Posts Tagged Health Care

[WEB SITE] Christiana Care Health System opens first Epilepsy Monitoring Unit in Delaware

 

To increase access to advanced neurological care, Christiana Care Health System has opened the first Epilepsy Monitoring Unit (EMU) in the First State.

Specially outfitted private hospital rooms in the Transition Neuro Unit at Christiana Hospital provide state-of-the-art equipment for video and audio monitoring. In the rooms, brain waves are tracked with electroencephalography (EEG) and electrical activity in the heart is recorded with electrocardiography (EKG), helping clinicians understand what is happening during a seizure. To further enhance safety, nurses assist patients whenever they are out of their bed. And patients wear mobility vests that connect to a stationary lift, a system that allows patients to move around a room – and prevents them from falling if they have a seizure. This is one of the few EMUs in the U.S. that uses a patient lift to prevent falls.

Epilepsy is a central nervous system disorder, in which brain activity becomes abnormal, leading to seizures or periods of unusual behavior, sensations or loss of awareness. The U.S. Centers for Disease Control and Prevention report that there are 3.4 million Americans with epilepsy and there is a growing incidence of the disease among the adult population in Delaware, especially among people 60 and older.

“Our community deserves the very best in neurological care,” said Valerie Dechant, M.D., physician leader, Neuroscience Service Line, and medical director, Neurocritical Care and Acute Neurologic Services. “Our new Epilepsy Monitoring Unit will enable us to serve the complex neurologic needs of our adult patients.”

Christiana Care’s EMU is part of a larger effort to establish an epilepsy center of excellence, so adults of any age can receive the highest quality routine and specialty care for seizure disorders.

“We want to help patients who believe they have been over-diagnosed or under-diagnosed so they can see improvement in their lives,” said Neurologist John R. Pollard, M.D., medical director of the new EMU.

While most patients with epilepsy are successfully treated by a general neurologist or epileptologist, a significant number of patients have persistent fainting or seizure episodes – or they have unwanted side effects from medications. This new facility enables physicians to work more closely with these patients to understand their seizures and determine appropriate treatment.

“Typically, these patients visit an EMU where they may stay for several days so they can be safely taken off medications, inducing seizures that are recorded and studied so a proper diagnosis and treatment can be planned,” said Christy L. Poole, RN, BSN CRNI CCRC, a neurosciences program manager. Visiting an EMU to induce a seizure could be a source of anxiety for patients and their families.

“Our staff works with patients and families to reduce any fear by providing information on what to expect, stressing procedures that enhance patient safety and making the stay as pleasant as possible,” said Susan Craig, MSN, RNIII-BC, epilepsy clinical nurse practice coordinator.

via Christiana Care Health System opens first Epilepsy Monitoring Unit in Delaware

, , , , , , , , , ,

Leave a comment

[REVIEW] Telerehabilitation: Review of the State-of-the-Art and Areas of Application – Full Text  

ABSTRACT

Background: Telemedicine applications have been increasing due to the development of new computer science technologies and of more advanced telemedical devices. Various types of telerehabilitation treatments and their relative intensities and duration have been reported.

Objective: The objective of this review is to provide a detailed overview of the rehabilitation techniques for remote sites (telerehabilitation) and their fields of application, with analysis of the benefits and the drawbacks related to use. We discuss future applications of telerehabilitation techniques with an emphasis on the development of high-tech devices, and on which new tools and applications can be used in the future.

Methods: We retrieved relevant information and data on telerehabilitation from books, articles and online materials using the Medical Subject Headings (MeSH) “telerehabilitation,” “telemedicine,” and “rehabilitation,” as well as “disabling pathologies.”

Results: Telerehabilitation can be considered as a branch of telemedicine. Although this field is considerably new, its use has rapidly grown in developed countries. In general, telerehabilitation reduces the costs of both health care providers and patients compared with traditional inpatient or person-to-person rehabilitation. Furthermore, patients who live in remote places, where traditional rehabilitation services may not be easily accessible, can benefit from this technology. However, certain disadvantages of telerehabilitation, including skepticism on the part of patients due to remote interaction with their physicians or rehabilitators, should not be underestimated.

Conclusions: This review evaluated different application fields of telerehabilitation, highlighting its benefits and drawbacks. This study may be a starting point for improving approaches and devices for telerehabilitation. In this context, patients’ feedback may be important to adapt rehabilitation techniques and approaches to their needs, which would subsequently help to improve the quality of rehabilitation in the future. The need for proper training and education of people involved in this new and emerging form of intervention for more effective treatment can’t be overstated.

Introduction

In the last few years, telemedicine applications have been increasing due to the development of new computer science technologies and of more advanced telemedical devices. Long-distance communication can be easily achieved by videoconferencing, email, and texting, to name a few. Today there is the possibility of controlling robots, robotic arms, or drones at a distance. Thanks to these advancements, the course of human action has been considerably transformed [1]. During the last 20 years, demographic changes and increased budget allocation in public health have improved new rehabilitative practices [2]. Rehabilitation is an old branch of medicine, but in the last few years, new telecommunication-based practices have been developed all over the world. These particular approaches in the field of rehabilitation are commonly defined as telerehabilitation, which should be considered as a telemedicine subfield consisting of a system to control rehabilitation at a distance [3].

Telerehabilitation has been developed to take care of inpatients, transferring them home after the acute phase of a disease to reduce patient hospitalization times and costs to both patients and health care providers. Telerehabilitation allows for treatment of the acute phase of diseases by substituting the traditional face-to-face approach in the patient-rehabilitator interaction [4]. Finally, it can cover situations in which it is complicated for patients to reach traditional rehabilitation infrastructures located far away from where they live.

Controlled studies on rehabilitation have demonstrated that quick management of an injury or a disease is critical to achieve satisfactory results in terms of increasing a patient’s self-efficacy. Hence, a rehabilitation program should start as soon as possible, be as intensive as possible, be prolonged, and continue during the recovery phase. A major factor is the initiation time, which, in general, should begin as soon as possible. In most cases, the initial stages of rehabilitation, after the occurrence of a disease or injury, could be performed by patients at home even if they need accurate and intensive treatment. For these reasons, telerehabilitation was developed to achieve the same results as would be achieved by the normal rehabilitation process at a hospital or face to face with a physiotherapist. Various types of telerehabilitation treatments and their relative intensities and duration have been reported [5].

The first scientific publication on telerehabilitation is dated 1998 and, in the last few years, the number of articles on the topic has increased, probably because of the emerging needs of people and due to the development of exciting new communication and computer technologies. Figure 1 shows the number of patients treated through telerehabilitation from 1998 to 2008 according to studies published in the international literature [2].

A remarkable increase in the number of patients treated by telerehabilitation is noticeable from 2002 to 2004. After a subsequent decrease, the number of patients assisted by telerehabilitation increased starting from 2007, probably due to the support of new technologies and the overcoming of the initial skepticism to which every new technology is subjected.

Telerehabilitation is primarily applied to physiotherapy [6,7], and neural rehabilitation is used for monitoring the rehabilitative progress of stroke patients [8]. Telerehabilitation techniques mimic virtual reality [912] and rehabilitation for neurological conditions by using robotics and gaming techniques [13]. Quite often, telerehabilitation has been associated with other nonrehabilitative technologies such as remote monitoring of cardiovascular parameters, including electrocardiogram (ECG), blood pressure, and oxygen saturation in patients with chronic diseases [14]. These technologies belong to another telemedicine branch called telemonitoring, which has been widely developed and used in recent years. A few studies were also centered on the economic aspects of the use of telerehabilitation to reduce the costs of hospitalization [15]. We reviewed the status and future perspectives of telerehabilitation by analyzing their impact on patients’ everyday life. The main topics taken into account were (1) the status of telerehabilitation and analysis of the main medical specialties where it is being applied, (2) quality-of-life improvement due to telerehabilitation, and (3) the future of telerehabilitation.

Figure 1. Number of patients treated from 1998 to 2008 through telerehabilitation techniques.

 

Continue —> JRAT-Telerehabilitation: Review of the State-of-the-Art and Areas of Application | Peretti | JMIR Rehabilitation and Assistive Technologies

, , , ,

Leave a comment

[WEB SITE] UC study explores how low risk stress reduction treatments may benefit epilepsy patients

Patients with epilepsy face many challenges, but perhaps the most difficult of all is the unpredictability of seizure occurrence. One of the most commonly reported triggers for seizures is stress.

A recent review article in the European journal Seizure, by researchers at University of Cincinnati Epilepsy Center at the UC Gardner Neuroscience Institute, looks at the stress-seizure relationship and how adopting stress reduction techniques may provide benefit as a low risk form of treatment.

The relationship between stress and seizures has been well documented over the last 50 years. It has been noted that stress can not only increase seizure susceptibility and in rare cases a form of reflex epilepsy, but also increase the risk of the development of epilepsy, especially when stressors are severe, prolonged, or experienced early in life.

“Studies to date have looked at the relationship from many angles,” says Michael Privitera, MD, director of the UC Epilepsy Center and professor in the Department of Neurology and Rehabilitation Medicine at the UC College of Medicine. “The earliest studies from the 1980s were primarily diaries of patients who described experiencing more seizures on ‘high-stress days’ than on ‘low-stress days.'”

Privitera and Heather McKee, MD, an assistant professor in the Department of Neurology and Rehabilitation Medicine, looked at 21 studies from the 1980s to present–from patients who kept diaries of stress levels and correlation of seizure frequency, to tracking seizures after major life events, to fMRI studies that looked at responses to stressful verbal/auditory stimuli.

“Most all [of these studies] show increases in seizure frequency after high-stress events. Studies have also followed populations who have collectively experienced stressful events, such as the effects of war, trauma or natural disaster, or the death of a loved one,” says Privitera. All of which found increased seizure risk during such a time of stress.

For example, a 2002 study evaluated the occurrence of epileptic seizures during the war in Croatia in the early 1990s. Children from war-affected areas had epileptic seizures more often than children not affected by the war. Additionally, the 10-year follow up showed that patients who had their first epileptic seizure during a time of stress were more likely to have controlled epilepsy or even be off medication years later.

“Stress is a subjective and highly individualized state of mental or emotional strain. Although it’s quite clear that stress is an important and common seizure precipitant, it remains difficult to obtain objective conclusions about a direct causal factor for individual epilepsy patients,” says McKee.

Another aspect of the stress-seizure relationship is the finding by UC researchers that there were higher anxiety levels in patients with epilepsy who report stress as a seizure precipitant. The researchers suggest patients who believe stress is a seizure trigger may want to talk with their health care provider about screening for anxiety.

“Any patient reporting stress as a seizure trigger should be screened for a treatable mood disorder, especially considering that mood disorders are so common within this population,” adds McKee.

The researchers report that while some small prospective trials using general stress reduction methods have shown promise in improving outcomes in people with epilepsy, large-scale, randomized, controlled trials are needed to convince both patients and providers that stress reduction methods should be standard adjunctive treatments for people with epilepsy.

“What I think some of these studies point to is that efforts toward stress reduction techniques, though somewhat inconsistent, have shown promise in reducing seizure frequency. We need future research to establish evidence-based treatments and clarify biological mechanisms of the stress-seizure relationship,” says Privitera.

Overall, he says, recommending stress reduction methods to patients with epilepsy “could improve overall quality of life and reduce seizure frequency at little to no risk.”

Some low risk stress reduction techniques may include controlled deep breathing, relaxation or mindfulness therapy, as well as exercise, or establishing routines.

Source: UC study explores how low risk stress reduction treatments may benefit epilepsy patients

, , , , , , , , , , , ,

Leave a comment

[WEB SITE] First-ever neuroscience conference to explore ultra-personal approach to brain health

For three days this week, Roanoke, Virginia, is the capital of the precision neuroscience world.

The first-ever scientific meeting to explore an ultra-personal approach to brain health — the Virginia-Nordic Precision Neuroscience Conference — opened this week at the Virginia Tech Carilion Research Institute.

“The promise, hope, and opportunity for precision neuroscience is great — with the potential for realizing the brain and mind’s full potential, preventing disorders, and restoring brain health after injury or degenerative disease,” said Virginia Tech President Tim Sands, who welcomed about 200 scientists on behalf of Virginia Tech and Carilion Clinic. “It is also the responsibility of the scientific and medical communities to help define the real possibilities, differentiate hype from reality, and help focus the scientific enterprise and resource allocation on areas where the promise can be realized.”

More than 1,000 disorders of the brain and nervous system result in more hospitalizations than any other disease group, including heart disease and cancer.

“By understanding an individual’s genetics, behavior, education, habits, life experiences such as physical and psychological trauma — all the things that make people who they are — the neuroscientific community may be able to develop individually tailored plans for people to optimize education, health care, diet, exercise, and environments where they are likely to thrive cognitively, socially, and physically,” said Michael J. Friedlander, Virginia Tech’s vice president for health sciences and technology and the founding executive director of the Virginia Tech Carilion Research Institute.

The collaboration grew from an idea developed by Friedlander and Tor S. Haugstad, a neurologist and neuroscience chair at Sunnaas National Rehabilitation Hospital in Oslo, Norway, worked to develop as the Norway/U.S. Neuroscience Collaboration, initially called NUNC. The effort has grown to include multiple universities in Norway as well as in several other Nordic countries, and universities and foundations throughout Virginia.

People respond to brain injuries differently, which is one of the motivations for further development of the precision neuroscience field.

“We may get two people in our department with very similar brain injuries, and one may be rendered with a low level of consciousness while the other can recover and return home to his family and work life,” said Haugstad, who also chairs the traumatic brain rehabilitation program at Sunnaas National Rehabilitation Hospital. “We need to discover at cellular and molecular levels why people respond so differently, and tailor treatment and rehabilitation to the specific person.”

The meeting, which will continue through Friday, is the first to bring the top minds of precision neuroscience from across the globe together in a think-tank setting to explore the challenges and promise of bringing personalized medicine to brain health and brain disorders.

“One individual’s experience with Alzheimer’s disease, Parkinson’s disease, a traumatic brain injury, or various other neurological or psychiatric disorders will not be exactly like anyone else’s,” Friedlander said.

“From a business and health care point of view, clinical trials may fail because they target generic diseases that manifest very differently in different people,” Friedlander said. “If a drug or treatment doesn’t work in 75 percent of the people, it is considered a failure — but it worked in 25 percent. Should we forget about the 25 percent of people it helped and scrap potentially lifesaving therapies that may have cost hundreds of millions of dollars during a decade of development?”

By targeting groups of patients based on their predicted manifestations of a particular brain disorder, the success rate for finding new treatments will improve and the investment risk can be lessened, according to Friedlander.

“Essentially the pharmaceutical industry and investors de-risk their investments by having more precise, targeted therapies and tests that are more likely to be successful,” Friedlander said. “The treatment may be effective for 10 percent of people with a particular brain disease, but we can learn a lot about why those 10 percent may have benefitted based on their genetic composition and expression patterns and their life experiences. Then, we get back to work on a treatment for the next 10 percent, and the next 10 percent. It may not be one size fits all.”

Researchers will discuss innovations ranging from a Nobel prize-winning imaging system that visualizes the action of molecules within the brain, to the work of physician-scientists who are on the frontlines of health care delivery for brain injury, neurodegenerative diseases of aging, and brain developmental disorders.

In many ways, the conference has special meaning for the partner cities in Virginia and in Europe, Haugstad said.

“Roanoke is a city with a history of rail that, through innovation and spirit, is reinventing itself, and it is leading the way in precision neuroscience,” Haugstad said. “In Norway, a country that depends on oil revenue, the cities are changing much like cities in Virginia, by finding new ways to live and move forward. Together, we are very good partners.”

Source: Virginia Tech

Source: First-ever neuroscience conference to explore ultra-personal approach to brain health

, , , , , , , , , , ,

Leave a comment

%d bloggers like this: