Posts Tagged Functional electrical stimulation

[Abstract + References] A Multi-channel EMG-Driven FES Solution for Stroke Rehabilitation – Conference paper

Abstract

Functional electrical stimulation (FES) has been applied to stroke rehabilitation for many years. However, users are usually involved in open-loop fixed cycle FES systems in clinical, which is easy to cause muscle fatigue and reduce rehabilitation efficacy. This paper proposes a multi-surface EMG-driven FES integration solution for enhancing upper-limb stroke rehabilitation. This wireless portable system consists of sEMG data acquisition module and FES module, the former is used to capture sEMG signals, the latter of multi-channel FES output can be driven by the sEMG. Preliminary experiments proved that the system has outperformed existing similar systems and that sEMG can be effectively employed to achieve different FES intensity, demonstrating the potential for active stroke rehabilitation.

References

  1. 1.
    Lynch, C.L., Popovic, M.R.: Functional electrical stimulation. IEEE Control Syst. 28(2), 40–50 (2008)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Liberson, W.: Functional electrotherapy: stimulation of the peroneal nerve synchronized with the swing phase of the gait of hemiplegic patients. Arch. Phys. Med. Rehabil. 42, 101 (1961)Google Scholar
  3. 3.
    Popović, D.B.: Advances in functional electrical stimulation (FES). J. Electromyogr. Kinesiol. 24(6), 795–802 (2014)CrossRefGoogle Scholar
  4. 4.
    Lyons, G.M., Sinkjær, T., Burridge, J.H., Wilcox, D.J.: A review of portable FES-based neural orthoses for the correction of drop foot. IEEE Trans. Neural Syst. Rehabil. Eng. 10(4), 260–279 (2002)CrossRefGoogle Scholar
  5. 5.
    Edgerton, V.R., Roy, R.R.: Robotic training and spinal cord plasticity. Brain Res. Bull. 78(1), 4–12 (2009)CrossRefGoogle Scholar
  6. 6.
    Lotze, M., Braun, C., Birbaumer, N., Anders, S., Cohen, L.G.: Motor learning elicited by voluntary drive. Brain 126(4), 866–872 (2003)CrossRefGoogle Scholar
  7. 7.
    Quandt, F., Hummel, F.C.: The influence of functional electrical stimulation on hand motor recovery in stroke patients: a review. Exp. Trans. Stroke Med. 6(1), 9 (2014)CrossRefGoogle Scholar
  8. 8.
    Hong, I.K., Choi, J.B., Lee, J.H.: Cortical changes after mental imagery training combined with electromyography-triggered electrical stimulation in patients with chronic stroke. Stroke 43(9), 2506–2509 (2012)CrossRefGoogle Scholar
  9. 9.
    Fujiwara, T.: Motor improvement and corticospinal modulation induced by hybrid assistive neuromuscular dynamic stimulation (hands) therapy in patients with chronic stroke. Neurorehabilitation Neural Repair 23(2), 125–132 (2009)CrossRefGoogle Scholar
  10. 10.
    Fang, Y., Zhu, X., Liu, H.: Development of a surface EMG acquisition system with novel electrodes configuration and signal representation. In: Lee, J., Lee, M.C., Liu, H., Ryu, J.-H. (eds.) ICIRA 2013. LNCS (LNAI), vol. 8102, pp. 405–414. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-40852-6_41CrossRefGoogle Scholar
  11. 11.
    Forvi, E., et al.: Preliminary technological assessment of microneedles-based dry electrodes for biopotential monitoring in clinical examinations. Sens. Actuators A Phys. 180, 177–186 (2012)CrossRefGoogle Scholar

via A Multi-channel EMG-Driven FES Solution for Stroke Rehabilitation | SpringerLink

, , , , , , , , ,

Leave a comment

[Abstract + References] Using Orientation Sensors to Control a FES System for Upper-Limb Motor Rehabilitation

Abstract

Contralaterally controlled functional electrical stimulation (CCFES) is a recent therapy aimed at improving the recovery of impaired limbs after stroke. For hemiplegic patients, CCFES uses a control signal from the non-impaired side of the body to regulate the intensity of electrical stimulation delivered to the affected muscles of the homologous limb on the opposite side of the body. CCFES permits an artificial muscular contraction synchronized with the patient’s intentionality to carry out functional tasks, which is a way to enhance neuroplasticity and to promote motor learning. This work presents an upper extremity motor rehabilitation system based on CCFES, using orientation sensors for control. Thus, the stimulation intensity (current amplitude) delivered to the paretic extremity is proportional to the degree of joint amplitude of the unaffected extremity. The implemented controller uses a control strategy that allows the delivered electrical stimulation intensity, to be comparable to the magnitude of movement. It was carried out a set of experiments to validate the overall system, for executing five bilateral mirror movements that include human wrist and elbow joints. Obtained results showed that movements voluntary signals acquired from right upper-limb were replicated successfully on left upper-limb using the FES system.

References

  1. 1.
    World Report on Disability, World Health Organization (WHO) (2011)Google Scholar
  2. 2.
    Moller, A.R.: Neural Plasticity and Disorders of the Nervous System. Cambridge University Press, Cambridge (2006)CrossRefGoogle Scholar
  3. 3.
    Hara, Y., Obayashi, S., Tsujiuchi, K., Muraoka, Y.: The effects of electromyography controlled functional electrical stimulation on upper extremity function and cortical perfusion in stroke patients. Clin. Neurophysiol. 124, 2008–2015 (2013)CrossRefGoogle Scholar
  4. 4.
    Sheffler, L., Chae, J.: Neuromuscular electrical stimulation in neurorehabilitation. Muscle Nerve 35, 562–590 (2007)CrossRefGoogle Scholar
  5. 5.
    Doucet, B.M., Lamb, A., Griffin, L.: Neuromuscular electrical stimulation for skeletal muscle function. Yale J. Biol. Med. 85, 201–215 (2012)Google Scholar
  6. 6.
    Popovic, D.B., Sinkjærc, T., Popovic, M.B.: Electrical stimulation as a means for achieving recovery of function in stroke patients. NeuroRehabilitation 25, 45–58 (2009)Google Scholar
  7. 7.
    Knutson, J.S., Harley, M.Y., Hisel, T.Z., Makowski, N.S., Fu, M.J., Chae, J.: Contralaterally controlled functional electrical stimulation for stroke rehabilitation. In: Proceedings of IEEE Engineering and Medicine and Biology Society, pp. 314–317 (2012)Google Scholar
  8. 8.
    Knutson, J.S., Harley, M.Y., Hisel, T.Z., Makowski, N.S., Chae, J.: Contralaterally controlled functional electrical stimulation for recovery of elbow extension and hand opening after stroke: a pilot case series study. Am. J. Phys. Med. Rehabil. 93(6), 528–539 (2014)CrossRefGoogle Scholar
  9. 9.
    Sabatini, A.M.: Estimating three-dimensional orientation of human body parts by inertial/magnetic sensing. Sensors 11, 1489–1525 (2011)CrossRefGoogle Scholar
  10. 10.
    Filippeschi, A., Schmitz, N., Miezal, M., Bleser, G., Ruffaldi, E., Stricker, D.: Survey of motion tracking methods based on inertial sensors: a focus on upper limb human motion. Sensors 17, 1257 (2017)CrossRefGoogle Scholar
  11. 11.
    Borbély, B.J., Szolgay, P.: Real-time inverse kinematics for the upper limb: a model-based algorithm using segment orientations. Biomed. Eng. Online 2017(16), 21 (2017)CrossRefGoogle Scholar
  12. 12.
    Lynch, C., Popovic, M.: Functional electrical stimulation: closed-loop control of induced muscle contractions. IEEE Control Syst. Mag. 28, 40–49 (2008)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Ferrarin, M., Palazzo, F., Riener, R., Quintern, J.: Model-based control of FES-induced single joint movements. IEEE Trans. Neural Syst. Rehabil. Eng. 9(3), 245–257 (2001)CrossRefGoogle Scholar
  14. 14.
    Knutson, J.S., Gunzler, D.D., Wilson, R.D., Chae, J.: Contralaterally controlled functional electrical stimulation improves hand dexterity in chronic hemiparesis. Stroke. 47(12), 2596–2602 (2016)CrossRefGoogle Scholar

via Using Orientation Sensors to Control a FES System for Upper-Limb Motor Rehabilitation | SpringerLink

, , , , , , , , , ,

Leave a comment

[ARTICLE] FES-UPP: A Flexible Functional Electrical Stimulation System to Support Upper Limb Functional Activity Practice – Full Text

There is good evidence supporting highly intensive, repetitive, activity-focused, voluntary-initiated practice as a key to driving recovery of upper limb function following stroke. Functional electrical stimulation (FES) offers a potential mechanism to efficiently deliver this type of therapy, but current commercial devices are too inflexible and/or insufficiently automated, in some cases requiring engineering support. In this paper, we report a new, flexible upper limb FES system, FES-UPP, which addresses the issues above. The FES-UPP system consists of a 5-channel stimulator running a flexible FES finite state machine (FSM) controller, the associated setup software that guides therapists through the setup of FSM controllers via five setup stages, and finally the Session Manager used to guide the patient in repeated attempts at the activities(s) and provide feedback on their performance. The FSM controller represents a functional activity as a sequence of movement phases. The output for each phase implements the stimulations to one or more muscles. Progression between movement phases is governed by user-defined rules. As part of a clinical investigation of the system, nine therapists used the FES-UPP system to set up FES-supported activities with twenty two patient participants with impaired upper-limbs. Therapists with little or no FES experience and without any programming skills could use the system in their usual clinical settings, without engineering support. Different functional activities, tailored to suit the upper limb impairment levels of each participant were used, in up to 8 sessions of FES-supported therapy per participant. The efficiency of delivery of the therapy using FES-UPP was promising when compared with published data on traditional face-face therapy. The FES-UPP system described in this paper has been shown to allow therapists with little or no FES experience and without any programming skills to set up state-machine FES controllers bespoke to the patient’s impairment patterns and activity requirements, without engineering support. The clinical results demonstrated that the system can be used to efficiently deliver high intensity, activity-focused therapy. Nevertheless, further work to reduce setup time is still required.

Introduction

In the United Kingdom there are more than 100,000 new stroke cases each year and approximately 1.2 million people living with the consequences of stroke (Stroke Association, 2017). In the United Kingdom, during their entire in-patient stay, a typical patient will receive around 5 h of physiotherapy (McHugh and Swain, 2014), with much of that time focused on the rehabilitation of posture, balance and walking (Wit et al., 2005). The consequences of this are that patients do not receive anything approaching the intensity of upper limb therapy that research suggests is needed to drive functional recovery (Clarke et al., 2015). Possibly as a result, long term recovery of the upper limb remains very poor. Almost three quarters of stroke survivors are left with upper limb motor problems (Lawrence et al., 2001), which seriously impact on their quality of life.

There is strong evidence supporting intensive (Lohse et al., 2014), repetitive, activity-focused (Winstein et al., 2004Alon et al., 2007Langhorne et al., 2009), voluntary-initiated (Peckham and Knutson, 2005Knutson et al., 2009) practice for upper limb functional recovery. However, to enable such an approach, without significantly increasing the number of therapists, we need to look to rehabilitation technologies.

A number of rehabilitation technologies have been developed to encourage the recovery of upper limb motor function after stroke, including robotic devices, virtual reality and functional electrical stimulation (FES) systems (Howlett et al., 2015). Studies have shown positive results for FES in the rehabilitation of reaching and grasping function (Thrasher et al., 2008Knutson et al., 2009), elbow extension (Thrasher et al., 2008Hughes et al., 2010), shoulder motion (Hara et al., 2009), and stabilization of wrist joints (Malešević et al., 2012). In addition, FES offers the potential to increase therapy dose at a reasonable cost (Kitago and Krakauer, 2013), in a way that does not need the dedicated attention of a therapist.

Current upper limb FES systems can be categorized according to the methods of control over stimulation. The first group of systems use a push button operated by the patient’s unaffected hand, and/or are pre-programmed to repeat a fixed sequence of timed stimulations (Mann et al., 2005). Commercial systems of this type, which tend to be used largely for passive exercising, include Odstock Medical’s Microstim 2 and 4 Channel Stimulator Kit, and the Bioness H200. The Odstock 2 and 4 channel stimulators offer flexibility over which muscles are stimulated; the H200 (Snoek et al., 2000) offers 5 channels of stimulation, but is limited to stimulation of hand and wrist. Previous studies have suggested that cyclical stimulation is less clinically effective than voluntary triggered stimulation (de Kroon et al., 2005), although debate on this issue continues (Wilson et al., 2016). A recent report identified that the carryover, or therapeutic effect, in drop foot patients was only observed in patients who showed brain activation patterns consistent with movement planning (Gandolla et al., 2016). This supports Rushton’s hypothesis (Rushton, 2003) which proposed that when the F wave resulting from stimulation coincides with voluntary intention to move, connectivity between the intact upper motor and lower motor neurons is strengthened at the spinal cord level. These studies suggest that stimulation delivered without the active involvement of the patient may not be the most effective approach.

The second group of systems attempt to ensure that stimulation coincides with voluntary intention to move; thus increasing the likelihood of effective motor relearning. Examples of systems which use voluntary initiated neural signals to control FES include the EMG-based MeCFES (Thorsen et al., 2001) and STIWELL med4 (Rakos et al., 2007) systems and a small number of demonstrator projects which use brain-computer interface approaches (Müller-Putz et al., 2005Ajiboye et al., 2017). However, reliable surface EMG signal(s) from appropriate muscles are frequently either difficult to measure or absent in people with paretic upper limbs (Bolton et al., 2004Gazzoni, 2010), making EMG-controlled FES difficult to use with certain patients. Additionally, the voluntary effort in producing an EMG signal can increase spasticity, opposing the movement that is intended. Although systems using brain-implanted electrodes have been reported, most of the current EEG controlled systems use non-invasive electrodes, which provide limited information transfer rate, require patients to complete a significant amount of training prior to first use (Scherberger, 2009Bouton et al., 2016), and need frequent re-calibration (Ajiboye et al., 2017).

Motion-controlled FES systems offer an attractive alternative (Mann et al., 2011Sun et al., 2016a,b). An example of a motion controlled system is the Bionic Glove (Prochazka et al., 1997) which uses data from a wrist position sensor to control stimulation of hand and wrist muscles in C6/7 spinal cord injury (SCI) patients. More recently, the Southampton group have reported on a system based on iterative learning control (Meadmore et al., 2014) in which stimulation is applied to the triceps, anterior deltoid and wrist/finger extensors muscles to support specified reaching activities. Stimulation levels are adjusted cycle-to-cycle based on kinematic data collected from previous attempts in such a way that the patient is always challenged. These motion controlled FES systems have the potential to deliver appropriately timed neural inputs to promote re-learning and hence recovery (Rushton, 2003Sheffler and Chae, 2007) and recent studies have reported positive results (Knutson et al., 2012Meadmore et al., 2014), including sustained improvements in function (Persch et al., 2012), and improvements even in patients with severe hand arm paralysis (Popovic et al., 2005Thrasher et al., 2008). However, these systems are generally inflexible in terms of the number and location of muscles to be stimulated (Snoek et al., 2000Alon and McBride, 2003Mann et al., 2011) and/or require engineering support to accommodate a wide range of upper limb activities (Tresadern et al., 2008). Relatively little attention has been paid to the development of easy to use, flexible systems able to support a range of patients in practicing varied, yet challenging functional activities (Rakos et al., 2007Tresadern et al., 2008). In particular, if such systems are to be widely adopted, they must be sufficiently user-friendly to remove the need for routine engineering support.

In this paper, we report on a new, flexible upper limb FES system, FES-UPP, which address the issues discussed above. Below we report on the design of the upper limb FES controller and the setup software. Finally, we show data from a clinical investigation study of the system carried out without on-site engineering support to illustrate the potential for the system to be used in the delivery of intensive FES-supported practice.[…]

 

Continue —-> Frontiers | FES-UPP: A Flexible Functional Electrical Stimulation System to Support Upper Limb Functional Activity Practice | Neuroscience

FIGURE 1. Example set-up of the FES-UPP system for the “Sweeping coins” activity. (A) Anterior view; and (B) Lateral view (informed consent was obtained from all participants).

, , , , , , , ,

Leave a comment

[Abstract] Hybrid robotic system combining passive exoskeleton and functional electrical stimulation for upper limb stroke rehabilitation: Preliminary results of the retrainer multi-center randomized controlled trial

Introduction/Background

Stroke is the main cause of acquired adult disability with major impact on arm function. The combined use of Functional Electrical Stimulation (FES) and robotic technologies is strongly advocated to improve rehabilitation outcomes after stroke. We present the preliminary data of a multi-center Randomized Controlled Trial aimed at evaluating the effectiveness of this system with respect to conventional therapy for sub-acute stroke upper limb rehabilitation.

Material and method

The RETRAINER system consists of a lightweight and non-cumbersome passive arm exoskeleton for weight relief, a current-controlled stimulator with 2 channels of stimulation and 2 channels of EMG recordings.

In this work we are presenting the preliminary results of 39 sub-acute stroke patients with a distance from the acute event between two weeks and nine months. The inclusion criteria was: age between 18 and 85 years, Motricity Index (MI) < 80%, muscular activity for arm and shoulder at least 1 Medical Research Council (MRC) with a visible contraction, no joint limitation, pain or spasticity. They were randomized in two group: 1 conventional rehabilitation methods, 2 experimental group using Retrainer System. Each participant performed 9 weeks of treatment 3 times for week. We measured MI, Action Research Arm Test (ARAT) and Motor Activity Log (MAL) at beginning (T0) and at the end of treatment (T1).

Results

Results are showed in the next Table 1.

Conclusion

Both groups showed statistical improvement in outcome measures. Experimental group showed a statistical better improvement regarding time and group effect.

 

via Hybrid robotic system combining passive exoskeleton and functional electrical stimulation for upper limb stroke rehabilitation: Preliminary results of the retrainer multi-center randomized controlled trial – ScienceDirect

, , , , , , , ,

Leave a comment

[Abstract] A brain–computer interface based stroke rehabilitation system, controlling an avatar and functional electrical stimulation, to improve motor functions

Introduction/Background

Brain–computer interfaces (BCI) can detect the neuronal activity of patients’ motor intention to control external devices. With the feedback from the device, the neuronal network in the brain to reorganizes due to neuroplasticity.

Material and method

The BCI controls an avatar and functional electrical stimulation (FES) to provide the feedback. The expected task for the patient is to imagine either left or right wrist dorsiflexion according to the instructions. The training was designed to have 25 sessions (240 trials of either left or right motor imagery) of BCI feedback sessions over 13 weeks. Two days before and two days after we did clinical measures to observe motor improvement. The primary measure was upper extremity Fugl–Meyer assessment (UE-FMA), which evaluates the motor impairment. Four secondary measures were also performed to exam the spasm (modified Ashworth scale, MAS), tremor (Fahn tremor rating scale, FTRS), level of daily activity (Barthel index, BI), and finger dexterity (9-hole peg test, 9HPT).

Results

One male stroke patient (53 years old, 11 months since stroke, and right upper limb paralyzed) participated in the training. He quickly learned to use the BCI and the maximal classification accuracy was over 90% after the 5th session. The UE-FMA increased from 25 to 46 points. The BI increased from 90 to 95 points. MAS and FTRS decreased from 2 to 1 and from 4 to 3 points respectively. Although he could not conduct the 9HPT until 18th training session, he was able to complete the test from 19th session in 10 min 22 s and the time was reduced to 2 min 53 s after 25th session.

Conclusion

The patient could be more independent in his daily activity, he had less spasticity and tremor. Also, the 9HPT was possible to do, which was not before. The system is currently validated with a study of 50 patients.

 

via A brain–computer interface based stroke rehabilitation system, controlling an avatar and functional electrical stimulation, to improve motor functions – ScienceDirect

, , , , , , , , , , ,

1 Comment

[WEB SITE] Scientists develop combined therapy for stroke victim recovery

Scientists in Switzerland have demonstrated that combining a brain-computer interface (BCI) with functional electrical stimulation (FES) can help stroke victims recover greater use of their paralysed limbs – even years after the stroke.

 

stroke-brain-computer-interface

 

Paralysis of an arm and/or leg is one of the most common results of a stroke. However, a team of scientists at the Defitech Foundation Chair in Brain-Machine Interface, in association with other members of EPFL’s Center for Neuroprosthetics, the Clinique Romande de Réadaptation in Sion, and the Geneva University Hospitals, have developed a technique aimed at enabling stroke victims to recover greater use of their paralysed limbs. The scientists’ pioneering approach utilises two existing therapies – a brain-computer interface (BCI) and functional electrical stimulation (FES).

Explaining the key to their approach, José del R. Millán, who holds the Defitech Chair at EPFL, said: “The key is to stimulate the nerves of the paralysed arm precisely when the stroke-affected part of the brain activates to move the limb, even if the patient can’t actually carry out the movement. That helps re-establish the link between the two nerve pathways where the signal comes in and goes out.”.

Combined therapy tested on stroke patients

Twenty-seven patients aged between 36 and 76 took part in the clinical trial. All had a similar lesion that resulted in moderate to severe arm paralysis following a stroke occurring at least ten months earlier. Half of the patients were treated with the scientists’ dual-therapy approach and reported clinically significant improvements. The other half were treated only with FES and served as a control group.

For the first group, the scientists used a BCI system to link the patients’ brains to computers by means of electrodes. This enabled them to pinpoint exactly where the electrical activity occurred in the brain tissue when the patients tried to reach out their hands. Each time the electrical activity was identified the system immediately stimulated the arm muscle controlling the corresponding wrist and finger movements. The patients in the second group also had their arm muscles stimulated, but at random times. This control group enabled the scientists to determine how much of the additional motor-function improvement could be attributed to the BCI system.

 

The scientists noted a significant improvement in arm mobility among patients in the first group after just ten one-hour sessions. When the full round of treatment was completed, some of the first-group patients’ scores on the Fugl-Meyer Assessment – a test used to evaluate motor recovery among patients with post-stroke hemiplegia – were over twice as high as those of the second group.

“Patients who received the BCI treatment showed more activity in the neural tissue surrounding the affected area. Due to their plasticity, they could help make up for the functioning of the damaged tissue,” says Millán.

 

Electroencephalographies (EEGs) of the patients clearly showed an increase in the number of connections among the motor cortex regions of their damaged brain hemisphere, which corresponded with the increased ease in carrying out the associated movements. In addition, the enhanced motor function didn’t seem to diminish with time. Evaluated again 6-12 months later, the patients were found to have lost none of their recovered mobility.

The study results were published in Nature Communications.

via Scientists develop combined therapy for stroke victim recovery

, , , , , , , , ,

1 Comment

[BLOG POST] A Dual-Therapy Approach to Boost Motor Recovery After a Stroke

Stroke victims have a reason to finally smile as a new therapy approach promises to help them recover greater use of their paralyzed leg and/or arm. In a recent study, researchers managed to demonstrate that indeed, broken sensory nerve connections can be reconstructed without surgery, but using two therapies at the same time.

The technique combines functional electrical stimulation (FES) and brain-computer interface BCI to help “resurrect” the use of paralyzed limb (arm/leg). In most cases, paralysis happens to be the most general but hard to bear effects of a stroke. Fortunately, research now seems to have a solution for treating this effect.

Communication Between Nerve Pathways

While the approach may not be something completely out of the horizon, this is the first time experts considered deploying two therapies at the same time on stroke effects (FES + BCI). The therapy works to help reestablish communication between nerve pathways, which ideally corrects how signals come in and go out of the nerve segment endings.

“The goal is to stimulate those nerves thought to have been silenced by the paralysis. This should be the work of the brain. But as the part of the brain tasked to do this may no longer be active enough, the therapy steps in to help reestablish the links between (the brain) and the nerve pathways,” explains Jose del R. Millan, one of the scientists involve in the research, which was pioneered by the Defitech Foundation Brain and Machine Interface.

Degrees of Paralysis

The work, which also appears in the latest issue of Nature Communications focused on mid-age and aged adults of between 36 to 76, and involved 27 volunteers with varying stroke effects. A section of the patients had moderate paralysis, while for the rest the cases were considered as severe arm paralysis occurring less than a year prior to the dual-therapy.

Representing half of the volunteering team, 14 of the patients took the dual-therapy and the results found a significant lasting improvement in the ability to initiate control of their affected arms. The other half of the volunteers took the functional electrical stimulation (FES) treatment only and acted as a control team to help monitor progress.

Hunting for the Brain Signals

Now, the scientists introduced the BCI system to access the patient’s brain response, linking the same to computers via electrodes. The exact task was to pinpoint the specific areas the electrical signals showed up in the brain as the patient tried to pick something using the affected arm.

When the electrical activity was spotted the system immediately stimulated the concerned muscle in the wrist and finger to have it respond to the signal. Patients in the “control” group had their muscles stimulated but not as often as the first team. That was done on purpose to help establish the motor-function improvement that could directly be attributed to the BCI system and the reliability of the same.

Reactivated Tissue and How this Changes Stroke Effect Therapy

Source: braceworks

What makes the research outstanding is that some patients in the first group registered a significant improvement in arm mobility within the first ten one-hour therapy sessions. Using a special test that evaluates motor recovery on post-stroke hemiplegia, called the Fugl-Meyer Assessment, a good number of the patients in the first group improved in their mobility twice in score compared to their counterparts.

The scientists also found an overall increase in connection among the motor cortex areas of their damaged brain, which corresponded with the overall ease in undertaking the associated tasks.

This might, without doubt, be the complete game changer of the way effects of stroke should be treated, because, even after 6 and 12 months – looking at the progress of the patients, their recovered mobility from the dual-therapy was maintained.

 

via A Dual-Therapy Approach to Boost Motor Recovery After a Stroke – Sanvada

, , , , , ,

Leave a comment

[ARTICLE] Let’s Improvise! iPad-based music therapy with functional electrical stimulation for upper limb stroke rehabilitation – Full Text

In plain language

In the western world, stroke has been identified as the leading cause of disability in adults. Impairment to the arm/hand and depressive symptoms seem to be among the most frequent resultants of stroke. This article describes a collaborative occupational therapy and music therapy intervention for post-stroke arm/hand recovery.  The intervention itself combines principles of music therapy with tablet technology and functional electrical stimulation. The implementation of this novel intervention, described in this clinical case report, has implications for benefits to physical and motivational aspects of rehabilitation. Recommendations for further research of this intervention are also discussed.

Abstract

This retrospective clinical case report will examine the implementation of a novel intervention combining a Functional Electrical Stimulation (FES) protocol with an iPad application. A 74-year-old female retired pianist and Professor of Music was admitted to a rehabilitation hospital following a left pontine stroke. On assessment, she was unable to use her right upper limb functionally. Conventional occupational therapy commenced soon after admission and consisted of functional retraining, including FES to the wrist and finger extensors. At week 4, the Registered Music Therapist (RMT) and Occupational Therapist (OT) collaborated to commence a trial of forearm FES in combination with an iPad-based music making application; ThumbJam. This application was used to encourage the patient to participate in touch sensitive musical improvisation using the affected hand in an attempt to promote engagement in complex motor patterns and non-verbal expression. Within 3 weeks, the patient was able to use ThumbJam without the FES, progressed to the keyboard in 4 weeks and has since commenced independent scales on the piano at home (21 weeks), as well as successful use of the upper limb in Activities of Daily Living (ADLs). On follow up (7 months), the patient reflected on the motivating elements of the intervention that helped her to achieve a functional outcome in her upper limb. This retrospective clinical case report will review the evidence with regard to FES and music therapy, outline the treatment protocol used and make recommendations for future research of “FES+ThumbJam” in upper limb stroke rehabilitation.[…]

Continue —> Let’s Improvise! iPad-based music therapy with functional electrical stimulation for upper limb stroke rehabilitation | Australian Music Therapy Association

DOWNLOAD PDF

, , , , , , , , ,

Leave a comment

[ARTICLE] BCI-Based Strategies on Stroke Rehabilitation with Avatar and FES Feedback – Full Text PDF

Stroke is the leading cause of serious and long-term disability worldwide. Some studies have shown that motor imagery (MI) based BCI has a positive effect in poststroke rehabilitation. It could help patients promote the reorganization processes in the damaged brain regions. However, offline motor imagery and conventional online motor imagery with feedback (such as rewarding sounds and movements of an avatar) could not reflect the true intention of the patients. In this study, both virtual limbs and functional electrical stimulation (FES) were used as feedback to provide patients a closed-loop sensorimotor integration for motor rehabilitation. The FES system would activate if the user was imagining hand movement of instructed side. Ten stroke patients (7 male, aged 22-70 years, mean 49.5+-15.1) were involved in this study. All of them participated in BCI-FES rehabilitation training for 4 weeks.The average motor imagery accuracies of the ten patients in the last week were 71.3%, which has improved 3% than that in the first week. Five patients’ Fugl-Meyer Assessment (FMA) scores have been raised. Patient 6, who has have suffered from stroke over two years, achieved the greatest improvement after rehabilitation training (pre FMA: 20, post FMA: 35). In the aspect of brain patterns, the active patterns of the five patients gradually became centralized and shifted to sensorimotor areas (channel C3 and C4) and premotor area (channel FC3 and FC4).In this study, motor imagery based BCI and FES system were combined to provided stoke patients with a closed-loop sensorimotor integration for motor rehabilitation. Result showed evidences that the BCI-FES system is effective in restoring upper extremities motor function in stroke. In future work, more cases are needed to demonstrate its superiority over conventional therapy and explore the potential role of MI in poststroke rehabilitation.

Download: PDF only

via [1805.04986] BCI-Based Strategies on Stroke Rehabilitation with Avatar and FES Feedback

, , , , , , , , , , ,

Leave a comment

[ARTICLE] Intensity- and Duration-Adaptive Functional Electrical Stimulation Using Fuzzy Logic Control and a Linear Model for Dropfoot Correction – Full Text

Functional electrical stimulation (FES) is important in gait rehabilitation for patients with dropfoot. Since there are time-varying velocities during FES-assisted walking, it is difficult to achieve a good movement performance during walking. To account for the time-varying walking velocities, seven poststroke subjects were recruited and fuzzy logic control and a linear model were applied in FES-assisted walking to enable intensity- and duration-adaptive stimulation (IDAS) for poststroke subjects with dropfoot. In this study, the performance of IDAS was evaluated using kinematic data, and was compared with the performance under no stimulation (NS), FES-assisted walking triggered by heel-off stimulation (HOS), and speed-adaptive stimulation. A larger maximum ankle dorsiflexion angle in the IDAS condition than those in other conditions was observed. The ankle plantar flexion angle in the IDAS condition was similar to that of normal walking. Improvement in the maximum ankle dorsiflexion and plantar flexion angles in the IDAS condition could be attributed to having the appropriate stimulation intensity and duration. In summary, the intensity- and duration-adaptive controller can attain better movement performance and may have great potential in future clinical applications.

Introduction

Stroke is a leading cause of disability in the lower limb, such as dropfoot (1). A typical cause of dropfoot is muscle weakness, which results in a limited ability to lift the foot voluntarily and an increased risk of falls (24). Great effort is made toward the recovery of walking ability for poststroke patients with dropfoot, such as ankle–foot orthoses (5), physical therapy (6), and rehabilitation robot (7).

Functional electrical stimulation (FES) is a representative intervention to correct dropfoot and to generate foot lift during walking (89). The electrical pulses were implemented via a pair of electrodes to activate the tibialis anterior (TA) muscle and to increase the ankle dorsiflexion angle. The footswitch or manual switch was used to time the FES-assisted hemiplegic walking in previous studies, while they were only based on open-loop architectures. The output parameters of the FES required repeated manual re-setting and could not achieve an adaptive adjustment during walking (1011). Some researchers have found that the maximum ankle dorsiflexion angle by using FES with a certain stimulation intensity had individual differences due to the varying muscle tone and residual voluntary muscle activity and varied during gait cycles (1213). If the stimulation intensity was set to a constant value during the whole gait cycle, the result could be that the muscle fatigues rapidly (14). Another important problem was that the FES using fixed stimulation duration from the heel-off event to the heel-strike event would affect the ankle plantar flexion angle (1516).

Closed-loop control was an effective way to adjust the stimulation parameters automatically, and several control techniques have been proposed (1718). Negård et al. applied a PI controller to regulate the stimulation intensity and obtain the optimal ankle dorsiflexion angle during the swing phase (19). A similar controller was also used in Benedict et al.’s study, and the controller was tested in simulation experiments (20). Cho et al. used a brain–computer interface to detect a patient’s motion imagery in real time and used this information to control the output of the FES (21). Laursen et al. used the electromechanical gait trainer Lokomat combined with FES to correct the foot drop problems for patients, and there were significant improvements in the maximum ankle dorsiflexion angles compared to the pre-training evaluations (22). There were also several studies that used trajectory tracking control to regulate the output and regulate the pulse width and pulse amplitude of the stimulation (23). The module was based on an adaptive fuzzy terminal sliding mode control and fuzzy logic control (FLC) to determine the stimulation output and force the ankle joint to track the reference trajectories. In their study, FES applied to TA was triggered before the heel-off event. Because the TA activation has been proven to occur after the heel-off event and the duration of the TA activation changed with the walking speed (2425), a time interval should be implemented after the heel-off event (26). In Thomas et al.’s study, the ankle angle trajectory of the paretic foot was modulated by an iterative learning control method to achieve the desired foot pitch angles (27). The non-linear relationship between the FES settings and the ankle angle influenced the responses of the ankle motion (28). FLC represents a promising technology to handle the non-linearity and uncertainty without the need for a mathematical model of the plant, which has been widely used in robotic control (29). Ibrahim et al. used FLC to regulate the stimulation intensity of the FES (30), and the same control was used on the regulation of the stimulation duration to obtain a maximum knee extension angle in Watanabe et al.’s study (31). However, most closed-loop controls adjust only one stimulation parameter, and few FES controls considered both varying the stimulation intensity and duration while accounting for the changing walking velocities.

In the present study, an intensity- and duration-adaptive FES was established, the FLC and a linear model were used to regulate the stimulation intensity and duration, respectively. The performance of the intensity- and duration-adaptive stimulation (IDAS) was compared with those of stimulation triggered by no stimulation (NS), heel-off stimulation (HOS), and speed-adaptive stimulation (SAS) for poststroke patients walking on a treadmill. The objective of this study is to find an appropriate FES control strategy to realize a more adaptive ankle joint motion for poststroke subjects.[…]

 

Continue —> Frontiers | Intensity- and Duration-Adaptive Functional Electrical Stimulation Using Fuzzy Logic Control and a Linear Model for Dropfoot Correction | Neurology

Figure 4(A) Ankle angles during the gait cycle for one poststroke subject at free speed; (B) knee angles during the gait cycle for the same poststroke subject at free speed.

, , , , , , , ,

Leave a comment

%d bloggers like this: