shown cortical reorganization such as increased sensorimotor activity and enlarged motor maps in the ipsilesional hemisphere related to the paretic arm/hand (2124). These results suggest increased recruitment of residual resources from the ipsilesional hemisphere and/or decreased recruitment of contralesional resources following training. Although the evidence for a pattern of intervention-driven structural changes remains unclear in humans, several groups have shown increases in gray matter (GM) density in sensorimotor cortices (25), along with increases in fractional anisotropy in ipsilesional corticospinal tract (CST) (26) following task-specific training in acute and chronic stroke individuals with mild impairments.

The extensive nature of neural damage in moderate to severe chronic stroke may result in compensatory mechanisms, such as contralesional or secondary motor area recruitment (27). These individuals show increased contralesional activity when moving their paretic arm, which correlates with impairment (28, 29) and may be related to the extent of damage to the ipsilesional CST (30). This suggests that more impaired individuals may increasingly rely on contralesional corticobulbar tracts such as the corticoreticulospinal tract to activate the paretic limb (29). These tracts lack comparable resolution and innervation to the distal parts of the limb, thus sacrificing functionality at the paretic arm/hand (31). Since this population is largely ignored in current arm/hand interventions, it is unknown whether an arm/hand intervention for these more severely impaired post-stroke individuals will increase recruitment of residual ipsilesional corticospinal resources. These ipsilesional CSTs maintain the primary control of hand and finger extensor muscles (32) and are thus crucial for improved hand function. Task-specific training assisted by a device may reengage and strengthen residual ipsilesional corticospinal resources by training distal hand opening together with overall arm use.

The current study seeks to determine whether individuals with moderate to severe chronic stroke maintain the ability to show cortical reorganization and/or structural changes alongside behavioral improvement following a task-specific intervention. We hypothesize that following a device-assisted task-specific intervention, moderate to severe chronic stroke individuals will show similar functional and structural changes as observed in mildly impaired individuals, demonstrated by (i) a shift in cortical activity related to paretic hand opening from the contralesional hemisphere toward the ipsilesional hemisphere and (ii) an increase in GM density in sensorimotor cortices in the ipsilesional hemisphere.[…]

Continue —> Frontiers | Neural Plasticity in Moderate to Severe Chronic Stroke Following a Device-Assisted Task-Specific Arm/Hand Intervention | Neurology

Figure 5. Statistical maps of gray matter (GM) density changes across all patients. Significant increases (red/yellow) and decreases (Blue) in GM density are depicted on sagittal, coronal, and axial sections (left to right) on Montreal Neurological Institute T1 slices. Sections show the maximum effect on (A) ipsilesioned M1/S1, (B) contralesional M1/S1, and (C) ipsilesional thalamus. Les indicates the side of the lesioned hemisphere. Color maps indicate the t values at every voxel. A statistical threshold was set at p < 0.001 uncorrected.

, , , , , , , , , , ,

Leave a comment

[VIDEO] Ottobock ActiGait Explained Functional Electrical Stimulation FES – YouTube

, , , ,

Leave a comment

%d bloggers like this: