Posts Tagged hemiplegia

[ARTICLE] Including a Lower-Extremity Component during Hand-Arm Bimanual Intensive Training does not Attenuate Improvements of the Upper Extremities: A Retrospective Study of Randomized Trials – Full Text

Hand-Arm Bimanual Intensive Therapy (HABIT) promotes hand function using intensive practice of bimanual functional and play tasks. This intervention has shown to be efficacious to improve upper-extremity (UE) function in children with unilateral spastic cerebral palsy (USCP). In addition to UE function deficits, lower-extremity (LE) function and UE–LE coordination are also impaired in children with USCP. Recently, a new intervention has been introduced in which the LE is simultaneously engaged during HABIT (Hand-Arm Bimanual Intensive Therapy Including Lower Extremities; HABIT-ILE). Positive effects of this therapy have been demonstrated for both the UE and LE function in children with USCP. However, it is unknown whether the addition of this constant LE component during a bimanual intensive therapy attenuates UE improvements observed in children with USCP. This retrospective study, based on multiple randomized protocols, aims to compare the UE function improvements in children with USCP after HABIT or HABIT-ILE. This study included 86 children with USCP who received 90 h of either HABIT (n = 42) or HABIT-ILE (n = 44) as participants in previous studies. Children were assessed before, after, and 4–6 months after intervention. Primary outcomes were the ABILHAND-Kids and the Assisting Hand Assessment. Secondary measures included the Jebsen-Taylor Test of Hand Function, the Pediatric Evaluation of Disability Inventory [(PEDI); only the self-care functional ability domain] and the Canadian Occupational Performance Measure (COPM). Data analysis was performed using two-way repeated-measures analysis of variance with repeated measures on test sessions. Both groups showed similar, significant improvements for all tests (test session effect p < 0.001; group × test session interaction p > 0.05) except the PEDI and COPM. Larger improvements on these tests were found for the HABIT-ILE group (test session effect p < 0.001; group × test session interaction p < 0.05). These larger improvements may be explained by the constant simultaneous UE–LE engagement observed during the HABIT-ILE intervention since many daily living activities included in the PEDI and the COPM goals involve the LE and, more specifically, UE–LE coordination. We conclude that UE improvements in children with USCP are not attenuated by simultaneous UE–LE engagement during intensive intervention. In addition, systematic LE engagement during bimanual intensive intervention (HABIT-ILE) leads to larger functional improvements in activities of daily living involving the LE.

Introduction

Cerebral palsy (CP) is the most common cause of pediatric motor disability with a prevalence ranging from 2 to 3.6 out of 1,000 children in western countries (12). Motor disorders are often accompanied by sensation, perception, cognition, behavior, communication, and epilepsy disorders (1). Although the lesions are established from birth and are non-progressive, the motor impairments experienced by children with CP affect their autonomy and functional outcomes during their life-span. Moreover, motor symptoms such as impaired ability to walk may worsen during development (3).

One of the most disabling long-term functional deficits in children with unilateral spastic cerebral palsy (USCP) is impaired manual dexterity, i.e., impaired skilled hand movements and precision grip abilities (4). Upper-extremity (UE) impairments may affect functional independence, especially for activities of daily living requiring bimanual coordination (e.g., buttoning one’s shirt). It is now well known that intensive interventions based on motor skill learning principles and goal-directed training are effective for improving UE function in children with USCP (5). Constraint-Induced Movement Therapy (CIMT) was the first intensive intervention adapted to children with USCP (6). CIMT was first designed for adults with stroke and subsequently adapted to children with USCP showing improvements in hand function (5). Taking advantage of the key ingredient of CIMT (intensive practice with the affected UE), Charles and Gordon developed an alternative intensive bimanual approach termed “Hand-Arm Bimanual Intensive Therapy” (HABIT) (7). HABIT was developed with recognition that the combined use of both hands was necessary to increase functional independence in children with USCP (7). Focusing on improving bimanual coordination through structured play and functional activities during HABIT demonstrated efficacy to improve UE function in children with USCP (5).

Both HABIT and CIMT focus only on the UE of children with USCP. Though the lower extremity (LE) is generally less affected than UE in children with USCP, impairments observed in the affected LE range from an isolated equine ankle to hip flexion and adduction with a fixed knee (8). Children with USCP are then unable to achieve postural symmetry while standing, systematically presenting with an overload on one bodyside (8). They also frequently encounter limitations in walking abilities (3). Besides the LE impairments, UE–LE coordination is often impaired in children with USCP (910). This coordination is frequently used in daily living activities (e.g., walking while carrying an object in the hand, climbing stairs while using the railing). A program that simultaneously trains the UE and LE in children with USCP is thus of interest since the UE impairments in children with CP remain stable through time (11) while walking and other LE abilities may decline during development (3). In 2014, taking advantage of the key ingredients in HABIT (intensive bimanual practice), Bleyenheuft and Gordon developed a new intervention focusing on both the UE and LE entitled “Hand-Arm Bimanual Intensive Therapy Including Lower Extremities” (HABIT-ILE) (12). Positive effects of this therapy focusing on both the UE and LE through structured play and functional activities have been demonstrated both for the UE and the LE of children with USCP (13) as well as, more recently, for children with bilateral CP (14). However, it is unknown whether the introduction of a systematic LE engagement in addition to a bimanual intervention may lead to attenuated improvements in UE compared to traditional HABIT due to shifts in attention (multitasking). This retrospective study aimed to compare changes in the UE of children with USCP undergoing 90 h of intensive bimanual intervention either with (HABIT-ILE) or without (HABIT) a LE component. We hypothesized that the introduction of systematic LE training simultaneously added to the bimanual training would lead to reduced improvements in the UE during HABIT-ILE compared to traditional HABIT. […]

Continue —> Frontiers | Including a Lower-Extremity Component during Hand-Arm Bimanual Intensive Training does not Attenuate Improvements of the Upper Extremities: A Retrospective Study of Randomized Trials | Neurology

Advertisements

, , , , , , ,

Leave a comment

[Abstract+References] Wearable Rehabilitation Training System for Upper Limbs Based on Virtual Reality – Conference paper

Abstract

In this paper, wearable rehabilitation training system for the upper limb based on virtual reality is designed for patients with upper extremity hemiparesis. The six-axis IMU sensor is used to collect the joint training angles of the shoulder and elbow. In view of the patient’s shoulder and elbow joint active rehabilitation training, the virtual rehabilitation training games based on the Unity3D engine are designed to complete different tasks. Its purpose is to increase the interest of rehabilitation training. The data obtained from the experiment showed that the movement ranges of the shoulder and elbow joint reached the required ranges in the rehabilitation training game. The basic function of the system is verified by the experiments, which can provide effective rehabilitation training for patients with upper extremity hemiparesis.

References

 

 

1.
Liang, M., Dou, Z.L., Wang, Q.H.: Application of virtual reality technique in rehabilitation of hemiplegic upper extremities function of stroke patients. Chin. J. Rehabil. Med. 02, 114–118 (2013)Google Scholar

 

2.
Valencia, N., Cardoso, V., Frizera, A.: Serious Game for Post-stroke Upper Limb Rehabilitation. Converging Clinical and Engineering Research on Neurorehabilitation II. Springer, Berlin (2017)Google Scholar

 

3.
Lei, Y., Yu, H.L., Wang, L.L., Wang, Z.P.: Research on virtual reality-based interactive upper-limb rehabilitation training system. Prog. Biomed. Eng. 36(1), 21–24 (2015)Google Scholar

 

4.
Xu, B.G., Peng, S., Song, A.G.: Upper-limb rehabilitation robot based on motor imagery EEG. Robot 33(3), 307–313 (2011)CrossRefGoogle Scholar

 

5.
Wang, H.T.: Status of Application of Virtual Reality Technique in Motor Rehabilitation in Stroke. Chin. J. Rehabil. Theory Pract. 10, 911–915 (2014)Google Scholar

 

6.
Zhang, J.L.: Research of Finger Rehabilitation System Based on Virtual Reality Technology. Huazhong University of Science and Technology (2012)Google Scholar

 

7.
Mei, Z., He, L.W., Wu, L., Jian, Z.: Design and test of a portable exoskeleton elbow rehabilitation training device. Chin. J. Rehabil. Med. 11, 1155–1157 (2015)Google Scholar

 

8.
Mazzone, B., Haubert, L.L., Mulroy, S.: Intensity of shoulder muscle activation during resistive exercises performed with and without virtual reality games. In: International Conference on Virtual Rehabilitation, pp. 127–133. IEEE (2013)Google Scholar

 

9.
Fischer, H.C., Stubblefield, K., Kline, T.: Hand rehabilitation following stroke: a pilot study of assisted finger extension training in a virtual environment. Topics Stroke Rehabil. 14(1), 1–12 (2014)CrossRefGoogle Scholar

 

10.
Kapandji, A.I.: The Physiology of the Joints, 6th edn. People’s Military Medical Press, Beijing (2011)Google Scholar

 

11.
Gu, Y., Tian, L.H., Chen, H.: Application of virtual reality training system and rehabilitation therapy in the treatment in hemiplegic patients with upper limb dysfunction. Chin. J. Rehabil. Med. 26(6), 579–581 (2011)Google Scholar

Source: Wearable Rehabilitation Training System for Upper Limbs Based on Virtual Reality | SpringerLink

, , , , , , , , ,

Leave a comment

[Abstract] Electrically Assisted Movement Therapy in Chronic Stroke Patients With Severe Upper Limb Paresis: A Pilot, Single-Blind, Randomized Crossover Study

 

Abstract

Objective

To evaluate the effects of electrically assisted movement therapy (EAMT) in which patients use functional electrical stimulation, modulated by a custom device controlled through the patient’s unaffected hand, to produce or assist task-specific upper limb movements, which enables them to engage in intensive goal-oriented training.

Design

Randomized, crossover, assessor-blinded, 5-week trial with follow-up at 18 weeks.

Setting

Rehabilitation university hospital.

Participants

Patients with chronic, severe stroke (N=11; mean age, 47.9y) more than 6 months poststroke (mean time since event, 46.3mo).

Interventions

Both EAMT and the control intervention (dose-matched, goal-oriented standard care) consisted of 10 sessions of 90 minutes per day, 5 sessions per week, for 2 weeks. After the first 10 sessions, group allocation was crossed over, and patients received a 1-week therapy break before receiving the new treatment.

Main Outcome Measures

Fugl-Meyer Motor Assessment for the Upper Extremity, Wolf Motor Function Test, spasticity, and 28-item Motor Activity Log.

Results

Forty-four individuals were recruited, of whom 11 were eligible and participated. Five patients received the experimental treatment before standard care, and 6 received standard care before the experimental treatment. EAMT produced higher improvements in the Fugl-Meyer scale than standard care (P<.05). Median improvements were 6.5 Fugl-Meyer points and 1 Fugl-Meyer point after the experimental treatment and standard care, respectively. The improvement was also significant in subjective reports of quality of movement and amount of use of the affected limb during activities of daily living (P<.05).

Conclusions

EAMT produces a clinically important impairment reduction in stroke patients with chronic, severe upper limb paresis.

Source: Electrically Assisted Movement Therapy in Chronic Stroke Patients With Severe Upper Limb Paresis: A Pilot, Single-Blind, Randomized Crossover Study – Archives of Physical Medicine and Rehabilitation

, , , , , , ,

Leave a comment

[ARTICLE] Design and test of an automated version of the modified Jebsen test of hand function using Microsoft Kinect – Full Text

Abstract

Background

The present paper describes the design and evaluation of an automated version of the Modified Jebsen Test of Hand Function (MJT) based on the Microsoft Kinect sensor.

Methods

The MJT was administered twice to 11 chronic stroke subjects with varying degrees of hand function deficits. The test times of the MJT were evaluated manually by a therapist using a stopwatch, and automatically using the Microsoft Kinect sensor. The ground truth times were assessed based on inspection of the video-recordings. The agreement between the methods was evaluated along with the test-retest performance.

Results

The results from Bland-Altman analysis showed better agreement between the ground truth times and the automatic MJT time evaluations compared to the agreement between the ground truth times and the times estimated by the therapist. The results from the test-retest performance showed that the subjects significantly improved their performance in several subtests of the MJT, indicating a practice effect.

Conclusions

The results from the test showed that the Kinect can be used for automating the MJT.

Background

Deficits in motor function, in the form of hemiparesis or hemiplegia, are a frequent consequence of cerebral stroke [1]. Even though motor function may be regained to some extent through intensive rehabilitative training following acute treatment of stroke, deficits in hand function often remain [23]. Following discharge from the rehabilitation unit, patients are typically asked to perform unsupervised self-training in their own home. The lack of supervision during training at home will likely have an impact on the patient’s training compliance and training quality. Therefore, it is important to perform regular evaluations of the patient’s functional level in order to provide useful supervision and to maintain patient motivation. The patients’ performance in a specific motor function test provides valuable insight into whether the training scheme chosen for a patient is effective or it should be changed. Thus, it is very important that the motor function tests being used are objective and reflect the actual functional level of the patient being tested. Several validated motor function tests including assessment of hand function exist, e.g. Jebsen Test of Hand Function [4], Action Research Arm Test [5], Fugl-Meyer Assessment [6], Wolf Motor Function Test (WMFT) [7], Box and Blocks Test [8] and Nine Hole Peg Test [9]. Common for all these tests is that they must be administered by a therapist, which might be a source for variability in the test results, and cause the test results not always to be completely reproducible and objective. In tests including performance time as an outcome measure, e.g. the WMFT, the reaction time of the subject could introduce a bias to the results, as suggested by previous studies [1011]. Likewise, the end time of the test would likely be subjected to a bias, since the examiner has a finite reaction time. Thus, both the reaction time of the examiner and the subject could be potential sources of bias and variability in timed motor function tests. The sensitivity of a motor function test is affected by sources of bias and variability and therefore it is of interest to minimize these, to make detection of even small changes possible.

By automating motor function tests, the objectivity of the tests would be increased. This might also make possible to use the tests at remote sites, without direct supervision, as a part of a tele-rehabilitation service. Finally, automated tests could be administered more frequently. Previous studies have shown that selected parts of the WMFT can be automated by use of motion sensors mounted on the body of healthy subjects [10] and stroke patients [11]. Both systems automated the test by analyzing three-dimensional kinematics data from body-worn sensors (inertial measurement units) mounted on the most affected wrist, arm and shoulder of stroke patients [1011]. Similarly, using inertial measurement unit sensors, Yang et al. (2013) showed that when administering the 10 m walking test, the output from their system was in close agreement with the walking speeds estimated using a stop-watch [12]. These systems require though correct positioning and mounting of the motion sensors [10]. Huang et al. (2012) showed that also a computer vision based approach, consisting of a monitor camera and a Xilinx Virtex II Pro Field Programmable Gate Array (for computation), may be used for automating the WMFT. All participants being tested had to wear a black sweatband on the wrist of the extremity being tested [13]. Another low-price method for capturing the movements of a patient performing a motor function test is the Microsoft Kinect sensor (Kinect). By using a Kinect, the need for body mounted sensors is eliminated, thus lowering the susceptibility to data loss and easing donning and doffing of the system. Furthermore, the Microsoft Kinect sensor is a low-cost commercially available device. In this paper, we describe the design and test of a Kinect based system for automatic evaluation of a standardized, validated motor function test, administered to stroke patients with hand function deficits. The Modified Jebsen Test of Hand Function (MJT) [14], initially proposed by Bovend’Eerdt et al. (2004) as a test for assessment of gross functional dexterity in stroke patients, was selected for automation as this test is easy to administer and takes short time to complete.

Continue —> Design and test of an automated version of the modified Jebsen test of hand function using Microsoft Kinect | Journal of NeuroEngineering and Rehabilitation | Full Text

Fig. 3 The edge of the table was detected in the binary image (lower) produced by thresholding the depth image (upper) into two parts, one part containing all pixels with a depth value lower than a depth level of 300 mm below the surface of the table and the other part containing pixels with depth values above this threshold

, , , , , , , , , , , ,

Leave a comment

[Abstract] Electrically Assisted Movement Therapy in Chronic Stroke Patients With Severe Upper Limb Paresis: A Pilot, Single-Blind, Randomized Crossover Study  

Abstract

Objective

To evaluate the effects of electrically assisted movement therapy (EAMT) in which patients use functional electrical stimulation, modulated by a custom device controlled through the patient’s unaffected hand, to produce or assist task-specific upper limb movements, which enables them to engage in intensive goal-oriented training.

Design

Randomized, crossover, assessor-blinded, 5-week trial with follow-up at 18 weeks.

Setting

Rehabilitation university hospital.

Participants

Patients with chronic, severe stroke (N=11; mean age, 47.9y) more than 6 months poststroke (mean time since event, 46.3mo).

Interventions

Both EAMT and the control intervention (dose-matched, goal-oriented standard care) consisted of 10 sessions of 90 minutes per day, 5 sessions per week, for 2 weeks. After the first 10 sessions, group allocation was crossed over, and patients received a 1-week therapy break before receiving the new treatment.

Main Outcome Measures

Fugl-Meyer Motor Assessment for the Upper Extremity, Wolf Motor Function Test, spasticity, and 28-item Motor Activity Log.

Results

Forty-four individuals were recruited, of whom 11 were eligible and participated. Five patients received the experimental treatment before standard care, and 6 received standard care before the experimental treatment. EAMT produced higher improvements in the Fugl-Meyer scale than standard care (P<.05). Median improvements were 6.5 Fugl-Meyer points and 1 Fugl-Meyer point after the experimental treatment and standard care, respectively. The improvement was also significant in subjective reports of quality of movement and amount of use of the affected limb during activities of daily living (P<.05).

Conclusions

EAMT produces a clinically important impairment reduction in stroke patients with chronic, severe upper limb paresis.

Source: Electrically Assisted Movement Therapy in Chronic Stroke Patients With Severe Upper Limb Paresis: A Pilot, Single-Blind, Randomized Crossover Study – Archives of Physical Medicine and Rehabilitation

, , , , , , , , , , , ,

Leave a comment

[Abstract] A Randomized Controlled Study: Effectiveness of Functional Electrical Stimulation on Wrist and Finger Flexor Spasticity in Hemiplegia

Aim

The objective of this study was to investigate the effectiveness of functional electrical stimulation (FES) applied to the wrist and finger extensors for wrist flexor spasticity in hemiplegic patients.

Methods

Thirty stroke patients treated as inpatients were included in the study. Patients were randomly divided into study and control groups. FES was applied to the study group. Wrist range of movement, the Modified Ashworth Scale (MAS), Rivermead Motor Assessment (RMA), Brunnstrom (BS) hand neurophysiological staging, Barthel Index (BI), and Upper Extremity Function Test (UEFT) are outcome measures.

Results

There was no significant difference regarding range of motion (ROM) and BI values on admission between the groups. A significant difference was found in favor of the study group for these values at discharge. In the assessment within groups, there was no significant difference between admission and discharge RMA, BS hand, and UEFT scores in the control group, but there was a significant difference between the admission and discharge values for these parameters in the study group. Both groups showed improvement in MAS values on internal assessment.

Conclusion

It was determined that FES application is an effective method to reduce spasticity and to improve ROM, motor, and functional outcomes in hemiplegic wrist flexor spasticity.

 

Source: A Randomized Controlled Study: Effectiveness of Functional Electrical Stimulation on Wrist and Finger Flexor Spasticity in Hemiplegia – Journal of Stroke and Cerebrovascular Diseases

, , , , , , , , , , ,

Leave a comment

[Abstract] Giving Them a Hand: Wearing a Myoelectric Elbow-Wrist-Hand Orthosis Reduces Upper Extremity Impairment in Chronic Stroke

Abstract

Objective

Determine the immediate impact of a portable, myoelectric elbow-wrist-hand orthosis (MEWHO) on paretic upper extremity (UE) impairment in chronic, stable, moderately impaired stroke survivors.

Design

Observational cohort study Setting: Outpatient rehabilitation clinic

Participants

18 participants exhibiting chronic, moderate, stable, post-stroke, UE hemiparesis.

Interventions

Subjects were administered a battery of measures testing UE impairment as well as UE function. They then donned a fabricated MEWHO and were again tested on the same battery of measures while wearing the device.

Main Outcome Measures

The primary outcome measure was the UE section of the Fugl-Meyer Impairment Scale (FM). Subjects were also administered a battery of functional tasks and the Box and Blocks test (BB).

Results

Subjects exhibited significantly reduced UE impairment while wearing the MEWHO (FM: t {17} = 8.56, p < .0001), and increased quality in performing all functional tasks while wearing the MEWHO, with three subtasks showing significant increases (Feeding {grasp}: Z=2.251, p=.024; Feeding {elbow}: Z=2.966, p=.003; Drinking {grasp}: Z= 3.187, p=.001). Additionally, subjects showed significant decreases in time taken to grasp a cup (Z=1.286, p=.016) and increased gross manual dexterity while wearing a MEWHO (BB: Z =3.42, p < .001).

Conclusion

Results suggest that UE impairment, as measured by the FM, is significantly reduced when donning a MEWHO and these changes exceeded the FM’s clinically important difference threshold. Further, utilization of a MEWHO significantly increased gross manual dexterity and performance of certain functional tasks. Future work will integrate education sessions to increase subjects’ ability to perform multi-joint functional movements and attain consistent functional changes.

Source: Giving Them a Hand: Wearing a Myoelectric Elbow-Wrist-Hand Orthosis Reduces Upper Extremity Impairment in Chronic Stroke – Archives of Physical Medicine and Rehabilitation

, , , , , , , , , , ,

Leave a comment

[Abstract] Feasibility Study of a Take-Home Array-Based Functional Electrical Stimulation System With Automated Setup for Current Functional Electrical Stimulation Users With Foot-Drop

Abstract

Objective

To investigate the feasibility of unsupervised community use of an array-based automated setup functional electrical stimulator for current foot-drop functional electrical stimulation (FES) users.

Design

Feasibility study.

Setting

Gait laboratory and community use.

Participants

Participants (N=7) with diagnosis of unilateral foot-drop of central neurologic origin (>6mo) who were regular users of a foot-drop FES system (>3mo).

Intervention

Array-based automated setup FES system for foot-drop (ShefStim).

Main Outcome Measures

Logged usage, logged automated setup times for the array-based automated setup FES system and diary recording of problems experienced, all collected in the community environment. Walking speed, ankle angles at initial contact, foot clearance during swing, and the Quebec User Evaluation of Satisfaction with Assistive Technology version 2.0 (QUEST version 2.0) questionnaire, all collected in the gait laboratory.

Results

All participants were able to use the array-based automated setup FES system. Total setup time took longer than participants’ own FES systems, and automated setup time was longer than in a previous study of a similar system. Some problems were experienced, but overall, participants were as satisfied with this system as their own FES system. The increase in walking speed (N=7) relative to no stimulation was comparable between both systems, and appropriate ankle angles at initial contact (N=7) and foot clearance during swing (n=5) were greater with the array-based automated setup FES system.

Conclusions

This study demonstrates that an array-based automated setup FES system for foot-drop can be successfully used unsupervised. Despite setup’s taking longer and some problems, users are satisfied with the system and it would appear as effective, if not better, at addressing the foot-drop impairment. Further product development of this unique system, followed by a larger-scale and longer-term study, is required before firm conclusions about its efficacy can be reached.

Source: Feasibility Study of a Take-Home Array-Based Functional Electrical Stimulation System With Automated Setup for Current Functional Electrical Stimulation Users With Foot-Drop – Archives of Physical Medicine and Rehabilitation

, , , , , , , ,

Leave a comment

[Abstract] A novel scheme of finger recovery based on symmetric rehabilitation: Specially for hemiplegia

Abstract:

Finger recovery is much harder than other parts on the upper limbs, because finger recovery movement has several key problems need to overcome, including high precision of movement, high control resolution requirements, variable data with different person, as well as the fuzzy signal during the movement. In order to overcome the difficulties, a new scheme of finger recovery is presented in the paper based on symmetric rehabilitation. In the paralyzed hand side, a mechanical exoskeleton hand is designed and simulated to provide skeletal traction, while in the regular hand side, the curve magnitude of every joint during movement is detected. Then the hand motion is analyzed and recognized using Multi-class SVM. Many candidates were chosen to perform the experiment, and the data produced by the candidates were divided the training parts and recognition parts. Experiments shows that the Multi-class SVM is effective and practical for classification and recognition, and could be helpful in the finger recovery process.

Source: A novel scheme of finger recovery based on symmetric rehabilitation: Specially for hemiplegia – IEEE Xplore Document

, , , , , , , ,

Leave a comment

[ARTICLE] Effect of ankle foot orthosis on gait parameters and functional ambulation in patients with stroke – Full Text PDF

ABSTRACT

Objectives: This study aims to investigate the effect of ankle foot orthosis (AFO) on temporospatial parameters, ankle kinematics, and functional ambulation level in patients with stroke.

Patients and methods: Records of 286 adult patients with stroke assessed in the gait and motion analysis laboratory between April 2005 and January 2013 were reviewed. The data of 28 patients (16 males, 12 females; mean age 43.2±15.9 years; range 20 to 72 years) who were analyzed with and without AFO during the same session were selected for the study. Temporospatial parameters (walking speed, cadence, opposite foot contact, double support time, single support time, step time, and step length) and ankle kinematics (ankle dorsiflexion at initial contact and midswing) were measured using the Vicon 512 motion analysis system. The video and medical records of patients were examined to determine their ambulation level according to Functional Ambulation Category.

Results: Walking speed, cadence, and ankle dorsiflexion at initial contact and midswing were significantly increased while walking with AFO compared to walking barefoot (p<0.05). There were significant reduction in step time and significant increase in step length and opposite foot contact with AFO on the affected side (p<0.05). Single support time reduced significantly with AFO on the unaffected side (p<0.05). Functional Ambulation Category score improved significantly with use of AFO (p<0.05).

Conclusion: The use of AFO has positive effects on gait parameters and functional ambulation in patients with stroke.

Full Text PDF

, , , , ,

Leave a comment

%d bloggers like this: