Posts Tagged hemiplegia

[Abstract] Giving Them a Hand: Wearing a Myoelectric Elbow-Wrist-Hand Orthosis Reduces Upper Extremity Impairment in Chronic Stroke

Abstract

Objective

Determine the immediate impact of a portable, myoelectric elbow-wrist-hand orthosis (MEWHO) on paretic upper extremity (UE) impairment in chronic, stable, moderately impaired stroke survivors.

Design

Observational cohort study Setting: Outpatient rehabilitation clinic

Participants

18 participants exhibiting chronic, moderate, stable, post-stroke, UE hemiparesis.

Interventions

Subjects were administered a battery of measures testing UE impairment as well as UE function. They then donned a fabricated MEWHO and were again tested on the same battery of measures while wearing the device.

Main Outcome Measures

The primary outcome measure was the UE section of the Fugl-Meyer Impairment Scale (FM). Subjects were also administered a battery of functional tasks and the Box and Blocks test (BB).

Results

Subjects exhibited significantly reduced UE impairment while wearing the MEWHO (FM: t {17} = 8.56, p < .0001), and increased quality in performing all functional tasks while wearing the MEWHO, with three subtasks showing significant increases (Feeding {grasp}: Z=2.251, p=.024; Feeding {elbow}: Z=2.966, p=.003; Drinking {grasp}: Z= 3.187, p=.001). Additionally, subjects showed significant decreases in time taken to grasp a cup (Z=1.286, p=.016) and increased gross manual dexterity while wearing a MEWHO (BB: Z =3.42, p < .001).

Conclusion

Results suggest that UE impairment, as measured by the FM, is significantly reduced when donning a MEWHO and these changes exceeded the FM’s clinically important difference threshold. Further, utilization of a MEWHO significantly increased gross manual dexterity and performance of certain functional tasks. Future work will integrate education sessions to increase subjects’ ability to perform multi-joint functional movements and attain consistent functional changes.

Source: Giving Them a Hand: Wearing a Myoelectric Elbow-Wrist-Hand Orthosis Reduces Upper Extremity Impairment in Chronic Stroke – Archives of Physical Medicine and Rehabilitation

, , , , , , , , , , ,

Leave a comment

[Abstract] Feasibility Study of a Take-Home Array-Based Functional Electrical Stimulation System With Automated Setup for Current Functional Electrical Stimulation Users With Foot-Drop

Abstract

Objective

To investigate the feasibility of unsupervised community use of an array-based automated setup functional electrical stimulator for current foot-drop functional electrical stimulation (FES) users.

Design

Feasibility study.

Setting

Gait laboratory and community use.

Participants

Participants (N=7) with diagnosis of unilateral foot-drop of central neurologic origin (>6mo) who were regular users of a foot-drop FES system (>3mo).

Intervention

Array-based automated setup FES system for foot-drop (ShefStim).

Main Outcome Measures

Logged usage, logged automated setup times for the array-based automated setup FES system and diary recording of problems experienced, all collected in the community environment. Walking speed, ankle angles at initial contact, foot clearance during swing, and the Quebec User Evaluation of Satisfaction with Assistive Technology version 2.0 (QUEST version 2.0) questionnaire, all collected in the gait laboratory.

Results

All participants were able to use the array-based automated setup FES system. Total setup time took longer than participants’ own FES systems, and automated setup time was longer than in a previous study of a similar system. Some problems were experienced, but overall, participants were as satisfied with this system as their own FES system. The increase in walking speed (N=7) relative to no stimulation was comparable between both systems, and appropriate ankle angles at initial contact (N=7) and foot clearance during swing (n=5) were greater with the array-based automated setup FES system.

Conclusions

This study demonstrates that an array-based automated setup FES system for foot-drop can be successfully used unsupervised. Despite setup’s taking longer and some problems, users are satisfied with the system and it would appear as effective, if not better, at addressing the foot-drop impairment. Further product development of this unique system, followed by a larger-scale and longer-term study, is required before firm conclusions about its efficacy can be reached.

Source: Feasibility Study of a Take-Home Array-Based Functional Electrical Stimulation System With Automated Setup for Current Functional Electrical Stimulation Users With Foot-Drop – Archives of Physical Medicine and Rehabilitation

, , , , , , , ,

Leave a comment

[Abstract] A novel scheme of finger recovery based on symmetric rehabilitation: Specially for hemiplegia

Abstract:

Finger recovery is much harder than other parts on the upper limbs, because finger recovery movement has several key problems need to overcome, including high precision of movement, high control resolution requirements, variable data with different person, as well as the fuzzy signal during the movement. In order to overcome the difficulties, a new scheme of finger recovery is presented in the paper based on symmetric rehabilitation. In the paralyzed hand side, a mechanical exoskeleton hand is designed and simulated to provide skeletal traction, while in the regular hand side, the curve magnitude of every joint during movement is detected. Then the hand motion is analyzed and recognized using Multi-class SVM. Many candidates were chosen to perform the experiment, and the data produced by the candidates were divided the training parts and recognition parts. Experiments shows that the Multi-class SVM is effective and practical for classification and recognition, and could be helpful in the finger recovery process.

Source: A novel scheme of finger recovery based on symmetric rehabilitation: Specially for hemiplegia – IEEE Xplore Document

, , , , , , , ,

Leave a comment

[ARTICLE] Effect of ankle foot orthosis on gait parameters and functional ambulation in patients with stroke – Full Text PDF

ABSTRACT

Objectives: This study aims to investigate the effect of ankle foot orthosis (AFO) on temporospatial parameters, ankle kinematics, and functional ambulation level in patients with stroke.

Patients and methods: Records of 286 adult patients with stroke assessed in the gait and motion analysis laboratory between April 2005 and January 2013 were reviewed. The data of 28 patients (16 males, 12 females; mean age 43.2±15.9 years; range 20 to 72 years) who were analyzed with and without AFO during the same session were selected for the study. Temporospatial parameters (walking speed, cadence, opposite foot contact, double support time, single support time, step time, and step length) and ankle kinematics (ankle dorsiflexion at initial contact and midswing) were measured using the Vicon 512 motion analysis system. The video and medical records of patients were examined to determine their ambulation level according to Functional Ambulation Category.

Results: Walking speed, cadence, and ankle dorsiflexion at initial contact and midswing were significantly increased while walking with AFO compared to walking barefoot (p<0.05). There were significant reduction in step time and significant increase in step length and opposite foot contact with AFO on the affected side (p<0.05). Single support time reduced significantly with AFO on the unaffected side (p<0.05). Functional Ambulation Category score improved significantly with use of AFO (p<0.05).

Conclusion: The use of AFO has positive effects on gait parameters and functional ambulation in patients with stroke.

Full Text PDF

, , , , ,

Leave a comment

[ARTICLE] The Fugl-Meyer Upper Extremity Scale – Journal of Physiotherapy – Full Text

Abstract

The Fugl-Meyer Upper Extremity (FMUE) Scale1 is a widely used and highly recommended stroke-specific, performance-based measure of impairment.2,3 It is designed to assess reflex activity, movement control and muscle strength in the upper extremity of people with post-stroke hemiplegia. It has been extensively used as an outcome measure in rehabilitation trials and to record post-stroke recovery, particularly in the USA
Description

The Fugl-Meyer Upper Extremity (FMUE) Scale1 is a widely used and highly recommended stroke-specific, performance-based measure of impairment.2, 3 It is designed to assess reflex activity, movement control and muscle strength in the upper extremity of people with post-stroke hemiplegia. It has been extensively used as an outcome measure in rehabilitation trials and to record post-stroke recovery, particularly in the USA.4

The FMUE Scale comprises 33 items, each scored on a scale of 0 to 2, where 0 = cannot perform, 1 = performs partially and 2 = performs fully. It is free, requires only household items for testing, and takes up to 30 minutes to administer. Two illustrated manuals outlining the assessed components of the scale and scoring criteria have been published to address shortcomings of the original description.5, 6

The time taken to complete the full FMUE Scale has led researchers to develop variants, including a distal upper extremity sub-scale comprising 12 wrist/hand items7 and a ‘short form’ six-item scale of the whole FMUE Scale, which was developed using Rasch analysis to determine the easiest and most difficult items.8 In the development of the short form of the scale, care was taken to preserve the original content representativeness, which is based on sequential stages of post-stroke motor recovery, first documented by Brunnstrom in 1966.9 However, the short form version has been shown to be less sensitive to change at an individual level, which limits its clinical utility.10

Extensive assessment of the psychometric properties of the FMUE Scale has been undertaken.3 The longitudinal stability of assessment items (apart from reflex evaluation) over 6 months has been established, supporting the validity of the measure over time.4 Excellent internal consistency (alpha = 0.94 to 0.98 across four administrations over 6 months) has been demonstrated.11 Satisfactory concurrent validity has been shown in comparison with three other commonly used measures of upper extremity motor recovery.11 In this study, the FMUE Scale was the only tool that did not have significant floor and ceiling effects, and intra-rater (ICC 0.99, 95% CI 0.99 to 1.00) and inter-rater (ICC 0.96, 95% CI 0.92 to 0.98) agreement were shown to be excellent. These authors reported a minimal detectable change for intra-rater assessments of 5.2 on the 66-point scale (8% of the total measure) and 12.9 (20% of the total measure) for inter-rater assessments.

A range of data exists for minimal clinically important differences for the FMUE Scale. A change of between 4 and 7 points in chronic stroke,7 and 9 to 10 points in subacute stroke12 is considered to be clinically significant. A recent study by Hoonhorst et al13 aimed to determine the optimal cut-off scores for the FMUE Scale regarding predictions of upper limb capacity at 6 months post stroke. These authors reported that FMUE Scale scores < 31 corresponded with ‘no to poor’ upper extremity capacity, while 32 to 47 represented ‘limited capacity’, 48 to 52 represented ‘notable capacity’ and 53 to 66 represented ‘full’ upper extremity capacity. Shelton et al14 reported that a 10-point increase from admission to discharge on the FMUE Scale corresponded to a 1.5-point change on the Functional Independence Measure.

Continue —> The Fugl-Meyer Upper Extremity Scale – Journal of Physiotherapy

, , , , , , , ,

Leave a comment

[Abstract] Clinically Important Difference of the Arm Motor Ability Test in Stroke Survivors

Abstract

Background. The Arm Motor Ability Test (AMAT) is used to assess and quantify upper-extremity (UE) functional limitation in stroke and other conditions. However, the AMAT score change indicative of important and clinically meaningful change has not been determined.

Objective. To determine the clinically important difference (CID) for the AMAT for individuals with stroke exhibiting mild to moderate hemiparesis.

Methods. A total of 146 chronic stroke survivors exhibiting stable, mild to moderate UE hemiparesis were administered the AMAT before and after interventions targeting their affected UEs. Patients and treating therapists rated perceived amount of UE motor recovery for each participant on a global rating of change (GROC) scale evaluating several facets of UE movement (grasp, release, move the affected UE, perform 5 important functional tasks, overall UE function). Estimated CID of the Functional Ability Scale of the AMAT was calculated using the receiver operating characteristics curve with the GROC scale as the anchor. Distribution-based methods were also used to estimate the CID.

Results. Mean baseline, postintervention, and change in AMAT values for all participants were 3.0 (0.68), 3.3 (0.73), and 0.33 (0.43) respectively. The CID was estimated as an improvement of 0.32 to 0.42 when anchored by the therapist’s perception of improvement and 0.29 to 0.40 when anchored by the patient’s perception of improvement. The CID using distribution-based methods ranged from 0.40 to 0.44.

Conclusions. A change of 0.44 or greater on the AMAT indicates a clinically meaningful improvement in UE functional movements. Clinicians should use this value to determine goals and interpret change scores.

Source: Clinically Important Difference of the Arm Motor Ability Test in Stroke Survivors

, , , , , , , , , , ,

Leave a comment

[WEB SITE] CIMT – Constraint Induced Movement Therapy – Adults

Young adult tackles a dexterity challenge

What is CIMT?

Constraint Induced Movement Therapy (“CIMT” or “CI Therapy”) is a form of rehabilitation of the arm and hand following a neurological event such as a stroke.

Constraint induced movement therapy is suitable for adults with hemiplegia, where one arm is weaker than the other. CIMT involves rehabilitation of the weaker arm while restraining the stronger arm. CIMT can make significant and lasting improvements to the amount and quality of use of the affected arm, which can have a major impact on your quality of life and function.

Constraint induced movement therapy has a large body of scientific research behind it and the effects of the treatment have been shown not only on the hand and arm, but on the brain itself.

A constraint induced movement therapy programme is short but intensive. Treatment is provided daily over a period of 2 to 3 weeks and led by a specialist physiotherapist or occupational therapist. You will wear a restraint “mitt” on your stronger hand for 90% of your waking hours throughout the programme, and take part in intensive therapy sessions as well as home practice.

Explore our website for more information, or contact us to speak directly with one of our CIMT therapists.

 

more —> Adults | CIMT | Constraint Induced Movement Therapy

, , , , , ,

Leave a comment

[Poster] Sensory Amplitude Electrical Stimulation Improves Gait Speed in Chronic Stroke

Purpose/Hypothesis: The objective of the study was to determine if sensory amplitude electrical stimulation (SES) delivered via sock electrode during task-specific leg exercises improved gait speed, sensation, balance, and participation in individuals with chronic stroke. It was hypothesized that SES would enhance the effectiveness of exercise, resulting in reduced impairment and improved function in individuals with post-stroke hemiplegia.

Source: Sensory Amplitude Electrical Stimulation Improves Gait Speed in Chronic Stroke – Archives of Physical Medicine and Rehabilitation

, , , , , ,

Leave a comment

[Poster] Post-Stroke Reductions in Impairment and Functional Limitation Using a Telerehabilitation-Based Upper Extremity Protocol

To explore the feasibility and efficacy of remotely-delivered upper extremity (UE) therapy in a moderately impaired stroke survivor.

Source: Post-Stroke Reductions in Impairment and Functional Limitation Using a Telerehabilitation-Based Upper Extremity Protocol – Archives of Physical Medicine and Rehabilitation

, , , , , , ,

Leave a comment

[Poster] Design and Evaluation of a Novel Mechanical Device to Improve Hemiparetic Gait: A Case Report

To evaluate a novel gait training device, the Gait Propulsion Trainer (GPT), with respect to its ability to increase propulsion forces generated by the paretic leg in a person with hemiparesis.

Source: Design and Evaluation of a Novel Mechanical Device to Improve Hemiparetic Gait: A Case Report – Archives of Physical Medicine and Rehabilitation

, , , , , ,

Leave a comment

%d bloggers like this: