Posts Tagged hemiplegia

[Abstract] Effects of kinesiotaping on hemiplegic hand in patients with upper limb post-stroke spasticity: a randomized controlled pilot study

BACKGROUND: Post-stroke spasticity is a common complication in patients with stroke and a key contributor to impaired hand function after stroke.
AIM: The purpose of this study was to investigate the effects of Kinesiotaping on managing spasticity of upper extremity and motor performance in patients with subacute stroke.
DESIGN: A Randomized Controlled Pilot Study.
SETTING: One hospital center.
POPULATION: Participants with stroke within six months.
METHODS: Thirty-one participants were enrolled. Patients were randomly allocated into Kinesiotaping (KT) group or control group. In KT group, Kinesio tape was applied as an add- on treatment over the dorsal side of the affected hand during the intervention. Both groups received regular rehabilitation 5 days a week for 3 weeks. The primary outcome was muscle spasticity measured by modified Ashworth Scale (MAS). Secondary outcomes were functional performances of affected limb measured by using Fugl-Meyer assessment for upper extremity (FMA-UE), Brunnstrom stage, and the Simple Test for Evaluating Hand Function (STEF). Measures were taken before intervention, right after intervention (the third week) and two weeks later (the fifth week).
RESULTS: Within-group comparisons yielded significant differences in FMA-UE and Brunnstrom stages at the third and fifth week in the control group (p=0.003-0.019). In the KT group, significant differences were noted in FMA-UE, Brunnstrom stage, and MAS at the third and fifth week (p=0.001-0.035), and in the proximal part of FMA-UE between the third and fifth week (p=0.005). Between-group comparisons showed a significant difference in the distal part of FMA-UE at the fifth week (p=0.037).
CONCLUSIONS: Kinesiotaping could provide some benefits in reducing spasticity and in improving motor performance on the affected hand in patients with subacute stroke.
CLINICAL REHABILITATION IMPACT: Kinesiotaping could be a choice for clinical practitioners to use for effectively managing post-stroke spasticity.

via Effects of kinesiotaping on hemiplegic hand in patients with upper limb post-stroke spasticity: a randomized controlled pilot study – European Journal of Physical and Rehabilitation Medicine 2019 Jun 13 – Minerva Medica – Journals

, , , , , , , , , ,

Leave a comment

[Abstract] Pre-therapeutic Device for Post-stroke Hemiplegic Patients’ Wrist and Finger Rehabilitation

Abstract

Background/Objectives

This paper suggests a pre-therapeutic device for post-stroke hemiplegic patients’ wrist and finger rehabilitation both to decrease and analyze their muscle tones before the main physical or occupational therapy.

Method/Statistical Analysis

We designed a robot which consists of a BLDC motor, a torque sensor, linear motion guides and bearings. Mechanical structure of the robot induces flexion and extension of wrist and finger (MCP) joints simultaneously with the single motor. The frames of the robot were 3D printed. During the flexion/extension exercise, angular position and repulsive torque of the joints are measured and displayed in real time.

Findings

A prototype was 3D printed to conduct preliminary experiment on normal subject. From the neutral joint position (midway between extension and flexion), the robot rotated 120 degrees to extension direction and 30 degrees to flexion direction. First, the subject used the machine with the usual wrist and finger characteristics without any tones. Second, the same subject intentionally gave strength to the joints in order to imitate affected upper limb of a hemiplegic patient. During extension exercise, maximum repulsive torque of the normal hand was 2 Nm whereas that of the firm hand was almost 5 Nm. The result revealed that the device was capable enough to not only rotate rigid wrist and fingers with the novel robotic structure, but also present quantitative data such as the repulsive torque according to the joint orientation as an index of joint spasticity level.

Improvements/Applications

We are planning to improve the system by applying torque control and arranging experiments at hospitals to obtain patients’ data and feedbacks to meet actual needs in the field.

via Indian Journals

, , , , , ,

1 Comment

[Abstract] Brain-machine interface of upper limb recovery in stroke patients rehabilitation: A systematic review

Abstract

BACKGROUND:

Technologies such as brain-computer interfaces are able to guide mental practice, in particular motor imagery performance, to promote recovery in stroke patients, as a combined approach to conventional therapy.

OBJECTIVE:

The aim of this systematic review was to provide a status report regarding advances in brain-computer interface, focusing in particular in upper limb motor recovery.

METHODS:

The databases PubMed, Scopus, and PEDro were systematically searched for articles published between January 2010 and December 2017. The selected studies were randomized controlled trials involving brain-computer interface interventions in stroke patients, with upper limb assessment as primary outcome measures. Reviewers independently extracted data and assessed the methodological quality of the trials, using the PEDro methodologic rating scale.

RESULTS:

From 309 titles, we included nine studies with high quality (PEDro ≥ 6). We found that the most common interface used was non-invasive electroencephalography, and the main neurofeedback, in stroke rehabilitation, was usually visual abstract or a combination with the control of an orthosis/robotic limb. Moreover, the Fugl-Meyer Assessment Scale was a major outcome measure in eight out of nine studies. In addition, the benefits of functional electric stimulation associated to an interface were found in three studies.

CONCLUSIONS:

Neurofeedback training with brain-computer interface systems seem to promote clinical and neurophysiologic changes in stroke patients, in particular those with long-term efficacy.

via: https://www.ncbi.nlm.nih.gov/pubmed/30609208

, , , , , , , ,

Leave a comment

[Abstract] Virtual Reality in Upper Extremity Rehabilitation of Stroke Patients: A Randomized Controlled Trial.

Abstract

OBJECTIVE:

Virtual reality game system is one of novel approaches, which can improve hemiplegic extremity functions of stroke patients. We aimed to evaluate the effect of the Microsoft Xbox 360 Kinect video game system on upper limb motor functions for subacute stroke patients.

METHODS:

The study included 42 stroke patients of which 35 (19 Virtual reality group, 16 control group) completed the study. All patients received 60 minutes of conventional therapy for upper extremity, 5 times per-week for 4 weeks. Virtual reality group additionally received Xbox Kinect game system 30 minutes per-day. Patients were evaluated prior to the rehabilitation and at the end of 4 weeks. Box&Block Test, Functional independence measure self-care score, Brunnstorm stage and Fugl-Meyer upper extremity motor function scale were used as outcome measures.

RESULTS:

The Brunnstrom stages and the scores on the Fugl-Meyer upper extremity, Box&Block Test and Functional independence measure improved significantly from baseline to post-treatment in both the experimental and the control groups. The Brunnstrom stage-upper extremity and Box&Block Test gain for the experimental group were significantly higher compared to the control group, while the Brunnstrom stage-hand, the Functional independence measure gain and Fugl-Meyer gain were similar between the groups.

CONCLUSIONS:

We found evidence that kinect-based game system in addition to conventional therapy may have supplemental benefit for stroke patients. However, for virtual reality game systems to enter the routine practice of stroke rehabilitation, randomized controlled clinical trials with longer follow-up periods and larger sample sizes are needed especially to determine an optimal duration and intensity of the treatment.

via https://www.ncbi.nlm.nih.gov/pubmed/30193810

, , , , , ,

Leave a comment

[Abstract] How effective is physical therapy for gait muscle activity in hemiparetic patients who receive botulinum toxin injections?

Abstract

BACKGROUND: Administration of botulinum neurotoxin A (BoNT-A) to the ankle plantar flexors in patients with hemiplegia reduces the strength of knee extension, which may decrease their walking ability. Studies have reported improvements in walking ability with physical therapy following BoNT-A administration. However, no previous studies have evaluated from an exercise physiology perspective the efficacy of physical therapy after BoNT-A administration for adult patients with hemiplegia.

AIM: To investigate the effects of physical therapy following BoNT-A administration on gait electromyography for patients with hemiparesis secondary to stroke.

DESIGN: Non-randomized controlled trial.

SETTING: Single center.

POPULATION: Thirty-five patients with chronic stroke with spasticity were assigned to BoNT-A monotherapy (N.=18) or BoNT-A plus physical therapy (PT) (N.=17).

METHODS: On the paralyzed side of the body, 300 single doses of BoNT-A were administered intramuscularly to the ankle plantar flexors. Physical therapy was performed for 2 weeks, starting from the day after administration. Gait electromyography was performed and gait parameters were measured immediately before and 2 weeks after BoNT-A administration. Relative muscle activity, coactivation indices, and walking time/distance were calculated for each phase.

RESULTS: For patients who received BoNT-A monotherapy, soleus activity during the loading response decreased 2 weeks after the intervention (P<0.01). For those who received BoNT-A+PT, biceps femoris activity and knee coactivation index during the loading response and tibialis anterior activity during the pre-swing phases increased, whereas soleus and rectus femoris activities during the swing phase decreased 2 weeks after the intervention (P<0.05). These rates of change were significantly greater than those for patients who received BoNT-A monotherapy (P<0.05).
CONCLUSIONS: Following BoNT-A monotherapy, soleus activity during the stance phase decreased and walking ability either remained unchanged or deteriorated. Following BoNT-A+PT, muscle activity and knee joint stability increased during the stance phase, and abnormal muscle activity during the swing phase was suppressed.

CLINICAL REHABILITATION IMPACT: If botulinum treatment of the ankle plantar flexors in stroke patients is targeted to those with low knee extension strength, or if it aims to improve leg swing on the paralyzed side of the body, then physical therapy following BoNT-A administration could be an essential part of the treatment strategy.

HTML PDF

via How effective is physical therapy for gait muscle activity in hemiparetic patients who receive botulinum toxin injections? – European Journal of Physical and Rehabilitation Medicine 2019 February;55(1):8-18 – Minerva Medica – Journals

, , , , , , ,

Leave a comment

[ARTICLE] Variation of Finger Activation Patterns Post-stroke Through Non-invasive Nerve Stimulation – Full Text

Purpose: A transcutaneous proximal nerve stimulation technique utilizing an electrode grid along the nerve bundles has previously shown flexible activation of multiple fingers. This case study aimed to further demonstrate the ability of this novel stimulation technique to induce various finger grasp patterns in a stroke survivor.

Methods: An individual with chronic hemiplegia and severe hand impairment was recruited. Electrical stimulation was delivered to different pairs of an electrode grid along the ulnar and median nerves to selectively activate different finger flexor muscles, with an automated electrode switching method. The resultant individual isometric flexion forces and forearm flexor high-density electromyography (HDEMG) were acquired to evaluate the finger activation patterns. A medium and low level of overall activation were chosen to gauge the available finger patterns for both the contralateral and paretic hands. All the flexion forces were then clustered to categorize the different types of grasp patterns.

Results: Both the contralateral and paretic sides demonstrated various force clusters including single and multi-finger activation patterns. The contralateral hand showed finger activation patterns mainly centered on median nerve activation of the index, middle, and ring fingers. The paretic hand exhibited fewer total activation patterns, but still showed activation of all four fingers in some combination.

Conclusion: Our results show that electrical stimulation at multiple positions along the proximal nerve bundles can elicit a select variety of finger activation patterns even in a stroke survivor with minimal hand function. This system could be further implemented for better rehabilitative training to help induce functional grasp patterns or to help regain muscle mass.

Introduction

Following a stroke, a majority of individuals have paresis due to a loss of excitatory input and subsequent complications, such as disuse atrophy (1) and altered spinal organization (24). This loss of voluntary control of muscle activation often limits activities of daily living. Neuromuscular electrical stimulation (NMES) has been widely utilized both in the clinic and in research settings to help restore atrophied muscle and lost functions (57). Electrical stimulation has been particularly successful with post-stroke survivors for functional recovery (810). Research in NMES also aims to restore functional activation of muscles, such as the restoration of hand grasps (11).

Traditionally, NMES uses large electrode pads, targeting the distal branches of the nerve, known as the motor point stimulation (12). Although stimulation of the motor point is straightforward methodologically, NMES is limited to localized muscle activation, which limits its functional efficacy and also leads to rapid muscle fatigue (13). Advances in NMES techniques to alleviate these issues involve various multi-electrode techniques, which can stimulate multiple small regions of the muscle to help distribute the current and potentially activate more muscle fibers (1415). Crema et al. has also demonstrated flexible activation of multiple fingers using a multi-electrode array across the forearm and hand (16). Other approaches to NMES involve stimulation of the nerve bundle prior to branching and innervating a muscle, which has shown to allow for a larger area of muscle activation and potentially reduce long-term fatigue effects (1719).

Recent developments have demonstrated the capabilities of an alternative non-invasive transcutaneous electrical nerve stimulation method targeting the ulnar and median nerves proximal to the elbow to flexibly activate individual and multiple fingers (2021). In addition, this technique shows the ability to delay the force decline (2223). A stimulation electrode grid placed along the two nerves allows us to activate different muscles or muscle portions to elicit varied desired movements, but manually switching between different electrode pairs is time-consuming. To shorten this process, an automated electrode pair searching method has been developed and tested on intact control subjects (24). This new method can further categorize the total available sets of finger activation patterns across the entire electrode grid, providing valuable information on electrode selection and the force generation capacity of stroke muscles. However, the efficiency of this method has not been tested on stroke survivors. Therefore, this case study recruited a control subject and a stroke survivor with severe weakness of the right arm, and evaluated the available finger activation patterns of the subjects. Our results showed varied activation of multiple fingers from both subjects. Further development of this stimulation technique can provide valuable alternatives to current rehabilitation for the restoration of hand movements.[…]

 

Continue —> Frontiers | Variation of Finger Activation Patterns Post-stroke Through Non-invasive Nerve Stimulation | Neurology

Figure 1. Experimental Setup and Data Samples. (A) Stimulation Electrode Array and Force/HDEMG Setup. Processed Data samples are displayed adjacent to the setup figure. (B) The EMG map is the spatial map of calculated AUC values from each EMG channel’s CMAP and (C) the Force Profile is the smoothed force of each finger. (D) Sample Depiction of Automated Stimulation Procedure. Each stimulation pair can be paired with an EMG activity map and a force profile, which is the repetition of 3 stimulations.

, , , , , , , , , , , ,

Leave a comment

[BOOK Chapter] Application of a Robotic Rehabilitation Training System for Recovery of Severe Plegie Hand Motor Function after a Stroke – Full Text PDF

Abstract

We have developed a rehabilitation training system (UR-System-PARKO: Useful
and Ultimate Rehabilitation System-PARKO) for patients after a stroke to promote
recovery of motor function of the severe plegic hand with hemiplegia. A clinical
test with six patients for the therapeutic effect of the UR-System-PARKO for severe
plegic hand was performed. For all patients, the active ranges of motion (total
active motion) of finger extension improved after training with the UR-SystemPARKO. Moreover, the modified Ashworth scale (MAS) scores of finger extension
increased. Thus, the training reduced the spastic paralysis. These results suggest the
effectiveness of training with the UR-System-PARKO for recovery of motor function as defined by finger extension in the severe plegic hand.

1. Introduction

Stroke is the leading cause of disability in Japan, with more than 1 million people
in Japan living with a disability as a result of stroke. Therefore, interventions that
address the sensorimotor impairments resulting from stroke are important. Motor
function may be restored more than 6 months after a stroke [1, 2], but these studies
included patients with only moderate poststroke hemiplegia, whereas most stroke
survivors have a severely plegic hand with difficulty extending the fingers [3]. This
suggests that a method is needed for treatment of these severely affected cases.
However, although a few studies on rehabilitation therapy for severe plegic hands
have been reported, no marked recovery of ability in extension of the fingers of
the plegic hands was achieved in any study [4, 5]. Proprioceptive neuromuscular
facilitation (PNF) is a therapeutic method that was reported to increase the muscle
strength of the plegic extremities in patients with stroke-induced hemiplegia [6].
However, since PNF is indicated for patients with a certain level of joint motion,
this method has not been used for severe plegic hands where the fingers cannot
extend. Thus, the first author developed a method to build up the extensor digitorum muscle strength using PNF [7, 8] for stroke patients with severe hemiplegia.

With this therapy, he has performed repeated facilitation training using his hands
on stroke patients with a severe plegic hand to help them recover their motor function, and a good treatment outcome was achieved [9, 10] (Figure 1).
Facilitation training uses extension of the elbow joint with resistance applied to
the tips of the fully extended hemiplegic fingers to increase the force of the extensor digitorum muscle. However, this approach is time-consuming for the therapist.
Therefore, development of a training system is required instead of repeated
facilitation training by a therapist. The objectives of this study were to develop
a training system to increase the output of the extensor digitorum muscle force
and to verify the effect of training with the developed system on a severe plegic
hand. The training system is called the UR-System-PARKO (a useful and ultimate
rehabilitation support system for PARKO). The UR-System-PARKO was developed
by remodeling the simplified training system, which developed previously for
resistance training of hemiplegic upper limbs [11]. A brace for securing the plegic
hand to the UR-System-PARKO was developed on the basis of repeated facilitation
training by a therapist.[…]

Download Full Text PDF

, , , , , , , , , , ,

Leave a comment

[Abstract] Virtual Reality in Upper Extremity Rehabilitation of Stroke Patients: A Randomized Controlled Trial

Abstract

Objective

Virtual reality game system is one of novel approaches, which can improve hemiplegicextremity functions of stroke patients. We aimed to evaluate the effect of the Microsoft Xbox 360 Kinect video game system on upper limb motor functions for subacute stroke patients.

Methods

The study included 42 stroke patients of which 35 (19 Virtual reality group, 16 control group) completed the study. All patients received 60 minutes of conventional therapy for upper extremity, 5 times per-week for 4 weeks. Virtual reality group additionally received Xbox Kinect game system 30 minutes per-day. Patients were evaluated prior to the rehabilitation and at the end of 4 weeks. Box&Block Test, Functional independence measure self-care score, Brunnstorm stage and Fugl-Meyer upper extremity motor function scale were used as outcome measures.

Results

The Brunnstrom stages and the scores on the Fugl-Meyer upper extremity, Box&Block Test and Functional independence measure improved significantly from baseline to post-treatment in both the experimental and the control groups. The Brunnstrom stage-upper extremity and Box&Block Test gain for the experimental group were significantly higher compared to the control group, while the Brunnstrom stage-hand, the Functional independence measure gain and Fugl-Meyer gain were similar between the groups.

Conclusions

We found evidence that kinect-based game system in addition to conventional therapy may have supplemental benefit for stroke patients. However, for virtual reality game systems to enter the routine practice of stroke rehabilitation, randomized controlled clinical trials with longer follow-up periods and larger sample sizes are needed especially to determine an optimal duration and intensity of the treatment.

via Virtual Reality in Upper Extremity Rehabilitation of Stroke Patients: A Randomized Controlled Trial – ScienceDirect

, , , , , ,

Leave a comment

[Abstract] Assessment of the Efficacy of ReoGo-J Robotic training against other rehabilitation therapies for Upper-Limb Hemiplegia after Stroke: Protocol for a Randomized Controlled Trial

Background: Stroke patients experience chronic hemiparesis in their upper extremities leaving negative effects on quality of life. Robotic therapy is one method to recover arm function, but its research is still in its infancy. Research questions of this study is to investigate how to maximize the benefit of robotic therapy using ReoGo-J for arm hemiplegia in chronic stroke patients.

Method: Design of this study is a multi-center parallel group trial following the prospective, randomized, open-label, blinded endpoint (PROBE) study model. Participants and setting will be 120 chronic stroke patients (over 6 months post-stroke) will be randomly allocated to three different rehabilitation protocols. In this study, the control group will receive 20 minutes of standard rehabilitation (conventional occupational therapy) and 40 minutes of self-training (i.e., sanding, placing and stretching). The robotic therapy group will receive 20 minutes of standard rehabilitation and 40 minutes of robotic therapy using ReoGo®-J device. The combined therapy group will receive 40 minutes of robotic therapy and 20 minutes of constraint-induced movement therapy (protocol to improve upper-limb use in ADL suggests). This study employs the Fugl-Meyer Assessment upper-limb score (primary outcome), other arm function measures and the Stroke Impact Scale score will be measured at baseline, 5 weeks, and 10 weeks of the treatment phase. In analysis of this study, we use the mixed effects model for repeated measures to compare changes in outcomes between groups at Week 5 and 10. The registration number of this study is UMIN000022509.

Conclusion: This study is a feasible, multi-site randomized controlled trial to examine our hypothesis that combined training protocol could maximize the benefit of robotic therapy and best effective therapeutic strategy for patients with upper-limb hemiparesis.

via Frontiers | Assessment of the Efficacy of ReoGo-J Robotic training against other rehabilitation therapies for Upper-Limb Hemiplegia after Stroke: Protocol for a Randomized Controlled Trial | Neurology

, , , , , , , , , ,

Leave a comment

[Abstract] Effects of MOTOmed movement therapy on the mobility and activities of daily living of stroke patients with hemiplegia: a systematic review and meta-analysis

To estimate the effectiveness of MOTOmed® movement therapy in increasing mobility and activities of daily living in stroke patients with hemiplegia.

Systematic review.

English- and Chinese-language articles published from the start of database coverage through 20 June 2018 were retrieved from the Embase, Web of Science, PubMed, OVID, Cochrane Central Register of Controlled Trials, Cochrane Systematic Reviews, Wanfang, Chinese National Knowledge Infrastructure, VIP, and Chinese Biomedicine databases. Articles were also retrieved by manual searches of Rehabilitation Medicine and Chinese journals.

Randomized control trials examining MOTOmed movement therapy interventions for patients with post-stroke hemiplegia were included in this review. The risk of bias assessment tool was utilized in accordance with Cochrane Handbook 5.1.0. All included studies reported mobility effects as primary outcomes. Standardized mean differences or mean differences with the corresponding 95% confidence intervals (CIs) were calculated. Review Manager 5.3 was utilized for meta-analysis.

In total, 19 trials involving a total of 1099 patients were included in the analysis. All studies were of moderate quality, based on the Cochrane Handbook for Systematic Reviews of Intervention: Part 2:8.5. MOTOmed movement therapy resulted in a merged mean difference in the Fugl-Meyer Assessment score of 5.51 (95% CI: 4.03 to 6.98). Comparison of groups treated with and without MOTOmed movement therapy yielded the following mean differences: Modified Ashworth Scale, −1.13 (95% CI: −1.37 to −0.89); Berg Balance Scale, 13.66 (95% CI: 10.47–16.85); Functional Ambulation Category Scale, 0.85 (95% CI: 0.68–1.03); 10-m walk test, 10.15 (95% CI: 5.72–14.58); Barthel Index, 14.82 (95% CI: 12.96–16.68); and Modified Barthel Index, 11.49 (95% CI: 8.96–14.03).

MOTOmed movement therapy combined with standard rehabilitation improves mobility and activities of daily living in stroke patients with hemiplegia.

  

via Effects of MOTOmed movement therapy on the mobility and activities of daily living of stroke patients with hemiplegia: a systematic review and meta-analysis – Cuiling Shen, Fang Liu, Liqun Yao, Zhongyuan Li, Li Qiu, Suzhu Fang, 2018

, , , , , , ,

Leave a comment

%d bloggers like this: