Posts Tagged hemiplegia

[ARTICLE] Exercises with action observation contribute to upper limb recovery in chronic stroke patients: a controlled clinical trial – Full Text

ABSTRACT

Aims:

To investigate the effects of an exercise program with action observation versus conventional physical therapy on upper limb functionality in chronic stroke subjects.

Methods:

In this controlled clinical trial, thirty-five stroke patients were divided into two groups, experimental group, comprising eighteen patients that received an exercise program with action observation; and a control group, comprising seventeen patients that received conventional exercise program. Functional recovery was assessed with the Fugl-Meyer Scale, manual dexterity was assessed with the Box and Blocks test, and the functional use of the affected upper limb was assessed with the Reach scale. Evaluations occurred at baseline, after three and six months of intervention. Statistical analyses were performed with the Repeated Measures Analysis of Variance and the Friedman test, under a 5% significance.

Results:

Both interventions provided benefits to chronic stroke patients. Exercise program with action observation presented better results on motor recovery (p < 0.001) and functional use of the affected limb (p < 0.001) when compared with conventional therapy. Both treatments improved the manual dexterity of the participants (p = 0.002), but in a similar way (p = 0.461).

Conclusion:

A six-month exercise program with action observation provided benefits on functional recovery and functional use of an affected upper limb in chronic stroke patients. Exercises with action observation demonstrated the potential for improving affected upper limb in chronic stroke patients.

 

INTRODUCTION

Recovery of the affected upper limb is one of the great challenges in the rehabilitation of stroke patients. Approximately 60% of severely affected individuals do not present manual dexterity six months after the stroke1. The functional deficits of the upper limb affect the ability for self-care, contribute to low perceived quality of life and higher healthcare services costs2,3.

Exercise programs should start early, be intensive and developed with the active participation of patients to promote motor learning and minimize functional deficits4. Action observation training (AO) is an alternative treatment in which the individual observes an action and then imitates the task5.

AO stimulates the mirror neuron system, a special type of neurons activated by the execution and observation of action6. Initially studied in monkeys, the mirror neuron system is associated with the premotor cortex, supplementary motor area, primary somatosensory cortex, and inferior parietal cortex. By its connections with neurocognitive processing, exercises programs that stimulate the mirror neuron system may promote important benefits to stroke patients6,7.

During AO there is an activation of several cortical areas. An internal representation of the action can potentiate motor learning and functional recovery8,9. AO uses movements guided by external stimuli in which visual attention recruits the cerebellar-thalamic-cortical circuit10. This circuit is involved in neural integration during the initial stages of motor learning. In this matter, Wright and collegues11 showed that directed attention facilitates corticospinal excitability of the brain.

Previous studies using AO showed positive results in the recovery of the affected upper limb in stroke12 13 14 15 1617. There were improvements in functionality, on the ability to perform activities of daily living and on manual dexterity. Nevertheless, there are still few studies comparing the effects of AO versus conventional therapy (exercise without AO) aiming to see how effective AO is in relation to exercise programs already consecrated.

Thus, in the present study, we investigated the benefits of AO in comparison to conventional physical therapy on upper limb functional recovery, manual dexterity and everyday use of the affected upper limb in individuals with stroke. We hypothesized that AO would present better outcomes to patients with stroke than a conventional exercise program.[…]

Continue —-> Exercises with action observation contribute to upper limb recovery in chronic stroke patients: a controlled clinical trial

Figure 2 Example of action observation training for participants of the experimental group. 

 

, , , , , , , ,

Leave a comment

[ARTICLE] Effect of Vojta Therapy on Balance and Walking of Community Dwelling Chronic Stroke Patients – Full Text PDF

ABSTRACT

Objectives: To evaluate effect of Vojta Therapy on balance and
walking of community dwelling chronic stroke patients.
Study design: Single group clinical trial with pre and post test.
Setting: VojtaTherapy clinic, Division of Physical Therapy,
Department of Rehabilitation Medicine, Trang Hospital.
Subjects: Community dwelling chronic stroke patients with
abnormal gait referred to the VojtaTherapy clinic.
Methods: Every participant did a timed up and go test (TUGT)
immediately before and after the VojtaTherapy. Techniques were
chosen according to response of patients with 30 minutes per
session. Treatment and assessment were repeated once a week
for three weeks.
Results: Twenty chronic stroke patients with average age of
63.1 (SD = 13.23) years and average duration after stroke of
58.35 (SD = 52.83) months were enrolled into the study. The
median TUGT scores of the first, second and third pre-treatment
were 28, 22 and 19.5 respectively. Friedman test demonstrated a
significant difference (p < 0.001). Median TUGT Score of the first,
second, and third post treatment TUGT score were 22.5, 18 and
18.5 respectively. Wilcoxon test showed significant difference of
pre versus post treatments in everysessions (p < 0.0001).
Conclusion: Once a week of VojtaTherapy for three weeks can
improve walking in community dwelling chronic stroke patients.
Download Full Text PDF

, , , , , ,

Leave a comment

[Abstract] Upper Limb Three-Dimensional Reachable Workspace Analysis Using the Kinect Sensor in Hemiplegic Stroke Patients

Abstract

Objective

reachable workspace evaluation using the Kinect sensor was previously introduced as a novel upper limb outcome measure in neuromuscular and musculoskeletal conditions. This study investigated its usefulness in hemiplegic stroke patients.

Design

Forty-one patients with hemiplegic stroke were included. Kinect-based reachable workspace analysis was performed on both paretic and nonparetic sides. Upper limb impairment was measured using the Fugl-Meyer Assessment and the Motricity Index on the paretic side. Disability was assessed using the shortened Disabilities of the Arm, Shoulder, and Hand questionnaire. Correlations between the relative surface areas, impairment scores, and disability were analyzed.

Results

Quadrants 1, 3, and 4 as well as the total relative surface area of the paretic side were significantly reduced compared with the nonparetic side. The total relative surface area of the paretic side correlated with the Fugl-Meyer Assessment scores, the Motricity Index for Upper Extremity, and the Disabilities of the Arm, Shoulder, and Hand questionnaire score. Furthermore, quadrant 3 was the most important determinant of upper limb impairment and disability.

Conclusions

reachable workspace (a sensor-based measure that can be obtained relatively quickly and unobtrusively) could be a useful and alternative outcome measure for upper limb in hemiplegic stroke patients.

via Upper Limb Three-Dimensional Reachable Workspace Analysis Us… : American Journal of Physical Medicine & Rehabilitation

, , , , , , , , , , ,

Leave a comment

[Abstract] The effectiveness of extracorporeal shock wave therapy to reduce lower limb spasticity in stroke patients: a systematic review and meta-analysis

Objective: To assess the effectiveness of Extracorporeal Shock Wave Therapy (ESWT) to reduce lower limb spasticity in adult stroke survivors.

Data Sources: A systematic review of Medline/Pubmed, CENTRAL, CINAHL, PEDro database, REHABDATA, Scielo, Scopus, Web of Science, Trip Database, and Epistemonikos from 1980 to December 2018 was carried out.

Review Methods: The bibliography was screened to identify clinical trials (controlled and before-after) that used ESWT to reduce spasticity in stroke survivors. Two reviewers independently screened references, selected relevant studies, extracted data, and assessed risk of bias by PEDro scale. The primary outcome was spasticity.

Results: A total of 12 studies (278 participants) were included (5 randomized controlled trials, 1 controlled trial, and 6 before-after studies). A meta-analysis was performed by randomized controlled trials. A beneficial effect on spasticity was found. The mean difference (MD) was 0.58; 95% confidence interval (CI) 0.30 to 0.86 and also in subgroup analysis (short, medium, and long term). The MD for range of motion was 1.81; CI −0.20 to 3.82 and for lower limb function the standard mean difference (SMD) was 0.34; 95% CI −0.09 to 0.77. Sensitivity analysis demonstrated a better beneficial effect for myotendinous junction. MD was 1.5; 95% CI −2.44 to 5.44 at long-term (9 weeks).

Conclusion: The ESWT (radial/focused) would be a good non-invasive rehabilitation strategy in chronic stroke survivors to reduce lower limb spasticity, increase ankle range of motion, and improve lower limb function. It does not show any adverse events and it is a safe and effective method.

, , , , , , , ,

Leave a comment

[ARTICLE] Design and Analysis of a Wearable Upper Limb Rehabilitation Robot with Characteristics of Tension Mechanism – Full Text HTML

Abstract

Nowadays, patients with mild and moderate upper limb paralysis caused by cerebral apoplexy are uncomfortable with autonomous rehabilitation. In this paper, according to the “rope + toothed belt” generalized rope drive design scheme, we design a utility model for a wearable upper limb rehabilitation robot with a tension mechanism. Owing to study of the human upper extremity anatomy, movement mechanisms, and the ranges of motion, it can determine the range of motion angles of the human arm joints, and design the shoulder joint, elbow joint, and wrist joint separately under the principle of ensuring the minimum driving torque. Then, the kinematics, workspace and dynamics analysis of each structure are performed. Finally, the control system of the rehabilitation robot is designed. The experimental results show that the structure is convenient to wear on the human body, and the robot’s freedom of movement matches well with the freedom of movement of the human body. It can effectively support and traction the front and rear arms of the affected limb, and accurately transmit the applied traction force to the upper limb of the joints. The rationality of the wearable upper limb rehabilitation robot design is verified, which can help patients achieve rehabilitation training and provide an effective rehabilitation equipment for patients with hemiplegia caused by stroke.

1. Introduction

The number of young patients with functional impairment of the upper limbs caused by stroke has increased rapidly, as influenced by accelerated pace of life, poor lifestyles and environmental factors [1,2]. Limb movement disorder, which is caused by hemiplegia after stroke, not only reduces the quality of life of patients, but also brings great pain to their physiology and psychology. Effective rehabilitation training can improve the defect of patients’ nerve function and maintain the degree of joint activity; it also prevents joint spasms and enhances the final rehabilitation degree of patients’ motor functions significantly [3]. The traditional rehabilitation training is one-to-one auxiliary exercise for patients by therapists. This method is difficult to develop an effective treatment plan, and it is tough to control accurately [4]. With the development of rehabilitation robot technology and rehabilitation medicine, the rehabilitation robot has become a novel motor nerve rehabilitation treatment technology. It is of great significance to take advantage of rehabilitation robot technology for rehabilitation training to the recovery of limb function of stroke patients [5]. The traditional methods of treatment, which are based on the therapist’s clinical experience, have the problems of large staff consumption, long rehabilitation cycles, limited rehabilitation effects, and so on. The research and application of rehabilitation robot system is expected to alleviate the contradiction between supply and demand of rehabilitation medical resources effectively, and improve the quality of life of stroke patients [6,7].[…]

Continue —-> Applied Sciences | Free Full-Text | Design and Analysis of a Wearable Upper Limb Rehabilitation Robot with Characteristics of Tension Mechanism | HTML

Applsci 10 02101 g001

Figure 1. Shoulder joint freedom of motion. (a) Flexion/extension; (b) abduction/adduction; (c) internal rotation/external rotation.

, , , , , , , ,

Leave a comment

[Abstract] Stepping training with external feedback relating to lower limb support ability effectively improved complex motor activity in ambulatory patients with stroke: a randomized controlled trial

 

BACKGROUND: Lower limb support ability is important for steady and efficient mobility, but previous data commonly involved training during double stance positions, with or without external feedback, using a complex and costly machine.
AIM: To compare the effects of stepping training with or without external feedback in relation to the lower limb support ability of the affected limb on the functional ability necessary for independence in individuals with stroke.
DESIGN: A single-blinded, randomised controlled trial.
SETTING: Tertiary rehabilitation centres.
POPULATION: Ambulatory participants with stroke who walked independently over at least 10 meters with or without walking devices.
METHODS: Thirty-six participants were randomly arranged to be involved in a program of stepping training with or without external feedback related to the lower limb support ability of the affected limb (18 participants/group) for 30 minutes, followed by overground walking training for 10 minutes, 5 days/week over 4 weeks. The outcomes, including the lower limb support ability of the affected legs during stepping, functional ability and spatial walking data, were assessed prior to training, immediately after the first training session, and after 2- and 4- week training.
RESULTS: Participants demonstrated significant improvement in the amount of lower limb support ability, immediately after the first training with external feedback. Then, these participants showed further improvement in both the amount and duration of lower limb support ability, as well as the timed up and go data after 2 and 4 weeks of training (p < 0.05). This improvement was not found following control training.
CONCLUSIONS: The external feedback relating to lower limb support ability during stepping training effectively improved the movement stability and complex motor activity of ambulatory individuals with stroke who had long post-stroke time (approximately 3 years).
CLINICAL REHABILITATION IMPACT: Stepping training protocols and feedback can be easily applied in various settings using the amount of body-weight from an upright digital bathroom scale. Thus, the findings offer an alternative rehabilitation strategy for clinical, community and home-based settings for stroke individuals.

Full Text PDF

via Stepping training with external feedback relating to lower limb support ability effectively improved complex motor activity in ambulatory patients with stroke: a randomized controlled trial – European Journal of Physical and Rehabilitation Medicine 2019 Oct 15 – Minerva Medica – Journals

, , , , , , , ,

Leave a comment

[Abstract] Effects of Bihemispheric Transcranial Direct Current Stimulation on Upper Extremity Function in Stroke Patients: A randomized Double-Blind Sham-Controlled Study

Abstract

Background and Purpose

Transcranial direct current stimulation (tDCS) is a treatment used in the rehabilitation of stroke patients aiming to improve functionality of the plegic upper extremity. Currently, tDCS is not routinely used in post stroke rehabilitation. The aim of this study was to establish the effects of bihemspheric tDCS combined with physical therapy (PT) and occupational therapy (OT) on upper extremity motor function.

Methods

Thirty-two stroke inpatients were randomised into 2 groups. All patients received 15 sessions of conventional upper extremity PT and OT over 3 weeks. The tDCS group (n = 16) also received 30 minutes of bihemispheric tDCS and the sham group (n = 16) 30 minutes of sham bihemispheric tDCS simultaneously to OT. Patients were evaluated before and after treatment using the Fugl Meyer upper extremity (FMUE), functional independence measure (FIM), and Brunnstrom stages of stroke recovery (BSSR) by a physiatrist blind to the treatment group

Results

The improvement in FIM was higher in the tDCS group compared to the sham group (P = .001). There was a significant within group improvement in FMUE, FIM and BSSR in those receiving tDCS (P = .001). There was a significant improvement in FIM in the chronic (> 6months) stroke sufferers who received tDCS when compared to those who received sham tDCS and when compared to subacute stroke (3-6 months) sufferers who received tDCS/sham.

Conclusions

Upper extremity motor function in hemiplegic stroke patients improves when bihemispheric tDCS is used alongside conventional PT and OT. The improvement in functionality is greater in chronic stroke patients.

via Effects of Bihemispheric Transcranial Direct Current Stimulation on Upper Extremity Function in Stroke Patients: A randomized Double-Blind Sham-Controlled Study – ScienceDirect

, , , , , , , , , , , ,

Leave a comment

[Abstract] Effects of kinesio taping on hemiplegic hand in patients with upper limb post-stroke spasticity: a randomized controlled pilot study

Abstract

BACKGROUND: Post-stroke spasticity is a common complication in patients with stroke and a key contributor to impaired hand function after stroke.
AIM: The purpose of this study was to investigate the effects of kinesio taping on managing spasticity of upper extremity and motor performance in patients with subacute stroke.
DESIGN: A randomized controlled pilot study.
SETTING: A hospital center.
POPULATION: Participants with stroke within six months.
METHODS: Thirty-one participants were enrolled. Patients were randomly allocated into kinesio taping (KT) group or control group. In KT group, Kinesio Tape was applied as an add-on treatment over the dorsal side of the affected hand during the intervention. Both groups received regular rehabilitation 5 days a week for 3 weeks. The primary outcome was muscle spasticity measured by modified Ashworth Scale (MAS). Secondary outcomes were functional performances of affected limb measured by using Fugl-Meyer assessment for upper extremity (FMA-UE), Brunnstrom stage, and the Simple Test for Evaluating Hand Function (STEF). Measures were taken before intervention, right after intervention (the third week) and two weeks later (the fifth week).
RESULTS: Within-group comparisons yielded significant differences in FMA-UE and Brunnstrom stages at the third and fifth week in the control group (P=0.003-0.019). In the KT group, significant differences were noted in FMA-UE, Brunnstrom stage, and MAS at the third and fifth week (P=0.001-0.035), and in the proximal part of FMA-UE between the third and fifth week (P=0.005). Between-group comparisons showed a significant difference in the distal part of FMA-UE at the fifth week (P=0.037).
CONCLUSIONS: Kinesio taping could provide some benefits in reducing spasticity and in improving motor performance on the affected hand in patients with subacute stroke.
CLINICAL REHABILITATION IMPACT: Kinesio taping could be a choice for clinical practitioners to use for effectively managing post-stroke spasticity.

HTML PDF

via Effects of kinesio taping on hemiplegic hand in patients with upper limb post-stroke spasticity: a randomized controlled pilot study – European Journal of Physical and Rehabilitation Medicine 2019 October;55(5):551-7 – Minerva Medica – Journals

, , , , , , , , , , ,

Leave a comment

[Abstract] A novel backstepping adaptive impedance control for an upper limb rehabilitation robot

Abstract

Stroke contributes to hemiplegia, which severely reduces people’s ability to perform activities of daily living. Due to the insufficiency of medical resources, there is an urgent need for home-based rehabilitation robot. In this paper, we design a home-based upper limb rehabilitation robot, based on the principle that three axes intersect at one point. A three-dimensional force sensor is equipped at the end of the manipulator to measure the interaction forces between the affected upper limb and the robot during rehabilitation training. The virtual rehabilitation training environment is designed to improve the enthusiasm of patients. A backstepping adaptive fuzzy based impedance control method is proposed for the home-based upper limb rehabilitation robot to prevent secondary injury of the affected limb. The adaptive law is introduced, and the backstepping adaptive fuzzy based impedance controller is proved in details. Experiments results demonstrate the effectiveness of the proposed control method.

 

via A novel backstepping adaptive impedance control for an upper limb rehabilitation robot – ScienceDirect

, , , , , , , , ,

Leave a comment

[Abstract] Bilateral Contralaterally Controlled Functional Electrical Stimulation Reveals New Insights Into the Interhemispheric Competition Model in Chronic Stroke

Background. Upper-limb chronic stroke hemiplegia was once thought to persist because of disproportionate amounts of inhibition imposed from the contralesional on the ipsilesional hemisphere. Thus, one rehabilitation strategy involves discouraging engagement of the contralesional hemisphere by only engaging the impaired upper limb with intensive unilateral activities. However, this premise has recently been debated and has been shown to be task specific and/or apply only to a subset of the stroke population. Bilateral rehabilitation, conversely, engages both hemispheres and has been shown to benefit motor recovery. To determine what neurophysiological strategies bilateral therapies may engage, we compared the effects of a bilateral and unilateral based therapy using transcranial magnetic stimulation.

Methods. We adopted a peripheral electrical stimulation paradigm where participants received 1 session of bilateral contralaterally controlled functional electrical stimulation (CCFES) and 1 session of unilateral cyclic neuromuscular electrical stimulation (cNMES) in a repeated-measures design. In all, 15 chronic stroke participants with a wide range of motor impairments (upper extremity Fugl-Meyer score: 15 [severe] to 63 [mild]) underwent single 1-hour sessions of CCFES and cNMES. We measured whether CCFES and cNMES produced different effects on interhemispheric inhibition (IHI) to the ipsilesional hemisphere, ipsilesional corticospinal output, and ipsilateral corticospinal output originating from the contralesional hemisphere.

Results. CCFES reduced IHI and maintained ipsilesional output when compared with cNMES. We found no effect on ipsilateral output for either condition. Finally, the less-impaired participants demonstrated a greater increase in ipsilesional output following CCFES.

Conclusions. Our results suggest that bilateral therapies are capable of alleviating inhibition on the ipsilesional hemisphere and enhancing output to the paretic limb.

 

via Bilateral Contralaterally Controlled Functional Electrical Stimulation Reveals New Insights Into the Interhemispheric Competition Model in Chronic Stroke – David A. Cunningham, Jayme S. Knutson, Vishwanath Sankarasubramanian, Kelsey A. Potter-Baker, Andre G. Machado, Ela B. Plow, 2019

, , , , , , , , , , , ,

Leave a comment

%d bloggers like this: